
HAL Id: hal-02949112
https://hal.science/hal-02949112

Submitted on 25 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

(System)Verilog to Chisel Translation for Faster
Hardware Design

Jean Bruant, Pierre-Henri Horrein, Olivier Muller, Tristan Groleat, Frédéric
Pétrot

To cite this version:
Jean Bruant, Pierre-Henri Horrein, Olivier Muller, Tristan Groleat, Frédéric Pétrot. (System)Verilog
to Chisel Translation for Faster Hardware Design. 2020 31th International Symposium on Rapid
System Prototyping (RSP), Sep 2020, VIrtual Conference, France. �hal-02949112�

https://hal.science/hal-02949112
https://hal.archives-ouvertes.fr

(System)Verilog to Chisel Translation for Faster
Hardware Design

Jean Bruant∗,†, Pierre-Henri Horrein‡, Olivier Muller†, Tristan Groléat§ and Frédéric Pétrot†
OVHcloud, ∗Paris, ‡Lyon, §Brest, France

†Univ. Grenoble Alpes, CNRS, Grenoble INP1, TIMA, Grenoble, France

Abstract—Bringing agility to hardware developments has been
a long-running goal for hardware communities struggling with
limitations of current hardware description languages such as
(System)Verilog or VHDL. The numerous recent Hardware
Construction Languages such as Chisel are providing enhanced
ways to design complex hardware architectures with notable
academic and industrial successes. While the latter environments
are now mature and perfectly suited for brand new projects,
migrating partially or entirely existing Verilog code-base proves
to be a challenging and very time-consuming process. Successful
migrations need to be able to leverage finely tuned existing
hardware descriptions as a basis to build complex systems
through simple iterations. This article introduces sv2chisel, an
open-source automated (System)Verilog to Chisel translator as
entry point for this iterative migration processes. Our tool
achieved the proper translation, with on-par resource usage of a
real-world production FPGA design at OVHcloud as well as two
independent open-source Verilog projects: a MIPS core and the
size-optimized 32-bit RISC-V core PicoRV32.

Index Terms—Hardware description languages, Agile develop-
ment, EDA tool, Source code translation

I. INTRODUCTION

VHDL and Verilog have reigned unchallenged for two
decades as reference hardware description languages. A first
breach was opened by the introduction of SystemVerilog in
the early 2000’s, rapidly followed by higher abstraction level
proposals allowing more efficient hardware developments [1]
[2]. Despite embedding many useful modern programming
paradigms, SystemVerilog advanced concepts such as object-
oriented programming are indeed partially supported in simu-
lation context but have not been integrated into main synthesis
tools.

With the end of Dennard scaling leading to an increas-
ing demand for specialized hardware, the adoption of these
languages has risen, although mainly in niche areas. These
Hardware Construction Languages (HCL) can be seen as
domain specific languages that leverage the power of high-
level languages like Python, Scala, etc, to build efficient
hardware generators that produce, in the end, synthesizable
VHDL or Verilog code.

In this work, we focus on the Chisel [3] HCL, which is quite
mature and has been proven successful in the development
of complex circuits, notably rocket-chip, the original RISC-V
core generator [4] and Google Edge TPU (Tensor Processing
Unit) [5]. Chisel was initially designed to gain agility in RISC-
V microprocessors tape-out process [6]. Despite this initial

target, we also successfully use it into our production FPGA-
based network functions at OVHcloud.

Chisel introduces many features and concepts intended
to improve hardware design efficiency which are especially
useful for the design of complex IPs and in large projects.
However most existing large projects are made of thousands
of lines of (System)Verilog or VHDL code. Similarly, complex
pieces of hardware are often reused in larger projects along
with many dependencies. In order to leverage the power of
Chisel on such legacy code-bases, the first step is to translate
the existing HDL into Chisel. When performed manually, this
process is long, tedious and error-prone.

To address this issue, we propose in this paper to translate
legacy (System)Verilog projects into Chisel ones, ready to
be inserted within a larger Chisel hierarchy, to undergo deep
refactoring or to be integrated with existing Chisel generators.
Note that we limit ourselves to the synthesizable subset
of SystemVerilog that is in practice a limited extension of
Verilog [7]. We believe this will be beneficial to the hardware
designers by giving them higher level constructs to refactor the
entire code after translation, and limits the burden of creating
signal level interfaces for instantiation, which takes a lot of
time but adds nothing to the design. The source code of our
translator sv2chisel is available on GitHub [8].

These languages aim at specifying the same hardware
concepts but are based on different programming paradigms:
(System)Verilog relies on an event-based semantic to depict
underlying hardware while Chisel is based on explicit hard-
ware objects assembled through object-oriented and functional
generators. In addition Chisel is strongly typed while (Sys-
tem)Verilog provides very few different types. Performing the
translation from (System)Verilog to Chisel thus requires a
sequence of analysis to perform the appropriate abstraction.
This includes type analysis, to infer the proper high-level types
from possibly less structured information, and data-flow and
control-flow analysis to abstract the expressions, functions and
their parameters, loops and conditionals, etc.

Our work does not intend to abstract the original code
into a high-level refactored functional object-oriented code.
The process is thus more straightforward than, for example,
decompilation of optimized assembly into C [9], because both
languages have control structures and share many constructs
such as function and module hierarchy. It is however not
trivial, as we shall explain in the following sections.

II. RELATED WORK

Translating algorithms or structured data from one repre-
sentation to another is a recurrent task in most computer-
aided fields. Simplest cases can be solved through stateless
processing with tools such as awk or perl. However when
control flow, data flow or semantic issues become more
complex, advanced analysis and transformations on an inter-
mediate representation (IR) are required. Due to the substantial
differences between (System)Verilog and Chisel, our translator
follows this second scheme.

A first work exhibiting similarities, as (System)Verilog is of
quite lower abstraction than Chisel, is related to decompila-
tion [9]. The principle here is to abstract assembly code into
structured C, to target other architectures, but mainly to build a
reusable, understandable code, to ease maintenance or reverse
engineer algorithms. The authors develop data and control
flow analyses to build C statements from abstract sequential
(non-vliw) optimized assembly. The former recovers high-
level language expressions while the latter captures control
statements (loops, conditionals). They traverse dependency
graphs and either use generic patterns to recognize the control
structures, or study the registers assignments to build the
higher-level expressions. They also perform simple data type
recovery. In our case, control statement and assignments are
in general sufficiently similar for not being an issue. However,
registers identification and types recovery is at the core of our
work.

An other work that relates to ours is [10] that focuses on the
discovery of memorizing elements in VHDL. This issue was
very important before the standardization of the descriptions
for the hardware synthesis tools (IEEE Std 1076.6-1999), as
the simulation semantic of the language made this discovery
particularly tricky. The authors build a Petri Net that represents
the behavior of the circuit. Using semantic preserving reduc-
tion techniques, they achieve a minimal form from which they
extract a set of equations. They perform a formal analysis
on all cyclic symbol assignments from which they derive if
the circuit is a flip-flop, a latch, or a multiplexer, and the
conditions to command it. Given the fact that we assume
synthesizable (System)Verilog as input, this kind of analysis
is useful only to determine how to compute the reset, clock
and write enable signals.

Besides the work of [11] proposes a FPGA-specific syn-
thesis optimization consisting of removing useless reset sub-
circuits in favor of FPGA power-on resets. It notably points out
that inferring reset signals from the Verilog source code or at
the equivalent Abstract Syntax Tree (AST) level is a complex
tasks due to the numerous available ways of describing a
reset [12]. To solve this issue, they leverage the synthesized
netlist to implement a powerful reset detection algorithm. As
we are not in a synthesis context and that reset inference is
not crucial for the translation, we decided to infer only some
well known reset patterns and translate transparently more
advanced patterns.

Finally, we base our hardware Intermediate Representation

on the work done in the FIRRTL compiler [13]. It has been
a very valuable starting point – most notably for expression
representation, above which we introduced all the generative
subset of Verilog.

Lexing / Parsing

Emission

FIRRTL
+

Extensions

Chisel (scala)

(System)Verilog

T
ra

n
sfo

rm
s

T
ra

n
sfo

rm
s

T
ra

n
sfo

rm
s

Fig. 1. Main processing steps of sv2chisel

III. TRANSLATION

A. sv2chisel Translator Structure

Figure 1 presents the structure of our translator with the
classical stages of any translator or compiler. We parse a
synthesizable (System)Verilog file using ANTLR 4 [14], which
builds an abstract syntax tree that we eventually map on our
custom IR. It is based on FIRRTL which has been extended
most notably to support Verilog generative statements and
syntactic-sugars requiring a few transformations to be mapped
to Chisel constructs. Four kinds of analysis and transforma-
tions, main contributions of this work, are then performed
on this IR: 1) clock inference, 2) reset inference, 3) types
inference, 4) (System)Verilog syntactic-sugar translation.

Finally, the emitter outputs Chisel code, relocating com-
ments and retaining original layout as much as possible. To
enable the comments relocation, every node of the IR retains
its initial position in the token stream of the ANTLR lexer.
Transformations then have to carefully take these indexes into
account whenever inserting or removing nodes, in order not
to disturb comments relocation To achieve the final relocation,
the emission goes through two steps. First, every IR node is
converted to its Chisel equivalent string and the IR is flattened
as a stream of those Chisel strings, each associated to its
position in the original (System)Verilog token stream. Then,
this stream is merged, based on the token indexes, with the
original token stream which retains comments and spaces in
special sub-streams.

B. Main Transformations

1) Clock Inference: Clock inference is a crucial part in the
success of a proper translation from (System)Verilog to Chisel.
As a direct consequence of (System)Verilog event-driven
paradigm, the distinction between wires and registers does not

come from their declaration but from their assignments either
in a clocked process or as a continuous assignment outside a
clocked process.

module clock_example(

input clock,

input rst,

input i,

output o_w,

output o_r

);

/* event-driven behavioral description of

* register r with reset value '0 */

logic r;

always @(posedge clock) begin
if (rst) begin
r <= '0;

end else begin
r <= i;

end
end
/* behavioral description of a wire */

logic w;

assign w = i;

/* output connections */

assign o_r = r;

assign o_w = w;

endmodule

Listing 1: Verilog for Wire and Synchronous-reset-register

Listing 1 illustrates how signals w and r are to be described
in the standard synthesizable (System)Verilog such that a wire
is inferred for w and a register for r.

As a side note, we thoughtfully chose the use of logic
keyword in our Verilog example for both declaration of w and
r, instead of the misleading reg or wire keywords. Despite
providing those keywords (System)Verilog does not enforce
any restriction in their usage, consequently a register can be
inferred from a signal declared as wire but then sequentially
assigned and conversely a wire can be inferred from a signal
declared as reg but then combinationally assigned. Some tools
raise warning on such misusage however the rule remains the
same for all of them: behavioral inference is preferred over
user wire or reg hint.

Whereas wire and register are inferred from signal assign-
ment behavior in Verilog, Chisel provides concrete objects
Reg and Wire for signal declaration. These objects are self-
sufficient when it comes to assignments: both Reg and Wire
are assigned with the same operator, in the same context as
shown on Listing 2.

To infer the main clock of a module, sv2chisel walks the IR
a first time, looking for ClockRegion blocks corresponding
to (System)Verilog always @(posedge clock) blocks. For
each assignment inside such a block, left hand side references
are recorded as assigned within a process clocked by clock.
The declaration of theses references will then be converted
as a Reg object during a second IR walk that will also
remove ClockRegion blocks in favor of simple collections
of statements.

class ImplicitClockOnly() extends MultiIOModule {

// implicit input clock, connected to all `Reg`

val rst = IO(Input (Bool()))

val i = IO(Input (Bool()))

val o_w = IO(Output (Bool()))

val o_r = IO(Output (Bool()))

/* declaration of a register object */

val r = Reg(Bool()) // type only

when(rst){ // explicit synchronous reset

r := false.B
} .otherwise {

r := i // sequential assignment @(clock)

}

/* declaration of a wire object */

val w = Wire(Bool())
w := i // combinational assignment

/* output connections */

o_w := w

o_r := r

}

Listing 2: Translated Chisel for Listing 1 with clock inference

Clock might also be inferred from submodules instantiations
whenever the actual module declaration can be processed
recursively by sv2chisel.

At the end of this transformation, zero, one or several clocks
might have been discovered. When zero or one clocks are
discovered, the clock might be fully implicit within the module
as Listing 2 shows. When several distinct clocks have been in-
ferred, no implicit clock is used for the module and an explicit
clock area must surround the register declarations of a same
clock region, leveraging Chisel syntax withClockAndReset
as Listing 3 introduces.1

This syntax might also be required to deal with some
constrained board clock and reset naming–for example at
design top level. Listing 3 illustrates this syntax to explicit
the implicit constructs provided by MultiIOModule in the
previous examples.

class ExplicitClockExample() extends RawModule {

val reset = IO(Input(Reset()))
val clock = IO(Output(Clock()))
// inputs as shown Listing 2

withClockAndReset(clock, reset){

// statements as shown Listing 2

}

}

Listing 3: Explicit clock and reset area in Chisel

2) Reset Inference: Several kinds of reset methods can be
found in Verilog descriptions:

• Synchronous Reset
• Asynchronous Reset
• FPGA Power-on Reset
• Simulation initial Reset

1Multi-clock modules support is a work in progress at the time of writing.

Synchronous resets are hard to gracefully infer from a
design as they might be hidden in deep and intricate if/else
hierarchy [11]. For the simplest and most common Verilog
pattern we perform synchronous reset inference, leveraging
RegInit object as shown Listing 4. In more complex cases,
the code is translated literally, keeping the conditional assign-
ment tree as shown Listing 2. This is less idiomatic but still
perfectly acceptable.

class ImplicitClockReset() extends MultiIOModule {

// implicit inputs clock & reset

val i = IO(Input (Bool()))

val o_w = IO(Output (Bool()))

val o_r = IO(Output (Bool()))

/* declaration of a register object with reset */

val r = RegInit(false.B) // reset value and type

r := i // sequential assignment @(clock)

/* declaration of a wire object */

val w = Wire(Bool())
w := i // combinational assignment

/* output connections */

o_w := w

o_r := r

}

Listing 4: Translated Chisel for Listing 1 with reset inference

On the other hand, asynchronous resets are easily under-
stood with a method equivalent to the one used for clock
inference (see III-B1), based on the Verilog always blocks
events @(posedge(rst)) or @(negedge(rst)).

Leveraging power-on resets in a FPGA design can save a lot
of hardware resources used by reset trees. This kind of reset is
transparently associated to the signal declaration in Verilog and
can hence be straightforwardly associated to Chisel RegInit
declaration.

(System)Verilog initial keyword is part of the non-
synthesizable subset, intended for simulation usage only and
hence unsupported by our translator.

At the time of writing the sv2chisel support for mixed
reset methods within the same design is currently a work in
progress.

3) Types Inferences: While (System)Verilog requires ex-
plicit clocks and reset signal, it is very permissive towards data
types: there is no typing or explicit cast in most cases. As a
base principle every signal is an array of bits and if it needs to
be used in an arithmetic computation, it is automatically cast
as an unsigned, unless explicitly specified by the designer with
the $signed cast.

This is very different in Chisel which comes embedded in
the strongly typed language Scala. Chisel has several distinct
basic hardware types such as arrays of hardware booleans
(Vec[Bool]) and hardware (un)signed integers (UInt and
SInt).

While both Chisel Vec[Bool] and UInt types would
be a valid translation of any (System)Verilog signal, Chisel
enforces very constraining rules for the usage of these distinct
types. Chisel’s Vec[Bool] are meant for individual bit ma-
nipulations and do not provide arithmetic operations. On the

other hand UInt are intended for such arithmetic operations
and are to be considered as a whole, they hence do not support
subrange or subindex assignments.

To provide the most sensible translation – or at least the
less verbose – sv2chisel counts the usage of each reference in
arithmetic or bit operations to choose the proper declaration
types.

Then for each expression, appropriate casting is inserted
wherever necessary to guarantee type consistency.

module type_example #(param en)(

input clock,

input reset,

output [31:0] counter,

output [3:0] sign

);

logic [31:0] cnt;

always @ (posedge clock) begin
cnt <= &cnt ? sign : cnt + 1;

end
assign counter = cnt;

for(i=0 ; i < 4 ; i++) begin
assign sign[i] = en ? ˆcnt[(i+1)*8 - 1:i*8] : '0;

end
endmodule

Listing 5: Untyped Verilog Input

Listing 5 shows a simple Verilog snippet illustrating the
absence of typing: both sign and cnt signals are declared
as packed arrays of bits. However while cnt is used in an
arithmetic expression, sign is assigned one bit at a time.
Listing 6 is the result of sv2chisel translation for Listing 5 and
illustrates type inference of the signals with respect to their
usage: cnt is now declared as a UInt while sign is declared
as Vec[Bool]. Moreover, as sign is declared as Vec[Bool]
but used to assign the UInt signal cnt, an explicit asUInt
cast is inserted accordingly.

class TypeExample(en: Int) extends MultiIOModule {

// implicit inputs clock & reset

val counter = IO(Output (UInt(32.W)))

val sign = IO(Output (Vec(4,Bool())))

val cnt = Reg(UInt(32.W))
cnt := Mux(cnt.andR =/= 0.U, sign.asUInt, cnt + 1.U)

counter := cnt

for(i <- 0 until 4){

sign(i) := if(en != 0) cnt((i+1)*8,i*8).xorR

else false.B
}

}

Listing 6: Raw Chisel Translation of Listing 5

Although sv2chisel is designed to produce ready-to-use
code, resulting code is mainly intended to serve as a transition
step between (System)Verilog and handcrafted Chisel code,
after manual inspection and refactoring. Listing 7 illustrates
a small code refactoring, using a more Chisel-ish way of

expressing the same computation. Instead of a not so obvious
iteration on subranges, one can do a simple cast of the 32
bits counter cnt to the equivalent array of 4 bytes. Then
Scala functional paradigm can be leveraged to apply a xor
reduction on every byte thanks to the map function. The
special object Zeroes is a custom object that is equivalent
to O.U.asTypeOf(sign) here.

class TypeExample(en: Boolean) extends MultiIOModule {

/* see statement above */

val bytes = cnt.asTypeOf(Vec(4, UInt(8.W)))
sign := if(en) VecInit(bytes.map(_.xorR)) else Zeroes

}

Listing 7: Chisel for Listing 5 after manual refactoring

This kind of refactoring which makes the code clearer
cannot be inferred by the tool but greatly helps with code
maintainability. It confirms that both automated translation and
manual expertise are essential to produce a finely-tuned piece
of hardware. The former makes the conversion task realistic
even for large code base while the latter ensures simplicity
and readability of resulting code.

4) Syntactic Sugar Removal: (System)Verilog is also very
permissive with connections of signals with mismatching
widths. Implicitly wherever required it will automatically infer
left-padding, with sign extension for signed and with zeroes
otherwise. This implicit padding is then widely used as a
feature, enabling some concise syntactic-sugars.

For example, SystemVerilog bit patterns '0 and '1 are
such context-dependent width, equivalent to a value of inferred
width with all bits set to 0, respectively all bits set to 1.

wire [31:0] w;

assign w = '0;

assign w = '1;

assign w = '{4{8b'010111}};

When translating to Chisel, actual width is required for all
ones bit pattern as follow :

val w = Wire(UInt(32.W));
w := 0.U

w := ˜0.U(32.W)

w := VecInit.tabulate(4)(_ => "b010111".U(8.W))

A second example of (System)Verilog concision is the
left-hand-side assignment on a concatenation, which allows
straightforward expression of bit unpacking.

wire [15:0] a;

wire [7:0] b;

wire op;

wire [15:0] sum;

assign {op, b, a} = signal;

assign sum = op ? a + b : a - b

Chisel does not offer such a syntax out of the box, however
casting the right-hand-side into a Bundle does the trick as
shown below:

sv2chisel

(System)Verilog...

Scala compiler

Chisel elaboration

FIRRTL Compilation

Simulation

Chisel (scala)

Java executable

FIRRTL

Verilog

Synthesis

Fig. 2. Validation process

val bdl = Wire(new Bundle {

val a = UInt(16.W)
val b = UInt(8.W)
val op = Bool()

})

val sum = UInt(16.W)
bdl := signal.asTypeOf(bdl)

sum := Mux(bdl.op, bdl.a + bdl.b, bdl.a - bdl.b)

Translating (System)Verilog syntactic-sugars into Chisel
code is not always as concise as the original code but thanks
to the previously introduced type inference system, correct
translations are achievable at the cost of a few additional lines.
These verbose translations are then good starting points for
manual code refactoring, as the power of Scala and Chisel
constructs bring functional and object-oriented refactoring
opportunities.

IV. EXPERIMENTS

A. Methodology

Figure 2 illustrates all the steps taken to validate a translated
design from its original description to the synthesized design.

The first step is to run sv2chisel tool to translate the
original (System)Verilog into Chisel. The tool revealed itself
to be a powerful stateful linter, catching wrongly declared and
undeclared signals. Some manual adjustment might hence be
required on the original description to fix caught issues and
to overcome the current limitations of the tool as detailed in
Section V.

The resulting Scala must then go through the entire Chisel
generation flow, each step coming with its own correctness
checks:

1) Scala compilation catches types inconsistencies
2) Chisel elaboration complains on mismatching widths

3) FIRRTL compilation stops on uninitialized references and
detects combinational loops

While the two first steps are expected to pass flawlessly as long
as sv2chisel does not complain during translation, FIRRTL
compilation step raises errors that might only be manually
corrected or ignored depending on the intended behavior of
the result. Unexpected combinational loops combined with
warnings of sv2chisel about unsupported blocking assignments
might indicate an inaccurate translation and require further
inspection of the original source code. Regarding uninitialized
references, among classical examples stand big arrays, only
half-connected, used to implement binary reduction opera-
tions. Such partial initialization can easily be fixed by adding
the explicit default connections either in the original source or
in the translated one. However a rather simple manual refactor-
ing operation could leverage Chisel power to implement such
reduction operation in a functional way while getting rid of
this partially initialized arrays.

To validate the resulting Verilog and hence the correctness
of the translation, we integrate it into the existing test system,
leveraging usual simulators.

Last but not least, we compare the resource usage after
synthesis on FPGA.

B. Results
We successfully ran our tool on three different projects to

guarantee a consistent coverage of usual Verilog synthesizable
constructs: 1) An internal module, currently used in produc-
tion at OVHcloud, 2) A simple MIPS core implementation
[15], functional but not actually suited for synthesis, 3) The
size-optimized RISC-V Core PicoRV32 [16].

Translated code for our internal module and the MIPS core
passed their respective tests with minor manual modifications
of the input source code. To pass PicoRV32 RISC-V core tests,
some structural code refactoring was necessary to translate the
concept of variable and their blocking assignments, as this
feature does not find a straightforward Chisel equivalent.

Table below shows a resource usage comparison between
original and translated versions for the two synthesizable
projects. The SimpleCPU MIPS Core is indeed not intended
for synthesis, which results in similar but inconsistent re-
sources evaluation for both versions.

Verilog Chisel

OVHcloud Module LUTs 1681 +7
FFs 2733 =

BRAMs 0 =
DSPs 0 =

PicoRV32 LUTs 2349 +27
FFs 1276 =

BRAMs 0 =
DSPs 0 =

Reported resource usage after synthesis of the translated
Chisel designs are on-par with resource usage reported for

their respective original (System)Verilog implementation. The
27 additional LUTs for the Chisel PicoRV32 are inferred in
a quickly refactored submodule which is relying on Verilog’s
blocking assignments in its original implementation. Moreover
as FIRRTL compilation to Verilog is flattening complex struc-
tures and expressions, some slight differences between the two
resource counts can be expected.

V. FUTURE WORKS

The development of sv2chisel followed a test-driven design
methodology, starting with a reduced IR and limited syntactic-
sugars support that were sufficient for our first internal Sys-
temVerilog module. Applying the tool on external open-source
examples ensured to enlarge the diversity of syntax and
concepts properly translated up to a decent subset of (Sys-
tem)Verilog constructs. Each supported input construct comes
with a corresponding unit-test while the presented real world
examples serve as integration tests to validate the correctness
of the translation. As a next step, further semantic analysis
of Verilog and Chisel could be leveraged to formally design
and prove the correctness of the transformation rules. At the
time of writing our tool empirically covers the (System)Verilog
synthesizable subset except for compiler directives (Verilog
pre-processor) and blocking assignments.

Among the manual refactoring still required the input files,
some are due to currently missing concepts in Chisel while
others could be supported and properly translated without
designer’s help. Such currently under development features
include the support of multi-resets and multi-clocks modules,
synthesizable functions and partial pre-processor construct
integration within the IR.

Some other translation issues reflect currently missing con-
cepts in Chisel. The first issue is the support of semi-formal
constructs equivalent to SystemVerilog assert or property
directives, which is currently a work in progress, already
integrated in FIRRTL backend but yet to be released in Chisel
front-end. The second issue is the concept of (System)Verilog
variables associated with blocking assignments for which EDA
tools automatically infer multiple intermediate signals. Such
a concept could actually be integrated into Chisel but this
is rather unlikely as recursive functions or other functional
constructs can be leveraged to implement the same hardware
architectures.

Last but not least, we are currently investigating the fea-
sibility of extending language support to VHDL that shares
many concepts with (System)Verilog while being very strongly
typed, like Chisel. Other HCLs translation targets, such as
MyHDL [17], migen [18] or SpinalHDL [19], could also be
considered to enable hardware designer to pick the language
that fit the best their needs for a given project, as it can been
observed for software languages.

VI. CONCLUSION

The power of Hardware Construction Languages is promis-
ing but their adoption remains for now limited to new projects

as the cohabitation between HCLs and usual HDLs requires
substantial engineering work.

In this paper we introduced sv2chisel, a synthesizable
(System)Verilog to Chisel translator. Producing Chisel code
close to a word-for-word translation of the original source,
this tool is intended as a first step in migrating valuable legacy
Verilog code-bases into Chisel.

Although this tool will not fully replace the fine manual
analysis required to achieve a correct translation in the most
advanced cases, we showed through three pre-existing real-
world Verilog examples that our tool can produce a very decent
translation draft. These drafts are then intended to be manually
refactored to leverage the power of HCLs, generalizing the use
of object-oriented and functional constructs. We believe the
adoption of HCLs within existing HDL projects could greatly
benefit from this translation approach, enabling a smooth and
agile migration of existing code-bases and rapid new HCLs
system prototyping based on finely-tuned existing hardware
libraries.

REFERENCES

[1] D. F. Bacon et al., “Fpga programming for the masses,” Communications
of the ACM, vol. 56, no. 4, pp. 56–63, 2013.

[2] O. Shacham et al., “Rethinking digital design: Why design must
change,” IEEE Micro, vol. 30, no. 6, pp. 9–24, 2010.

[3] J. Bachrach et al., “Chisel: Constructing hardware in a scala embedded
language,” in Proc. of the 49th Design Automation Conference. IEEE,
2012, pp. 1212–1221.

[4] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz et al., “The
rocket chip generator,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

[5] N. Jouppi, C. Young, N. Patil, and D. Patterson, “Motivation for and
evaluation of the first tensor processing unit,” IEEE Micro, vol. 38, no. 3,
pp. 10–19, 2018.

[6] Y. Lee, A. Waterman, H. Cook, B. Zimmer, B. Keller, A. Puggelli,
J. Kwak, R. Jevtic, S. Bailey, M. Blagojevic et al., “An agile approach
to building risc-v microprocessors,” IEEE Micro, vol. 36, no. 2, pp.
8–20, 2016.

[7] S. Sutherland and D. Mills, “Synthesizing SystemVerilog: busting the
myth that SystemVerilog is only for verification,” SNUG Silicon Valley,
p. 24, 2013.

[8] J. Bruant et al., “sv2chisel (System)Verilog to Chisel
translator,” Retrieved August 2020. [Online]. Available:
https://github.com/ovh/sv2chisel

[9] C. Cifuentes, D. Simon, and A. Fraboulet, “Assembly to high-level
language translation,” in Proc. of the International Conference on
Software Maintenance. IEEE, 1998, pp. 228–237.

[10] L. Jacomme, F. Pétrot, and R. K. Bawa, “Formal analysis of single
WAIT VHDL processes for semantic based synthesis,” in Proc. of the
12th International Conference on VLSI Design. IEEE, 1999, pp. 151–
156.

[11] P. Patros and K. B. Kent, “Automatic detection and elision of reset sub-
circuits,” in Proc. of the 27th International Symposium on Rapid System
Prototyping, 2016, pp. 26–32.

[12] C. E. Cummings, D. Mills, and S. Golson, “Asynchronous & syn-
chronous reset design techniques-part deux,” SNUG Boston, vol. 9, 2003.

[13] A. Izraelevitz et al., “Reusability is FIRRTL ground: Hardware construc-
tion languages, compiler frameworks, and transformations,” in Proc. of
the 36th International Conference on Computer-Aided Design. IEEE
Press, 2017, pp. 209–216.

[14] T. Parr and K. Fisher, “LL(*) the foundation of the ANTLR parser
generator,” ACM Sigplan Notices, vol. 46, no. 6, pp. 425–436, 2011.

[15] R. Behl, “SimpleCPU,” Retrieved July 2020. [Online]. Available:
https://github.com/SimpleCPU/SimpleCPU

[16] C. Wolf, “PicoRV32 - a size-optimized RISC-V CPU,” Retrieved July
2020. [Online]. Available: https://github.com/cliffordwolf/picorv32

[17] J. Decaluwe, “MyHDL: a python-based hardware description language.”
Linux journal, no. 127, pp. 84–87, 2004.

[18] S. Bourdeauducq, “Migen: A python toolbox for building complex
digital hardware,” Retrieved July 2020, 2013. [Online]. Available:
https://m-labs.hk/migen/manual/introduction.html

[19] C. Papon, “SpinalHDL: An alternative hardware description language,”
FOSDEM, 2017.

