A. Babushkin and . Jmavsim, , 2018.

M. Calonder, V. Lepetit, C. Strecha, and P. Fua, Brief: Binary robust independent elementary features, 2010.

F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, RotorS A Modular Gazebo MAV Simulator Framework, Robot Operating System (ROS), Studies in Computational Intelligence, pp.595-625, 2016.

N. Gageik, P. Benz, and S. Montenegro, Obstacle detection and collision avoidance for a uav with complementary low-cost sensors, IEEE Access, vol.3, pp.599-609, 2015.

D. Göhringer, M. Hübner, E. N. Zeutebouo, and J. Becker, Operating system for runtime reconfigurable multiprocessor systems, Int. Journal of Reconfigurable Computing, 2011.

X. Iturbe, K. Benkrid, C. Hong, A. Ebrahim, R. Torrego et al., Microkernel architecture and hardware abstraction layer of a reliable reconfigurable real-time operating system (r3tos), ACM Trans. on Reconfigurable Technology and Systems, vol.8, issue.1, p.5, 2015.

A. Jara-berrocal and A. Gordon-ross, Scores: A scalable and parametric streams-based communication architecture for modular reconfigurable systems, DATE Conf, 2009.

A. Jara-berrocal and A. Gordon-ross, An integrated development toolset and implementation methodology for partially reconfigurable system-on-chips, 22nd ASAP Conf, 2011.

D. Jung and P. Tsiotras, Modeling and hardware-in-the-loop simulation for a small unmanned aerial vehicle, AIAA Infotech@ Aerospace Conference and Exhibit, 2007.

Z. Kalal, K. Mikolajczyk, and J. Matas, Forward-backward error: Automatic detection of tracking failures, 20th Int. conf. on Pattern recognition (ICPR), 2010.

L. Kessal, N. Abel, and D. Demigny, Real-time image processing with dynamically reconfigurable architecture. Real-Time Imaging, vol.9, pp.297-313, 2003.

N. P. Koenig and A. Howard, Design and use paradigms for gazebo, an open-source multi-robot simulator, IROS, vol.4, pp.2149-2154, 2004.

M. Majer, J. Teich, A. Ahmadinia, and C. Bobda, The erlangen slot machine: A dynamically reconfigurable fpga-based computer. The Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, vol.47, pp.15-31, 2007.

K. Nguyen and C. Ha, Development of hardware-in-the-loop simulation based on gazebo and pixhawk for unmanned aerial vehicles, Int. Journal of Aeronautical and Space Sciences, vol.19, issue.1, pp.238-249, 2018.

M. Odelga, P. Stegagno, H. H. Blthoff, and A. Ahmad, A setup for multi-uav hardware-in-the-loop simulations, Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS), pp.204-210, 2015.

T. Ohkawa, K. Yamashina, T. Matsumoto, K. Ootsu, and T. Yokota, Architecture exploration of intelligent robot system using ros-compliant fpga component, 27th Int. Symp. on Rapid System Prototyping (RSP), 2016.

S. Shah, D. Dey, C. Lovett, and A. Kapoor, AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles, Springer Proceedings in Advanced Robotics, 2018.

, ArduPilot Dev Team. SITL simulator (software in the loop)

K. Yamashina, H. Kimura, T. Ohkawa, K. Ootsu, and T. Yokota, crecomp: Automated design tool for ros-compliant fpga component, 2016 IEEE 10th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSOC), pp.138-145, 2016.

K. I. Yamashina, T. Ohkawa, K. Ootsu, and T. Yokota, Proposal of ros-compliant fpga component for low-power robotic systems, 2nd International Workshop onFPGAs for Software Programmers(FSP 2015), 2015.

J. Yang, L. Yan, L. Ju, Y. Wen, S. Zhang et al., Homogeneous noc-based fpga: The foundation for virtual fpga, 10th Int. Conf. on Computer and Information Technology (CIT), 2010.