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Hyperspectral and multispectral image fusion under
spectrally varying spatial blurs – Application to
high dimensional infrared astronomical imaging

Claire Guilloteau, Thomas Oberlin, Olivier Berné and Nicolas Dobigeon

Abstract—Hyperspectral imaging has become a significant
source of valuable data for astronomers over the past decades.
Current instrumental and observing time constraints allow direct
acquisition of multispectral images, with high spatial but low
spectral resolution, and hyperspectral images, with low spatial
but high spectral resolution. To enhance scientific interpretation
of the data, we propose a data fusion method which combines
the benefits of each image to recover a high spatio-spectral
resolution datacube. The proposed inverse problem accounts for
the specificities of astronomical instruments, such as spectrally
variant blurs. We provide a fast implementation by solving the
problem in the frequency domain and in a low-dimensional
subspace to efficiently handle the convolution operators as well
as the high dimensionality of the data. We conduct experiments
on a realistic synthetic dataset of simulated observation of the
upcoming James Webb Space Telescope, and we show that our
fusion algorithm outperforms state-of-the-art methods commonly
used in remote sensing for Earth observation.

Index Terms—data fusion, hyperspectral imaging, high dimen-
sional imaging, infrared astronomy, super-resolution, deconvolu-
tion

I. INTRODUCTION

THE idea of combining spectroscopy and imaging has
become very popular in the two past decades, leading to a

new sensing paradigm referred to as hyperspectral or spectral
imaging. Hyperspectral images can be thought as a whole cube
of data which provides a full description of the acquired scene
or sample both in space and wavelength, thus being suitable for
numerous chemical or physical analyses in various applicative
domains. Hyperspectral imaging finds applications in many
different fields, including remote sensing for Earth observation
[1], [2] or planetology [3], material science [4], [5], [6],
dermatology [7] and food quality monitoring [8]. In this work,
we will focus on astronomy in the visible and near-infrared
range. Sensing the universe in this spectral range at high
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spatial and spectral resolution is indeed of particular interest to
study key mechanisms in astrophysics and cosmology. More
specifically, this concerns for instance the combined sensing
of the morphology or spectral signatures of protoplanetary
disks, the interstellar medium or galaxies in the near or distant
universe. For those purposes, numerous astronomical instru-
ments have, in the past couple decades, adopted observing
modes or designs allowing to acquire hyperspectral datasets.
A full review of these instruments is out of the scope of this
paper, but, for instance, this concerns the instruments aboard
a number of space missions such as ESA’s Infrared Space
Observatory, NASA’s Spitzer Space Telescope, or the ESA’s
Herschel Space Observatory, and the upcoming James Webb
Space Telescope.

However, instrumental constraints usually do not enable a
direct acquisition of data-cubes combining full spatial and
spectral resolutions simultaneously (when this is the case, it
is at the price of much longer integration times). A common
alternative for astronomers consists in acquiring two images of
the same scene with complementary information, namely an
hyperspectral (HS) image with high spectral resolution and a
multispectral (MS) image with high spatial resolution. The HS
and MS data fusion aims at combining these complementary
observations to reconstruct a full data-cube at high spectral
and spatial resolutions. This virtually allows to combine the
performances of the data-sets at the post-processing step,
without any modification of observing modes, instrumental
designs, or integration times. From the astronomical point
of view, the resulting fused product is expected to provide
meaningful insights about the scene of interest. Thanks to its
high spatial and spectral resolution, it opens the door to a finer
mapping of physical quantities, such as gas temperature and
density, radiation field, metalicity, chemical components, etc.

Image fusion has been extensively studied in the literature
of Earth observation [9], [10], [11]. This task is undertaken
to provide high spatial resolution multiband images from
the measurements provided by a large majority of the opti-
cal sensors dedicated to Earth observation. Indeed, most of
the airborne or spaceborne optical remote sensing platforms
embed at least two sensors with complementary spatial and
spectral resolutions. The first methods addressed the so called
pansharpening problems, which consists in fusing a MS or
HS image with a panchromatic (PAN) image, i.e., a grayscale
image with a single spectral band. These heuristic approaches
[12], [13] consisted in injecting spatial details extracted from
the high spatial resolution image into an interpolated version
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of the low spatial resolution image. Those methods, in addition
to be fast and easy to implement, are likely to recover
spatial details with high accuracy, but they often produce
significant spectral deformations [12]. Another class of data
fusion methods is based on spectral unmixing and matrix
factorization paradigms. One of the first methods was proposed
in [14] for fusing infrared astronomical data. According to
low-rank assumption on the spectral information contained
in the HS image, the latter is decomposed into two factors,
representing source spectra and spatial coefficients, following
a non-negative matrix factorization (NMF) [15]. The source
spectra matrix is then combined with a high spatial resolution
coefficient matrix extracted with a non-negative least square
algorithm from the MS image. The same idea has been pursued
by Yokoya et al. for remote sensing images [16]. The so-called
coupled-NMF (CNMF) method performs NMF alternatively
on the HS and MS images to extract a high resolution
source spectra matrix and a high resolution spatial coefficient
matrix. The two methods assume linear spectral degradation
and spectrally invariant spatial blur for the observations, that
can be either known or estimated beforehand. The main
drawback of these spectral unmixing-based fusion methods
lies on their slow convergence to a local minimum, making the
solution highly dependent on the initialization. More recently,
capitalizing on the prior knowledge regarding the observation
instruments, the data fusion task has been formulated as an
inverse problem derived from explicit forward models and
complemented by appropriate spatial and/or spectral regular-
izations. More precisely, the forward models rely on a spectral
degradation operator associated with the MS filters and a
spectrally invariant spatial blurring induced by the HS sensor.
Most of these methods assume a low-rank structure for the
spectral information provided by the HS image. They mainly
differ by the adopted spatial regularization designed to pro-
mote particular behaviors of the spatial content. For instance,
a convex regularization as a form of vector total variation
has been used in [17], promoting sparsity in the distribution
of the gradient of the reconstructed image. Therefore, this
fused image is expected to be spatially smooth, except for
a small number of areas, coinciding with sharp edges. Instead
of promoting a smooth content, the regularization introduced
in [18], represents the target image as a sparse combination
of elements of a dictionary composed of spatial patches
and learned from the MS image. The resulting optimization
problems are solved iteratively thanks to particular instances
of the alternating direction method of multipliers [19]. More
recently, the authors in [20], [21] show that such fusion inverse
problems can be formulated as a Sylvester equation and
solved analytically, significantly decreasing the computational
complexity of the aforementioned iterative methods.

However, all these techniques are not suitable to tackle
the fusion of high dimensional astronomical data. The first
challenge is to handle the high dimensionality of the data,
considerably larger than the usual dimension encountered in
remote sensing. Indeed, a high spatio-spectral fused image
in Earth remote sensing is composed of at most a few
hundreds of spectral bands while spatio-spectral astronomical
data are typically composed of up to several thousands, or

even tens of thousands of spectral measurements. Moreover,
the spatial resolution of space- or airborne Earth observations
is mainly limited by atmosphere turbulence [22]. Nevertheless,
the spatial resolution of spaceborne astronomical observations
is limited by diffraction. This limit is wavelength dependent
and can be estimated by the Rayleigh criterion [23]. It defines
the angular resolution θ = 1.220 λD , where λ is the wavelength
of the light and D the diameter of the aperture. In practice,
this physical property means that the operators associated
with spatial blurs should be considered as spectrally varying
while restoring astronomical MS and HS images [24], [25].
This crucial issue significantly increases the complexity of
the forward models and make the fusion methods previously
discussed inoperative. Indeed, as mentioned above, the forward
models commonly used for Earth observation data fusion
rely on a spectrally invariant spatial blur to describe the HS
observation and a subsampling operator combined with a spec-
tral degradation operator for the MS observation. The main
contributions reported in this work tackle both challenges: we
design a fusion method and its fast implementation suitable for
fusing large-scale astronomical data while taking into account
the specificities of astronomical imaging, in particular the
spectrally variant blur underlying the MS and HS observations.

The paper is organized as follows. Section II describes the
observational forward models and introduces the fusion inverse
problem. Then, Section III presents our main contribution: a
fast implementation to solve the inverse problem. To this end,
the optimization problem is rewritten in the frequency domain,
while an appropriate vectorization step enables to formulate
the spatial degradations in a low-dimensional subspace. In Sec-
tion IV, the performance of the proposed method is assessed
using a realistic simulated astrophysical dataset and compared
qualitatively and quantitatively with state of the art methods.
Section V finally concludes the paper.

II. PROBLEM FORMULATION

A. Forward models

This section derives the mathematical models associated
with two instruments providing images of complementary
spatial and spectral resolutions. Contrary to models associated
to Bayer-like or other color filter arrays mostly encountered
in digital cameras [26, Chap. 10], they are formulated under
the assumption of independent dual measurements encoding
the information separately. The first instrument is an optical
imager which acquires a MS image of high spatial resolution
denoted Ym ∈ Rlm×pm , where lm and pm denote the num-
bers of spectral bands and pixels, respectively. The second
instrument is a spectrometer which acquires a full HS data-
cube Yh ∈ Rlh×ph of lower spatial resolution, with lm < lh
and ph < pm. From these measurements, the objective of
the fusion process is to recover a HS image of high spatial
resolution denoted X ∈ Rlh×pm , which has the same spatial
resolution as the MS image and the same spectral resolution of
the HS one. The responses of the two sensors are modeled by a
series of linear transformations that describe successive spatial
and spectral degradations of light emerging from the scene
of interest. With the adopted ordering of the elements in the
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matrix X, spectral and spatial degradations will be represented
as left and right operators, respectively. More precisely, we
assume that the MS and HS images result from the following
forward models

Ym ≈ LmM(X) (1)

Yh ≈ LhH(X)S (2)

where the symbol ≈ accounts for random noises and model
mismodeling, and the other operators are detailed hereafter.
First, Lm ∈ Rlm×lh and Lh ∈ Rlh×lh are spectral degradation
operators, respectively associated with MS and HS images.
The MS observation instrument integrates the spectral bands
of the initial scene X over the spectral dimension to provide
each MS band. The rows of the matrix Lm in (1) are thus made
of the transmission functions of the lm corresponding filters
[16], [17], [18]. On the other hand, the spectral information
of the initial scene X is attenuated by the optical system of
the HS instrument. Therefore, Lh is a diagonal matrix made of
the spectral transmission function of the instrument. It is worth
noting that these two spectral degradations are spatially invari-
ant, which allows them to be formulated as the matrix products
in (1) and (2). Second, M : Rlh×pm → Rlh×pm in (1) and
H : Rlh×pm → Rlh×pm in (2) are spatial degradation operators
which model the blurs caused by the optical system of both
instruments. In the context of astronomical imaging addressed
in this work, we can reasonably assume the associated point
spread functions (PSFs) to be space-invariant, but they strongly
depend on the wavelength, following a Rayleigh criterion
[23]. Therefore, M(·) and H(·) are 2D spatial convolution
operators with spectrally variant blurring kernels specific to
each instrument [24], [25]. Finally, the spatial resolution of the
HS image is impaired by a subsampling operator S ∈ Rpm×ph

with an integer decimation factor d such that ph = pm
d2 . In other

words, right-multiplying by S amounts to keeping one pixel
over d2. In this work, we assume that all the operators are
known.

B. Inverse problem

To recover X from the two noisy observations, we adopt
the general framework of (variational) inverse problem, trying
to fit the observations while adding regularization terms to
promote prior knowledge on the sought solution. Similar
approaches have been widely advocated to address the problem
of multiband image fusion in the remote sensing and Earth ob-
servation literature. By denoting (·)H the Hermitian transpose
and ‖ · ‖2F = Tr

(
(·)(·)H

)
the Frobenius norm, this amounts

to solving the generic problem

X̂ = argmin
X

(
1

2σ2
m

‖Ym − LmM(X)‖2F

+
1

2σ2
h

‖Yh − LhH(X)S‖2F + ϕspec(X) + ϕspat(X)

)
(3)

where the two first terms are data fidelity terms related
respectively to the MS and the HS images. Minimizing these
data fidelity terms is equivalent to maximize the log-likelihood
associated to a white Gaussian noise model in the data, i.e.,
the symbols ≈ in (1) and (2) stand for additive corruptions

Nm and Nh assumed to be independent white Gaussian
noise with variance σ2

m and σ2
h , respectively. Although this

hypothesis may be not realistic for astronomical images as
they are known to be rather corrupted by a mixed Poisson-
Gaussian noise [27], the least-square loss is chosen for the
sake of computational efficiency. It is worth noting that the
experimental results reported in Section IV will show that
this simplifying assumption does not significantly impair the
relevance of the proposed method.

Besides, the terms ϕspec(·) and ϕspat(·) in (3) stand for
spectral and spatial regularizations, respectively. Regarding
ϕspec(·), HS image bands are known to be highly correlated.
Thus the pixels of the full scene X can be reasonably assumed
to live in a subspace whose dimension lsub is much smaller than
its spectral dimension lh. This property can be formulated by
imposing a low-rank structure on the scene X to be recovered,
i.e., X = VZ where the columns of V ∈ Rlh×lsub (with lsub ≤
lh) spans the signal subspace and Z ∈ Rlsub×pm gathers the
corresponding representation coefficients. This decomposition
implicitly imposes a spectral regularization, since the spectra
of the fused image are assumed to be linear combinations of
the reference spectra defining V. The columns of V spanning
the signal subspace can be fixed beforehand thanks to prior
knowledge regarding the composition of the scene of interest,
for instance by stacking lsub spectral signatures characterizing
the components of the scene. In absence of such a knowledge,
they can be directly estimated from the HS measurements,
e.g., by conducting a principal component analysis (PCA)
or resorting to a method specifically dedicated to HS data
such as the maximum noise fraction (MNT) transform [28] or
the hyperspectral signal subspace identification by minimum
error (HySime) method [29]. This strategy has been widely
adopted in numerous works of the literature dedicated to
hyperspectral image enhancement [30], [17], [20]. Another
asset of this change of variable lies in a significant reduction of
the complexity of the optimization problem since i) estimating
the decomposition coefficients Ẑ is sufficient to recover the
fused image X̂ = VẐ and ii) this decomposition allows the
forward models to be rewritten in the subspace spanned by
V, which leads to a scalable algorithm (see Section III-B for
details).

Concerning the spatial regularization term ϕspat(·), it is
based on the assumption that the sought image is a priori
spatially smooth, in agreement with typical scenes encountered
in astrophysical observations. We thus propose to minimize
the energy of the spatial discrete gradient of the image, also
known as Sobolev regularization [31]. This writes

ϕspat(Z) = µ‖ZD‖2F

where the matrix D stands for a 1st order 2-D finite difference
operator and the regularization parameter µ ≥ 0 controls
the strength of the regularization. Note that, provided that
the matrix V is orthonormal (i.e., VTV = Ilsub ), this
regularization formulated in the signal subspace is equivalent
to the one that would be formulated in the original image
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domain. The problem now becomes

Ẑ = argmin
Z

(
1

2σ2
m

‖Ym − LmM(VZ)‖2F

+
1

2σ2
h

‖Yh − LhH(VZ)S‖2F + µ‖ZD‖2F
)
. (4)

The next section presents an efficient algorithmic scheme
designed to solve the minimization problem (4).

III. FAST IMPLEMENTATION

Although quadratic, the problem stated in (4) cannot be
easily solved by conventional methods such as fast gradient
descent [32] or conjugate gradient [33] because of the spec-
trally variant blurs inM(·) and H(·). Indeed, resorting to such
algorithms needs to evaluate the gradient at each iteration,
requiring the application of operators M(·) and H(·) and
their respective adjoints, i.e., applying a set of 4lh distinct
2D spatial convolutions. Storing and processing thousands of
distinct PSFs would annihilate the benefit of the dimension
reduction induced by the low-rank decomposition associated
with the matrix V. This section details our main contribution
which consists of a fast implementation tailored to this fusion
task under spectrally variant blurring. Firstly, we show that the
considered problem can be fully formulated in the frequency
domain to handle the heavy convolution operators M(·) and
H(·). Yet sporadically adopted in a few previous works [20],
[21], this strategy departs from most of the fusion techniques
already proposed in the literature. Indeed, most of these
techniques usually solve the problem entirely in the image
domain [34], [35], [36] or operate multiple and expensive back
and forth between the image domain and the frequency domain
along the iterations of the algorithm [17], [18], [37]. Secondly,
we combine these convolution operators and vectorize the
whole problem expressed in the low-dimensional subspace
spanned by the columns of V. Up to our knowledge, no similar
approach has been proposed yet. Although the computational
gain expected from a naive vectorization may appear limited,
we show that it offers two benefits: i) it brings out appealing
quantities that are computed only once in a pre-processing step
and ii) the matrix associated with the resulting linear system to
be solved is shown to be highly sparse with a particular block
structure, which opens the door to the use of dedicated efficient
solvers. Thus rather counterintuitively, this vectorization trick
allows one to significantly reduce the computational cost of
the subsequent iterative minimization algorithm. To highlight
the benefits associated with each of these two steps, namely
the formulation in the Fourier domain and the vectorization,
we provide and discuss the computational complexity of the
proposed implementation at the end of this section.

A. Resolution in the frequency domain

It is widely admitted that computing convolutions in the
frequency domain using fast Fourier transform (FFT) and its
inverse (iFFT) [38] can be faster than directly convolving in
the spatial domain. Here, we propose to reformulate the whole
problem in the Fourier domain to benefit from this computa-
tional advantage. Indeed, every spatial degradation operator

input 2D image

d column blocks

d
ro

w
bl

oc
ks

Σ

× 1
d

output
2D image

Aliasing operator

Fig. 1. Illustration of the aliasing operation Ṡ.

(convolution, subsampling and finite differences operators)
can be expressed or approximated in the Fourier domain by
simple operators, thus reducing the computation burden. First,
under periodic boundary assumptions, the set of 2D spatial
convolutions in H(·) and M(·) can be achieved by cyclic
convolutions acting on VZ. We denote by � the element-wise
matrix multiplication and F the 2D-discrete Fourier transform
(DFT) matrix (FFH = FHF = I) such that Ż = ZF. Thus,
the convolution at a specific spectral band l can be rewritten

[M(VZ)]l =
(
Ṁl � [VŻ]l

)
FH

[H(VZ)]l =
(
Ḣl � [VŻ]l

)
FH

where Ṁl and Ḣl denote the 2D-DFTs of the lth PSFs related
to, respectively, the multi- and the hyperspectral observation
instrument [39]. The down-sampling operator S of factor d
can be written in the Fourier domain as an aliasing operator
Ṡ = SF of factor d [40], which sums d2 blocks of an input
matrix, as illustrated in Fig. 1. Similarly to the downsampling
operator, the aliasing operator acts independently on every
spectral band. Each 2D spatial image with pm pixels is
partitioned into d2 blocks and these blocks are summed up
to produce a 2D spatial image with ph = pm

d2 pixels.
Regarding the spatial regularization, the 1st order 2D finite

differences operator D can be seen as a 2D convolution

operator with kernels
(
1 −1

)
and

(
1
−1

)
. This operator

needs to be applied to the low-dimensional representation
maps Z, whose spectral dimension lsub is much smaller than
VZ. Thus, the computational gain reached by computing this
regularization in the Fourier domain remains negligible. How-
ever, for practical reasons and to simplify the implementation,
we decide to adopt this strategy. More precisely, again, under
cyclic boundary conditions, this regularization term can be
expressed in the Fourier domain as a term-wise multiplication
[39] such that

ZD =
(
Ż� Ḋ

)
FH .

Finally, following Parseval’s identity, the problem (4) is
fully rewritten in the Fourier domain

̂̇
Z = argmin

Ż

(
1

2σ2
m

∥∥∥Ẏm − Lm((VŻ)� Ṁ)
∥∥∥2
F

+
1

2σ2
h

∥∥∥Ẏh − Lh((VŻ)� Ḣ)Ṡ
∥∥∥2
F

+ µ
∥∥∥Ż� Ḋ

∥∥∥2
F

)
(5)

where Ẏm = YmF and Ẏh = YhF. Finally the fused image
can be obtained as X̂ = V

̂̇
ZFH .
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B. Vectorization

The second step consists in computing the sequence of
operators in the subspace spanned by the columns of V instead
of being applied to the full image VŻ. To do so, we introduce
the lexicographically ordered counterparts ẏm, ẏh, V and ż
of Ẏm, Ẏh, V and Ż, respectively, such that

ẏm =
[
Ẏ1

m, · · · , Ẏlm
m

]T
ẏh =

[
Ẏ1

h, · · · , Ẏ
lh
h

]T
V = V ⊗ Ipm ż =

[
Ż1, · · · , Żlsub

]T
where ⊗ denotes the Kronecker product and Ip is the p ×
p identity matrix. With these notations, the problem (5) is
equivalent to

̂̇z = argmin
ż

(
1

2σ2
m

‖ẏm − LmṀVż‖22

+
1

2σ2
h

‖ẏh − ṠLhḢVż‖22 + µ‖Ḋż‖22
)

where Lm, Lh, Ṁ, Ḣ, Ṡ and Ḋ are vectorized forms of Lm,
Lh, Ṁ, Ḣ, Ṡ and Ḋ, respectively, such that

LmṀVż =


[
Lm((VŻ)� Ṁ)

]1
...[

Lm((VŻ)� Ṁ)
]lm


and

ṠLhḢVż =


[
Lh((VŻ)� Ḣ)Ṡ

]1
...[

Lh((VŻ)� Ḣ)Ṡ
]lh

 .

The structures and expressions of all vectorized spatial and
spectral operators are detailed in Appendix A. Finally, the
fusion task boils down to solving the linear system

Aż = b (6)

where A ∈ Rlsubpm×lsubpm and b ∈ Rlsubpm are defined by

A =
1

σ2
m

VHṀ
H

LHmLmṀV

+
1

σ2
h

VHḢ
H

LHh Ṡ
H

ṠLhḢV + µḊ
H

Ḋ, (7)

b = − 1

σ2
m

VHṀ
H

LHm ẏm −
1

σ2
h

VHḢ
H

LHh Ṡ
H

ẏh. (8)

Interestingly, as suggested by (6) and explicitly expressed by
(7) and (8), the quantities A and b resort to all spatial and
spectral operators. In particular, they combine the individual
wavelength-dependent PSFs defining H(·) and M(·) to be
jointly expressed in the low-dimensional subspace through the
left-composition by the projection operator VH . Moreover,
the symmetric matrix A is sparse and composed of, at most,
d2l2subpm non-zero entries, i.e., only a d2/pm-th proportion
of the matrix coefficients is non-zero, arranged according
to a very particular structure detailed in Appendix B. As
a consequence, its high level of sparsity, combined with its

block structure, allows the matrix A to be computed only
once as a pre-processing step and cheaply stored in memory
(see Appendix B for a detailed description of its computation).
Finally, this matrix can be easily called out along the iterations
of a gradient-based descent algorithm implemented to solve
(6). It is also worth noting that this matrix only depends on
the forward models defined by the observation instruments,
the adopted spatial regularization and the matrix V spanning
the signal subspace. Thus, once this subspace does not change,
this matrix does not need to be recomputed to fuse multiple
sets of MS and HS measurements.

C. Complexity analysis
This section discusses the complexity imposed by one

iteration for three different gradient descent algorithms that
solve the fusion problem. More precisely, we compare a naive
implementation minimizing (4), the so-called frequency algo-
rithm minimizing the problem (5) formulated in the Fourier
domain and the proposed algorithm solving the vectorized
formulation yielding the linear system (6). The respective
complexities are expressed as functions of the spatial and
spectral dimensions of the data to be fused, namely pm, lh and
lm, and the intrinsic dimension lsub of the subspace. They are
reported in Table I for the general case, i.e., without assuming
any particular prevalence of one of these quantities over the
others. However, for typical scenarios arising in the applicative
context of astronomical imaging that will be considered in the
experiments (see Section IV), we have lsub ≤ lm ≤ log pm.
In this context, the following findings can be drawn.

When considering a naive implementation, the heaviest
computational burden to solve (4) directly results from evalu-
ating the gradient of the corresponding quadratic cost function,
which amounts to O(lhpm log pm) operations. Note that this
implementation relies on cyclic convolutions operated in the
Fourier domain but requires back and forth in the image
domain by FFT and inverse FFT at each iteration. When
the problem is fully formulated in the Fourier domain (see
Section III-A), the cost of computing the gradient associated
to (5) reduces to O(lhpmlm). By vectorizing the problem (see
Section III-B), the gradient is directly given by the matrix A
in (7). Thus the core steps of the iterative algorithm solving
(6) consist in matrix-vector products, which requires only
O(pml

2
sub) operations thanks to the high level of sparsity of

A. Consequently, one iteration of this vectorized implemen-
tation is significantly less complex than the naive and Fourier
domain-based resolutions.

Besides, while the naive implementation does not require
any pre-processing step, the two alternative schemes proposed
in Sections III-A and III-B rely on quantities computed before-
hand. More precisely, to solve (5) in the frequency domain,
FFT of the MS and HS images and PSFs are required, for
a overall complexity of O(lhpm log pm). In addition, solving
(6) requires to compute the matrix A in (7) and the vector
b in (8). Specifically, the most heavy step is computing the
two first terms in the right-hand side of (7), for a overall
complexity of O(lhpml

2
sub). Therefore, the pre-processing

step involved in the vectorized implementation is more time-
consuming but this step is performed only once before solving
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TABLE I
ASYMPTOTIC COMPLEXITY (AS O(·)): ONE ITERATION OF THE

GRADIENT-BASED ALGORITHM AND PRE-PROCESSING.

Method Iteration Pre-processing

Naive lhpm max {lsub, lm, log pm} –

Frequency lhpm max {lsub, lm} lhpm log pm

Vectorized pml2sub lhpml
2
sub

the problem iteratively. Moreover, as already highlighted, this
pre-processing is significantly lightened when fusing several
sets of HS and MS measurements since only b needs to
be updated, provided the spatial regularization and the signal
subspace remain unchanged.

Beyond the computational complexity, given the high di-
mensionality of the problem, issues raised by handling the
data and instrument models should be also discussed. In
particular, loading the entire fused product and all spectrally
variant PSFs is impossible in high dimension when using
conventional computing resources. As a consequence, when
solving the fusion problem with the naive strategy or in the
frequency domain (see Section III-A), computing (VŻ)� Ṁ
and (VŻ) � Ḣ at each iteration of the descent algorithm
requires on-the-fly loading of each PSF, which increases the
computational times significantly. Conversely, the vectorized
implementation requires to load these PSFs only once during
the pre-processing.

IV. EXPERIMENTAL RESULTS

This section assesses the performance of the proposed
fusion method when applied to a simulated yet realistic
astronomical dataset. This dataset is discussed in the next para-
graph. The considered figures-of-merit, compared methods and
quantitative and qualitative results are reported subsequently.

A. Simulated dataset

The simulated dataset considered in the experiments was
specifically designed to assess multi- and hyperspectral data
fusion in the particular context of high dimensional astro-
nomical observations performed by the James Webb Space
Telescope (JWST). The generation process is accurately de-
scribed in [41] and more briefly recalled hereafter. This dataset
is composed of a high spatial and high spectral resolution
synthetic scene of a photodissociation region (PDR) located
in the Orion Bar. This scene is accompanied with a pair of
corresponding simulated MS and HS observations. The reso-
lution of the synthetic scene matches the spectral resolution
of the HS instrument and the spatial resolution of the MS
sensor, and its field of view and spectral range corresponds
to plausible real acquisitions that will be performed by the
JWST.

The synthetic scene has been generated under a low-rank
assumption such that its constitutive spectra are linear mix-
tures of 4 synthetic elementary spectra spatially distributed
according to 4 maps representing the spatial abundances of

each elementary spectrum over the scene. To simulate the
expected spatial and spectral content of the Orion bar, four real
images acquired by different telescopes are combined to build
the spatial maps and the spectral signatures of the elementary
components were chosen to be those likely present in this
region (see [41] for more details). This simulated scene will
be denoted X in the following and will represent the reference
(i.e., ground-truth) data-cube we aim to recover by fusing the
HS and MS measurements. It is composed of 90× 900 pixels
and 4974 spectral bands ranging from 1 to 2.35 µm.

The corresponding MS and HS observed images were
simulated from this reference synthetic image following the
forward models introduced in Section II-A, where the spatial
and spectral degradation operators are those of the JWST
instrumentation documentation1. The MS image Ym simulates
the output of the near-infrared camera (NIRCam) imager and
is composed of 90×900 pixels and 11 spectral bands. The HS
image Yh consists of 30×300 pixels and 4974 spectral bands
with the specificities of the integral field unit (IFU) of the near-
infrared spectrograph (NIRSpec). The spatial subsampling
factor d is thus set to d = 3. The spectral degradation operators
Lm and Lh are the spectral responses of those two instruments
as specified by the documentation. The 2-D spatial convolu-
tion operators M(·) and H(·) are each composed of 4974
PSFs whose full width at half-maximum (FWHM) is linearly
varying with wavelength. Therefore, the widest PSF is 2.35
times larger than the thinnest. For multi- and hyperspectral
observation instruments, they are of size 161×161 pixels and
145 × 145 pixels, respectively and, because of the specific
shape of JWST mirrors, these PSFs are strongly anisotropic, as
illustrated in Fig. 3. This figure emphasizes the crucial need of
accounting for spectrally variant spatial convolution operators
in the two forward models.

Finally, the simulated images Ym and Yh include a realistic
Poisson-Gaussian mixed noise which is expected to corrupt
astronomical data. They are first corrupted with a Poisson
noise approximated by a multiplicative Gaussian noise of mean
and variance the photon count in each pixel. The instrumental
so-called readout noise is subsquently modeled by an additive
spatially correlated Gaussian noise, with mean and covari-
ance matrix depending on instruments and readout patterns,
assumed to be known. It is worth noting that this mixed
noise significantly departs from the simplifying assumption
of Gaussian noise underlying the two data-fitting terms that
define the minimization problem (3).

Red-green-blue (RGB) color compositions (left) and spectra
(right) of the reference synthetic image (top), the simulated
MS observed image (middle) and simulated HS observed im-
age (bottom) are shown in Fig. 2. Each color in the composite
images is associated to a specific emission line chemically
related to a particular region of the PDR to highlight the
various structures of the scene. Spectra in the right-hand side
of the figure coincide with a pixel in the dark-blue region.
Those illustrations show how the signal is degraded by the
instruments. For the MS observations, the RGB composition

1Instrumental documentation available on STScI website: https://jwst-docs.
stsci.edu/

https://jwst-docs.stsci.edu/
https://jwst-docs.stsci.edu/
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Original simulated scene

MS observed image

HS observed image

101

102

101

2 × 100

3 × 100

4 × 100

6 × 100

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

101

102

Wavelength (microns)

Intensity
(m

Jy.arcsec −
2)

• •

• •

• •

Fig. 2. Left: RGB compositions of the synthetic simulated scene (top), the NIRCam Imager MS image (middle) and the NIRSpec IFU HS image (bottom)
[Red channel: H2 emission line pic intensity at 2.122µm, Green channel: H recombination line pic intensity at 1.865µm, Blue channel: Fe+ emission line
pic intensity at 1.644µm]. Right: A spectrum from 1.0 to 2.35 microns related to a pixel of each image on their left. From top to bottom, the first two are
original spectra from the synthetic scene with 4974 points, the following two are observed spectra from the multiband image provided by the NIRCam Imager
forward model with 11 spectral points, the last two are calibrated observed spectra from the HS image provided by the NIRSpec IFU forward model with
about 5000 spectral points.
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Fig. 3. PSFs of the NIRCam Imager (top) and NIRSpec IFU (bottom)
calculated with webbpsf [42] for two particular wavelengths (logarithmic
scale).

shows less contrast, due to the loss of spectral information
induced by the filters. On the other hand, the hyperspectral
data is clearly less spatially resolved, and the spectrum exhibits
a lower signal-to-noise ratio (SNR).

B. Quality metrics

The performances of the compared data fusion algorithms
are assessed according to three reconstruction quality mea-
sures. We propose to evaluate the spectral distortion between
reconstructed and target spectra through the average spectral
angle mapper (SAM), defined by

aSAM(X̂,X) =
1

pm

pm∑
p=1

arccos

(
〈Xp, X̂p〉
‖Xp‖2‖X̂p‖2

)

where X̂p is a reconstructed spectrum and Xp is the corre-
sponding reference spectrum. The structural similarity (SSIM)
index is then used to estimate the degradation of spatial
structural information. The SSIM index is defined as

SSIM(X̂l,Xl) =

(
2µX̂lµXl + C1

) (
2σX̂lXl + C2

)(
µ2
X̂l

+ µ2
Xl + C1

)(
σ2
X̂l

+ σ2
Xl + C2

)
where X̂l is a lth reconstructed spectral band, Xl is the
corresponding reference spectral band and µX̂l , µXl , σ2

X̂l
, σ2

Xl ,
σX̂lXl are empirical statistics defined in [43] and Cj ∝ L2

(j = 1, 2) is the dynamic range of Xl. In this paper, we rather
consider the average complementary SSIM (acSSIM) across
all bands defined by

acSSIM(X̂,X) = 1− 1

lm

lm∑
l=1

SSIM(X̂l,Xl).

Finally, the overall peak SNR (PSNR) measures the overall
reconstruction quality in the least-square sense:

PSNR(X̂,X) = 10 log10

(
max(X)

‖X− X̂‖2F

)
where X̂ is the reconstructed image and X is the reference.
Note that a good performance is achieved when both the
aSAM and acSSIM are low while the PSNR is large. All these
quantities have been averaged over 20 Monte-Carlo runs.

C. Compared methods

We first consider a naive super-resolution method relying on
a low-rank assumption, referred to afterwards as the baseline
method. This approach consists in spatially upsampling the
projection of the HS image onto the subspace spanned by the
columns of V with a bi-cubic spline interpolation to reach the
spatial resolution of the MS image.

We also compare our fusion algorithm, designated as “Pro-
posed”, with two methods widely known for fusing MS and
HS or MS and PAN remote sensing data: the Brovey method
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[44] and the robust fast fusion using a Sylvester equation
(R-FUSE) [21]. The first one is a component substitution
approach originally designed to fuse MS and PAN images. It
interpolates the projection of the HS image over the spectral
subspace to the spatial resolution of the MS image and
injects extracted details from the MS image. It only requires
the prior knowledge of the spectral blur operator Lm. The
second method formulates the fusion task as an inverse prob-
lem derived from forward models of observation instruments
complemented with a Gaussian prior. This problem uses a
spectral degradation operator Lm related to the multispec-
tral instrument and a spectrally invariant PSF related to the
hyperspectral instrument. In these experiments, this unique
PSF is chosen as the PSF corresponding to the mean-energy
wavelength. The problem is written as a Sylvester equation and
solved analytically, substantially decreasing the computational
complexity.

Finally to evaluate the relevance of the fusion task, we also
compare our fusion algorithm with its two non-symmetric
versions, where one of the data-fit term is removed. The
first version, called MS-only, solves the following spectral
deconvolution problem

Ẑ = argmin
Z

(
1

2σ2
m

‖Ym − LmM(VZ)‖2F + µm‖ZD‖2F
)

where only the data fitting term related to the MS image
is considered. Similarly, the second version, called HS-only
and similar to [45], solves the following HS super-resolution
problem including only the data fitting term related to the HS
image

Ẑ = argmin
Z

(
1

2σ2
h

‖Yh − LhH(VZ)S‖2F + µh‖ZD‖2F
)
.

All the aforementioned methods require a subspace identi-
fication to find the basis matrix V. This step is performed
by PCA conducted on the HS image, as it is expected to
contain all the relevant spectral information. These methods
also require an hyperparameter setting. In this paper, the
hyperparameter is set such that it leads to the highest PSNR
value and the lowest aSAM and acSSIM.

Baseline

Brovey

R-FUSE

HS-only

MS-only

Proposed

Fig. 4. From top to bottom: RGB compositions of fused images reconstructed
by the baseline, Brovey, R-FUSE, HS-only, MS-only and proposed method.
The color composition is the same as for Fig. 2 (left).

D. Results

The fusion results obtained by the six compared methods
are depicted in Fig. 4 as RGB images using the same color
composition as in Fig. 2. Zooms on sharp structures in the
scene are shown in Fig. 5. Qualitatively, the reconstruction
appears to be excellent. Denoising seems to be efficient for
most methods, with a slightly noisier fused product obtained
with R-FUSE. The baseline and HS-only methods are not
able to restore the energy in the signal while the MS-only
and proposed methods appear to better recover even very high
intensities, especially on sharp edges, as shown in Fig. 5. The
gain in spectral and spatial resolution of reconstructed images
of the proposed algorithm with respect to MS and HS images
respectively is clearly noticeable. The contrast between color
components in the MS observed image is restored, as well as
spatial details blurred in the HS observed image.

Original MS observed image HS observed image

Baseline Brovey R-FUSE

HS datafit MS datafit Proposed

Fig. 5. Zooms on strong structures excerpt from Fig. 2 (simulated, MS
observed and HS observed images) and from Fig. 4 (fused images by the
compared methods).

To better assess method performances, quantitative results
are reported in Table II. The two best results for each measure
are highlighted in bold. As expected, the HS-only method
shows a very low aSAM, i.e., an excellent spectral recon-
struction but a poor spatial reconstruction with the second
worst cSSIM index. On the other side, the MS-only method
provides the best spatial reconstruction but the worst spectral
reconstruction. Our method provides, as a trade-off between
HS-only and MS-only, the second best spatial and spectral
reconstructions. The best overall PSNR values are reached
by MS-only, our proposed method and HS-only, improving
the baseline performance up to 8dB. State-of-the-art methods
give similar quantitative results, with a slightly better PSNR
value for the Brovey method. Pre-processing time aside, all
compared methods in their optimal implementation are very
fast and perform data fusion in less than 30 seconds. To
emphasize the interest of the formulation in the Fourier domain
and the vectorization underlying the proposed algorithm, this
table also reports the computational times required by depreci-
ated counterparts of the proposed algorithm, namely the naive
implementation and the frequency-based implementation (i.e.,
without vectorization). Note again that the three algorithms
exactly solve the same minimization problem and thus are
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expected to provide the same fusion performance. These times
show the respective gains reached when conducting each of
the two steps described in Section III. In particular, one can
observe that the proposed vectorized resolution (including
the pre-processing step) saves up to 8 and 16 times of the
computational time when compared to the frequency-based
and the naive implementations, respectively. It is also worth
noting that the pre-processing step required by the proposed
method after vectorization consists in pre-computing quantities
that do not depend on the images to be fused. Thus, if the
instrumental specifications defining the forward model and
the signal subspace defined by V do not change, this pre-
processing step needs to be conducted only once to fuse
multiple data sets.

TABLE II
PERFORMANCE OF FUSION METHODS: ASAM (RAD), ACSSIM, PSNR

(DB), AND TIME (PRE-PROCESSING + FUSION, SECONDS).

Methods aSAM acSSIM PSNR Time

Baseline 0.0296 0.0428 66.88 /

Brovey 0.0304 0.0040 71.04 17

R-FUSE 0.0360 0.0036 69.68 26

HS-only 0.0118 0.0239 72.90 1600 + 20

MS-only 0.0389 0.0018 75.00 600 + 15

Pr
op

os
ed Naive ≈ 36× 103

Frequency 0.0247 0.0029 74.90 ≈ 18× 103

Vectorized 2200 + 20

Fig. 6 presents SAM errors maps. These spectral errors have
been calculated between reference and reconstructed spectra
without averaging over the pixels. This figure highlights that,
for each method, spectra located around a sharp structure
of the scene (i.e., characterized by a high gradient region)
show bad reconstructions (yellow pixels). This bad recon-
struction is even worse for baseline, Brovey, R-FUSE and
MS-only methods while HS-only and the proposed method
provide the lowest SAM maxima. For most methods, this can
be explained by the adopted regularizations, which promote
spatially smooth content and therefore distribute the flux
over neighboring pixels, leading to higher SAM values. On
the contrary, in spatially smooth regions, all the methods
present a very low spectral error. Fig. 7 represents cSSIM
errors as function of the wavelength, i.e., without averaging
over the spectral bands. Baseline and HS-only methods show
very large spatial errors whereas MS-only and the proposed
method provide the best cSSIM values. In between, Brovey
and R-FUSE present intermediate and slightly increasing with
wavelength cSSIM values. This may be explained by the
fact that R-FUSE exploits a unique PSF, i.e., neglecting
the spectrally spatial blur affecting the data. Indeed, larger
wavelength bands are blurrier than short wavelength bands and
therefore spatially worse reconstructed with an inappropriate
model. The reference spectrum displayed in the bottom of the
graph emphasizes that variations in cSSIM w.r.t. wavelength
are correlated with high intensity emission lines in the scene.

This is also likely due to the regularization term which tends
to favor smooth images especially for high intensity spectral
bands.

Baseline

Brovey

R-FUSE

HS-only

MS-only

Proposed

Symmetric fusion

Brovey

R-FUSE

PCA + MS reconstruction

PCA + HS super-resolution

Baseline

0.2 0.4 0.6 0.8

Fig. 6. Spatial maps of the SAM obtained by, from top to bottom, the baseline,
Brovey, R-FUSE, HS-only, MS-only and proposed method. The smaller SAM,
the better the reconstruction.

Figs. 8 and 9 show cumulative histograms of SAM and
cSSIM errors respectively. According to Fig. 8, R-FUSE
appears to provide a high systematic error and a large number
of pixels with a SAM value larger than 10−1rad. On the
contrary MS-only and the proposed method also show a high
systematic error but a small number of pixels with a large
SAM value. On the other hand, the baseline and Brovey
present a low systematic error but a large number of pixels
with a large SAM value. HS-only shows the best cumulative
histogram, with a low systematic error and a small number
of pixels with a large SAM value. However in Fig. 9, this
method, as well as the baseline, provide a very high (larger
than 10−2) cSSIM value for all spectral bands, while all the
other methods show a much lower systematic error. Brovey
and MS-only seem to have a very low number of spectral
bands with a large cSSIM, but Brovey shows a much larger

Baseline

Brovey

R-Fuse

MS-only

HS-only

Proposed

cS
SI

M

Intensity (m
Jy.arcsec −2)

Wavelength (microns)

Fig. 7. Color lines: cSSIM as a function of the wavelength obtainted by the
compared methods. The smaller cSSIM, the better the reconstruction. Gray
line and shaded area: a spectrum located in the reference scene around a sharp
structure.
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Fig. 8. SAM cumulative histograms obtained by the compared methods.
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Fig. 9. cSSIM cumulative histograms obtained by the compared methods.

systematic error. R-FUSE and the proposed method present
an intermediate cSSIM cumulative histogram, with a larger
number of spectral bands with a high cSSIM value for the
R-FUSE method. Considering these two figures, our proposed
method emerges once more as a trade-off between good spatial
and spectral reconstructions.

E. Selecting the regularization parameter

To choose an appropriate value for the regularization pa-
rameter µ in (4), we evaluated performances of the proposed
fusion algorithm by monitoring the obtained aSAM and PSNR
as functions of µ. Results are displayed in Fig. 10. In the
simulations, we selected µ = 2.10−5 as a trade-off between the
values providing the best PSNR and aSAM. We see that, for a
wide range of µ values (light green, typically between 5.10−6

and 2.5.10−4), the proposed algorithm still outperforms state-
of-the-art algorithms.

In a real-world scenario, i.e., when no ground truth is
available and thus quantitative performance measures cannot
be computed, we propose to adjust the regularization param-
eter µ automatically thanks to a dichotomous approach. More

5e-6 2.5e-4

Dichotomous search value

72

0.03

μ

μ

PS
N

R
aS

AM

Fig. 10. Performance (in terms of PSNR and aSAM) of the proposed fusion
algorithm as a function of the regularization parameter µ. Shaded green areas
indicate the ranges of values for which the proposed algorithm outperforms
state-of-the-art methods. The value of the parameter obtained by the proposed
dichotomous search is highlighted with a vertical dotted line.

precisely, the optimal value of the parameter is assumed to
provide a fused product X̂ such that the residuals defined by
the forward models are of magnitude of the noise levels, i.e.,

‖Ym − LmM(X̂)‖2F ≈ σ2
m (9)

‖Yh − LhH(X̂)S‖2F ≈ σ2
h. (10)

Therefore, if the residuals are higher (resp. lower) than the
noise levels, we increase (resp. decrease) the value of µ. As
illustrated in Fig 10, the final value obtained by this iterative
procedure is shown to belong to the range of acceptable values.

F. Robustness with respect to model mismatch

All experiments reported above have been conducted under
a perfect knowledge of the forward models (1) and (2), i.e.,
an ideal design of the spectral filters Lm and Lh and an
ideal calibration of the PSFs definingM(·) and H(·). Indeed,
the performance of the proposed fusion algorithm has been
assessed on pairs of MS and HS images generated following
the simulation framework detailed in Section IV-A. Hence,
both the data generation and fusion procedure rely on exactly
the same forward models, a testing strategy usually referred
to as “inverse crime” [46]. To depart from this questionable
experimental protocol, new sets of MS and HS images are
generated after perturbing the nominal spatial and spectral
responses of the forward models (1) and (2) while, at the
same time, these nominal responses are still used in the
forward models underlying the fusion process. This additional
experiment detailed below will allow ones to evaluate the
impact of a forward model mismatch on the expected fusion
performance.

More precisely, in this new experiment, the nominal spectral
filters Lm and Lh of models (1) have been corrupted by an
additive zero-mean Gaussian noise. The standard deviation of
this noise has been adjusted such that the corresponding SNR
is equal to 50dB. This corruption is assumed to be of low
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TABLE III
PERFORMANCE OF THE PROPOSED FUSION METHOD WITH RESPECT TO

SIMULATED TELESCOPE JITTER.

Jitter aSAM acSSIM PSNR

× 1.00 0.0250 0.0029 74.90

× 1.20 0.0250 0.0029 74.84

× 1.95 0.0250 0.0029 74.99

× 3.15 0.0250 0.0029 74.97

× 5.15 0.0249 0.0029 74.93

× 8.35 0.0250 0.0029 74.62

energy since the design of the spectral filters embedded on
spaceborne astronomical telescopes does not depend on the
observed scene, is known with a high accuracy and does not
vary with time. Conversely, the main source of errors on the
calibration of the PSFs M(·) and H(·) is possible telescope
instabilities, which are likely to occur for long exposure times.
To mimic this telescope jitter, the nominal PSFs have been
blurred with a Gaussian kernel following the strategy used in
webbpsf [42]. The standard deviations of these kernels have
been chosen to be from 1 to more than 8 times the nominal
jitter value wich is an angle of 7.0× 10−3arcsec. (2.0× 10−6

degrees) provided by webbpsf.

The new resulting data set has been fused by the proposed
method when assuming nominal spatial and spectral filters.
Table III reports the performance of the fusion method for
noisy spectral responses and increasing levels of telescope
jitter. Note that a jitter level of ×1 corresponds to nominal
spatial responses and, thus, this case reflects a sole spec-
tral model mismatch. Spectral (aSAM) and spatial (acSSIM)
reconstructions remain stable and of equivalent accuracy to
performance reported in Table II without considering model
mismatch. Although a slow decay of the overall reconstruction
(PSNR) performance is observed when the jitter increases,
the proposed fusion method still outperforms state-of-the-art
methods.

As for the experiment reported in Section IV-D, these
performances have been obtained for an optimal value of the
regularization parameter µ, i.e., providing the highest PSNR.
The automatic procedure for adjusting this hyperparameter
(see Section IV-E) has been also performed and has shown
to provide consistent results (not reported here for brevity).
This can be explained by the impact of the model mismatch
on the achieved reconstruction performance as a function of
this parameter. To illustrate, similarly to the results presented
in Fig. 10, Fig. 11 plots the PSNR as a function of µ for
various levels of telescope jitter and a constant degradation
of the spectral response. These curves show that a model
mismatch only shifts vertically the achieved performance. As
a consequence, in case of model mismatch, the proposed
strategy to automatically adjust the regularization parameter is
able to provide consistent results, without any dramatic impact
on the expected fusion performance.

x

x

x

x

x

x

Fig. 11. Performance (in term of PSNR) of the proposed fusion algorithm
as a function of the regularization parameter µ for various levels of telescope
jitter and noisy spectral responses.

V. DISCUSSION AND CONCLUSION

In this paper, we proposed a novel hyperspectral and multi-
spectral image fusion method when the observed images were
affected by spectrally variant blurs. To computationally handle
this particularity, we designed a fast algorithm to minimize
the objective function associated with the fusion problem.
Operating in the Fourier domain, this algorithm exploited
the frequency properties of cyclic convolution operators and
capitalized on a low-rank decomposition of the fused image.
This implicit spectral regularization allowed the problem to be
solved in a subspace of significantly lower dimension. These
two computational advantages made the proposed algorithm
able to handle large data sets since it solved the fusion
problem with reasonable processing times. The relevance of
the proposed method was evaluated in the specific context of
astronomical imaging. We applied this method to a realistic
simulated scene of the Orion Bar and compared the results
with fused products obtained with state-of-the-art methods and
non-symmetric versions of our approach. We showed that the
proposed method appeared as an excellent trade-off with the
best spectral, spatial and overall reconstruction results.

Improvements of the fusion method are however required.
Further work will be dedicated to design a tailored regulariza-
tion term, that could be more suitable than the currently chosen
one to our kind of data. In a wider perspective, we also would
like to include a realistic noise model in our fusion method.

APPENDIX A
VECTORIZED OPERATORS

To handle the vectorized counterpart ż of the DFT of the
representation coefficients, the subspace basis matrix V shoud
be rewritten V = V ⊗ Ipm×pm such that

Vż =


[VŻ]

1

...

[VŻ]
lh

 .

Similarly, within this vectorized formulation, the spectral
degradation operators Lm and Lh should be rewritten as

Lm = Lm ⊗ Ipm

Lh = Lh ⊗ Iph .
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Corresponding convolution operators Ṁ and Ḣ are two block-
diagonal matrices

Ṁ = diag
{

Ṁ1, · · · , Ṁlh
}

Ḣ = diag
{

Ḣ1, · · · , Ḣlh
}

defined by the DFTs of the MS and HS PSFs along the spectral
bands. Finally, the spatial operators Ṡ and Ḋ are written as

Ṡ = Ilh ⊗ ṠH

Ḋ = Ilsub
⊗ ḊH .

APPENDIX B
STRUCTURE AND EFFICIENT COMPUTATION OF THE LINEAR

SYSTEM MATRIX A

Capitalizing on the vectorized formulation of the objective
function (5), the matrix A defining the linear system to solve
exhibits a particular structure. More precisely, as stated by (7),
A can be written as a weighted sum of 3 matrices denoted
here as Am, Ah and Ar whose computations are discussed
in what follows. First, the matrix Am , VHṀ

H
LHmLmṀV

associated with the MS forward model can be decomposed
into lsub × lsub elementary blocks such that

Am =

 [Am]
1
1 . . . [Am]

1
lsub

...
. . .

...
[Am]

lsub

1 . . . [Am]
lsub

lsub


where each block [Am]

j
i ∈ Rpm×pm is a diagonal matrix

defined by

[Am]
j
i = diag

{
lm∑
l=1

αli � ᾱlj

}
with αlj =

∑lh
b=1[Lm]lbṀ

bVb
j . This computation is detailed

in Algo. 1. Since the matrix Am is symmetric, note that only
its upper (or lower) triangular part needs to be calculated.

Similarly, the matrix Ah , VHḢ
H

LHh Ṡ
H

ṠLhḢV defined
by the HS forward model can be decomposed into lsub× lsub
elementary blocks such that

Ah =

 [Ah]
1
1 . . . [Ah]

1
lsub

...
. . .

...
[Ah]

lsub

1 . . . [Ah]
lsub

lsub


where each block [Ah]

j
i ∈ Rpm×pm is also decomposed into

d2 × d2 diagonal matrices of size pm/d2 × pm/d2, i.e.,

[Ah]
j
i = βji �Υpm,d2

with βji = 1
d2

∑lh
l=1

(
[Lh]ll

)2
Vl
jV

l
i(Ḣ

l)(Ḣl)H and

Υpm,d2 =

 Ipm/d2 . . . Ipm/d2

...
. . .

...
Ipm/d2 . . . Ipm/d2

 (11)

Note that a large number of coefficients in Ah are zeros,
which avoids to compute all the entries in the matrices βji
but only its non-zero coefficients whose positions correspond

Algorithm 1 Computing Am

Input: Lm, V, Ṁ
# Compute all αlj (∀j, l)

1: for l = 1 to lm do
2: for j = 1 to lsub do
3: αlj =

∑lh
b=1[Lm]lbṀ

bVb
j

4: end for
5: end for

# Fill-in Am block-by-block
6: for i = 1 to lsub do
7: for j = 1 to (lsub − i) do
8: if (j 6= 0) then
9: [Am]j+ii =

∑lm
l=1 α

l
i � ᾱlj

10: [Am]ij+i = [Am]j+ii

11: else
12: [Am]ii =

∑lm
l=1 α

l
i � ᾱli

13: end if
14: end for
15: end for
Output: Am

to the non-zero values in Υpm,d2 . This is summarized in
Algo. 2 which also benefits from the Hermitian symmetry of
Ah. It is also worth noting that the 2l2sub blocks defining the
matrices Am and Ah of the system matrix A can be computed
independently, which is highly amenable to parallelization to
benefit from multi-core processing.

Algorithm 2 Computing Ah

Input: Lh, V, Ḣ, d
# Fill-in Ah block-by-block

1: for i = 1 to lsub do
2: for j = 1 to (lsub − i) do
3: if (j 6= 0) then
4: # Identify non-zero elements in the block (ji )
5: for (m,n) s.t. [Υpm,d2 ]nm 6= 0 do
6: [Ah]

i+j,n
i,m = 1

d2

∑lh
l=1

(
[Lh]ll

)2
Vl
jV

l
iḢ

l
mḢl

n

7: [Ah]
i
i+j = (Ah)

i+j
i

8: end for
9: else

10: # Identify non-zero elements in the block (ii)
11: for (m,n) s.t. [Υpm,d2 ]nm 6= 0 do
12: [Ah]

i,n
i,m = 1

d2

∑lh
l=1

(
[Lh]ll

)2
Vl
iV

l
iḢ

l
mḢl

n

13: end for
14: end if
15: end for
16: end for
Output: Ah

Finally, the last matrix involved in the definition of A

is Ar , Ḋ
H

Ḋ, which is a diagonal matrix and easily
computable.
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