
HAL Id: hal-02948474
https://hal.science/hal-02948474

Submitted on 24 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardware-in-the-loop simulation with dynamic partial
FPGA reconfiguration applied to computer vision in

ROS-based UAV
Erwan Moréac, El Mehdi Abdali, François Berry, Dominique Heller,

Jean-Philippe Diguet

To cite this version:
Erwan Moréac, El Mehdi Abdali, François Berry, Dominique Heller, Jean-Philippe Diguet. Hardware-
in-the-loop simulation with dynamic partial FPGA reconfiguration applied to computer vision in
ROS-based UAV. 31st International Workshop on Rapid System Prototyping (RSP), Sep 2020, Virtual
Conference (ESWEEK), France. �hal-02948474�

https://hal.science/hal-02948474
https://hal.archives-ouvertes.fr


Hardware-in-the-loop simulation with dynamic partial FPGA
reconfiguration applied to computer vision in ROS-based UAV

Erwan Moréac∗, El Mehdi Abdali∗∗, Francois Berry∗∗, Dominique Heller∗, Jean-Philippe Diguet∗
∗LAB-STICC, CNRS, Université Bretagne Sud, 56100 Lorient, France
∗∗Institut Pascal, Université Clermont Auvergne, 63178 Aubière, France

Abstract— Hardware in the loop simulation has become
a fundamental tool for the safe and rapid development of
embedded systems. Dynamically and partially reconfigurable
FPGA provide an energy efficient solution for high performance
computing in embedded systems, such as computer vision, with
limited resources. Finally 3D simulation with realistic physics
simulation is required by designers of Unmanned Aerial Vehicle
(UAV) and related missions. The combination of the three
techniques are required to design UAV with reconfigurable
HW/SW embedded systems that can self-adapt to different
mission phases according to environment changes. But they
require different complex and specific skills from separated
communities and so are not considered simultaneously. In this
paper we demonstrate a complete framework that we apply to
a UAV case simulated with the well adopted Gazebo 3D simu-
lation tool including the Ardupilot model. According to usual
practices in Robotics, we use Robot Operating System (ROS)
middleware over Linux that we implement on a separated Intel
Cyclone V FPGA board including HW/SW interfaces. As a
convincing case study we implement, besides software classical
navigation tasks, a vision-based emergency-landing security
task and a detect and tracking classic mission application (TLD)
that can run in different HW and SW versions dynamically
configured on the FPGA according to mission steps simulated
with Gazebo.

I. INTRODUCTION

Security and reliability of autonomous vehicles, such
as UAVs, require fast and accurate perception capabilities
based in particular on image and radar sensors. Reactivity
constraints increase with vehicle speed, moreover systems
must be robust to network outage. This means that high
performance embedded computing (HPEC) is required to
guarantee short response times and safety.

Energy efficiency is a key parameter in embedded systems
and FPGA are known to be efficient for the implementation
of massively parallel pixel-level image processing tasks. Cost
is another important parameter so large FPGA are usually
not an appropriate solution. But depending on the mission
phases, the tasks of the mission may change, moreover the
time constraint also depend on the speed and location of
the vehicle. So, designers can take benefit of the partial and
dynamic reconfigurability (DPR) of FPGA to share hardware
resources.

But the domain of Robotics is mainly based on a software
and strongly relies on software reuse and open source to deal
with the design of complex systems. ROS (Robot Operating
System) is a typical example of such a methodology. This
is a middleware widely used by roboticians to manage
communications and interactions between tasks and between
tasks and sensors.

(Submitted version)

Hybrid architecture (ARM+FPGA) can help to bring
closer the two worlds but FPGA require specific skills, which
are far from robotician concerns. Obviously the use of DPR
is even more inaccessible.

Finally, the validation of such FPGA-based embedded
systems is another challenge since it requires to combine
tools from different domains. First designers need to simulate
mission scenario and interactions with environment by means
of a virtual world including physics engines. Then they need
autopilot models for the low level control of the vehicle.
At the software level, ROS is a well adopted solution for
the rapid development of the embedded software, it must
be considered in the simulation framework and this can be
done with a Hardware In the Loop (HIL) approach. At the
hardware level, there is today no real solutions available for
the implementation of tasks on FPGA and so no use of DPR.

Considering the huge interest of using FPGA and DPR in
embedded systems for robotics, we have developed a HIL
environment that interacts with a standard robot simulator.
Our approach is firstly based on a Hardware/Software archi-
tecture model including data transfers and task activation.
Secondly it is compliant with the ROS environment. Finally
it includes the control of DPR according to an architecture
model based in reconfigurable tiles.

The remaining of the paper is organized as follows.
Section II details the state of the art. Then we introduce
our platform model in Section III. In Section IV we detail
our UAV case study and the last section concludes the paper.

II. RELATED WORKS

A. Dynamic Partial Reconfiguration (DPR) with FPGA
DPR has been widely studied since the advent of DPR-

enabled FPGA in the early 90’s. Many research works have
addressed the problem of application implementations over
DPR architectures. They are usually based on a reconfig-
urable systems structure composed of one static region that
holds the unchanged design parts and one or more recon-
figurable regions that hold the loaded-on-demand design
parts. The Erlangen slot machine (ESM) [13] is an repre-
sentative and complete example of such DPR architectures
with slots equivalent to reconfigurable regions. The intra-chip
communications have been performed over four different
mechanisms, each one is adapted to a specific kind of data
exchange: direct connections, crossbar, shared memory and
Reconfigurable Multiple Bus (RMB) which are ”a special
through in regions switches” implemented in tiles. This rela-
tively complex communication structure has been justified to
resolve the common data exchange dilemmas and has been
taken as a reference for several DPR architectures such as
[8] where a slot-based DPR architecture has been proposed
with an automatic floor-planning and BitStreams generation.



The architecture used an overhead-adaptive communication
mechanism [7] that uses dynamically established nodes with
respect to the number of on-the-fly added modules. Recon-
figurable Datapath for dataflow applications is another type
of DPR-based architecture. Ardoise [11] was an example
of such approaches. It was, in contrast, a multiple FPGA
platform where each one contains a single data path. This
type of implementation was motivated by the limited-size of
FPGA (case of first generations) or because dynamic recon-
figuration was available but could not be partial. However,
they were based on hardware task models that have been used
in numerous of works. The same hardware task model with
two buffers has been used in the definition of a reliable RTOS
to handle the scheduling, allocation and reconfiguration of
tasks within a DPR architecture [6].

With larger FPGA another type DPR architecture, based
on NoC, has emerged. In [21] all identical slots are con-
nected in the same way regarding each other, I/Os and
shared resources which enhances the location-independent
of reconfigurable hardware tasks. Following nearly the same
structure, in RAMPSoC architecture [5] the reconfigurable
modules are not only hardware accelerators but also can
be different processor types and/or co-processors. This type
of architecture can be considered as an adaptive MPSoC
platform.

We consider these solutions and many other as examples of
DPR architectures that may be embedded in UAVs. However,
none of them has been considered in a global project that
requires systematic interfaces with 3D simulation and a robot
platform. Another point is that, the great majority of cases
is based on Xilinx FPGA, whereas we consider Altera/Intel
devices to be compliant with our industrial partners.

B. Hardware In the Loop simulations for UAVs
The first step to perform HIL simulation is the virtual

world simulator. A reliable world modeling is crucial to
perform accurate simulations compared to the reality. Be-
sides, a realistic environment is also important to evaluate
the computer vision efficiency. There already exists in the
literature several simulators aiming these objectives. Gazebo
[12] is one the most popular simulation platforms for the
research work. It allows to create 3D worlds using a con-
figurable physics engine where UAVs and sensor models
can interact with it. RotorS [3] is another simulator based
on Gazebo. This modular framework proposes HIL with
a PixHawk board (PX4) and to design its own Micro Air
Vehicle (MAV). Then, jMAVSim [1] is a simple simulator
designed in order to test and validate the PX4 hardware and
autopilot. Hence, the simulator has simple sensor models
and graphic engine without any objects in the environment.
Finally, AirSim [17] is a simulator which relies on the Unreal
Engine for the visual and the physical simulation. It also
supports the MavLink protocol and can be used for HIL
simulations.

Previous works have addressed HIL simulations such as
in [9]. In [14], the authors present HIL simulations includ-
ing a PixHawk board. This work does not use ROS to
communicate with Gazebo but rather a custom middleware
created with Qt in C which limits its exploitation by other
research and developer teams. In [15] they propose a setup
for multi-UAV HIL simulations. Each UAV is composed
of an Odroid board that are connected to Gazebo thanks
to the use of ROS. Nevertheless, the architecture used in

Fig. 1. Picture of the target UAV.

this paper still not use a FPGA to enable high performance
computer vision. However, some works that combines the
use of ROS with a FPGA have been presented. In [20], they
design a FPGA component associated with ROS in order to
accelerate an image labeling. The way it was implemented
make the image processing 1.7 times faster than the software
version. The same research team proposed in [19] cReComp,
an automated design tool to improve productivity of ROS-
compliant FPGA component. Then, authors of [16] proposed
an architecture exploration for SLAM processing based on
works of the two aforementioned papers.

From our knowledge, there is no contribution that com-
bines UAV HIL simulations with DPR using FPGA. In
this paper, we propose a platform setup to perform UAV
HIL simulations with DPR for high performances computer
vision. This framework also allows of non-experts to develop
DPR architectures which improves the productivity to design
this kind of architecture.

III. PLATFORM PROPOSITION

In this section we first describe the targeted UAV platform
for HIL simulations. Thereafter, we perform the overview of
the software platform with each program to run the whole
simulation within a host PC. Then, we show the UAV board
we want to include in HIL simulations. Finally, we explain in
detail how to perform HIL simulations with a system using
dynamic partial reconfiguration in FPGA.

A. Target UAV platform
The robotic setup used is a full custom UAV hexarotor.

As can be seen in Figure 1, the UAV is composed of
six propellers powered by brushless motors. Each motor is
associated with a motor controller and they are all driven by a
PixHawk board. This board runs the ArduPilot autopilot and
embeds a 32-bit ARM Cortex M4 processor with an IMU.
The IMU contains a 16-bit gyroscope, a 14-bit accelerometer
and a 14-bit compass. The PixHawk is also connected to a
GPS and to an optical flow which computes the altitude and
the UAV speed using a downward facing distance sensor and
a downward facing camera.

For the purpose to make this UAV autonomous, it is
equipped with sensors to detect obstacles. To reach this
objective, six ultrasound sensors with a range from 0.2 to
6m are used as well as six short-range infrared sensors with
a range from 0.1 to 1.5m and six long-range infrared sensors
with a range from 0.8 to 5.5m. Figure 1 shows that each
type of the aforementioned sensors are distributed equally
in six sections covering the whole UAV. These sensors are



connected to a board with an Altera Cyclone V System-on-a-
Chip (SoC). Thus, this board is able to compute the obstacle
avoidance based on distance sensors data and simultaneously
execute other software and hardware tasks. Thanks to this
computation power, the Cyclone V board sends orders to
the PixHawk board in order to drive the UAV using a serial
link. The Cyclone V FPGA allows hardware acceleration
for tasks such as computer vision. In our mission scenario
it is used to search emergency landing areas and to perform
tracking applications. The power supply of the two boards
and peripherals in the UAV is provided by a 6000 mAh
Lipo battery. Finally, a Datalink 2.4Ghz module is plugged
to allow priority remote control for security reasons.

B. Overview
In order to perform HIL simulations, we first implement

and execute the whole simulation loop on a PC. Figure. 2
shows the four main actors of a ROS-based UAV simulation.
Firstly, ROS is the middleware that helps at developing the
UAV board program. Secondly, Gazebo is the software that
models the UAV and the virtual environment. Thirdly, the
Software In The Loop (SITL) emulates the PX4 autopilot
embedded in the Pixhawk board and provided a flight sim-
ulator to move the UAV in Gazebo. Fourthly, MAVROS
makes the link between the ROS-based program and the
UAV autopilot. The next subsections give more detailed
information about aforementioned simulation actors.

SITL

MAVROS

GAZEBO

Cyclone V

Host PC

Fig. 2. Overview of the simulation loop. Everything can be executed on the
host PC and to run in HIL, the ROS and MAVROS parts must be executed
on the UAV board.

1) Robot Operating System (ROS): ROS is a flexible
framework for writing robot software. It is a collection of
tools, libraries, and conventions that aim to simplify the
task of creating complex and robust robot behavior across
a wide variety of robotic platforms. Every program in ROS
is called a node. When using ROS, it creates a node called
ROS master, it provides naming and registration services to
the rest of the nodes in the ROS system. Every independent
task can be separated into nodes which communicate with
each other through channels. These channels are also known
as topics. Every topic can have any number of broadcasters
and receivers. This structure helps to separate different parts
of the code into different modules, manage their builds and
dependencies and develop them separately.

2) Gazebo: Gazebo [12] is a popular software in the
robotics community and is completely open-source, so that
users can easily define 3D virtual worlds, sensor models,
and communication protocols. Thanks to the open dynamics

engine (ODE), Gazebo can present a system model robot
with high accuracy in real-time conditions. Besides, it can
be applied forces and moments in the six-degrees-of-freedom
UAV model. In order to gather sensors and video data from
the virtual world, sensor and camera models are associated
with plugins developed in C. The same principle is used to
control UAV rotors with the autopilot.

3) Software In The Loop (SITL): The SITL simulator [18]
allows to run Plane, Copter or Rover without any hardware. It
is a build of ArduPilot autopilot on the host PC. It provides
designers with a native executable that allows to test the
behavior of the code without hardware. When running in
SITL, the sensor data comes from a flight dynamics model
in a flight simulator. The communication protocol used by
ArduPilot is MAVLink for Micro Air Vehicle Link. This is
a protocol for communicating with small unmanned vehicle.
Hence, a bridge is required between the autopilot and ROS.

4) MAVROS: This is a ROS package that provides com-
munication driver for various autopilots with MAVLink
communication protocol. Thanks to this package, the ROS
program developed is able to send orders and receive data
from the autopilot.

As the entire software architecture has been described, we
now present the UAV board architecture.

C. UAV board architecture
The board we embed in the UAV is composed of a Cyclone

V SoC as mentioned earlier. The Hard Processor System
(HPS) is composed of two processors ARM A9 and the
Field-Programmable Gate Array (FPGA) fabric is an Arria V
FPGA using a 28 nm technology. Both HPS and FPGA have
access to a 1 GB DDR3 RAM. The next subsection brings
more information about the reconfigurable architecture of the
system.

D. The partially reconfigurable architecture
As depicted in Figure. 3, the FPGA fabric is divided in

two reconfiguration regions. The use of two regions is due
to the FPGA die size compared to the application needs in
their HW versions. Each region can retrieve image data either
from a 8 bits streaming image interface or from a 32 bits
memory mapped interface connected to an external DDR
shared memory. In addition to reconfigurable regions, the
shared memory is accessed by the HPS for initializing the
bitstreams and the reconfiguration manager. The reconfig-
urable regions have a width of 16 and a height of 77 giving a
hardware resources amount of 10010 ALMs, 40040 Register,
38 DSPs and 154 M10K with a total memory capacity of
1576960 bits. The reconfiguration time is of around 5ms per
region in scrub mode and 6.6ms in and/or mode.

E. Hardware In the Loop (HIL)
In this subsection we describe first the software setup of

the UAV to enable real experiments. Then, we show what
are the necessary modifications to achieve HIL simulation
with DPR.

1) UAV software setup: Figure. 4, inspired from [15],
shows the UAV software setup. As mentioned earlier, we
can see that the hexarotor is composed of two boards:

1) the PixHawk, a cortex-M4 based-board that embeds
the autopilot,

2) a board with a Cyclone V SoC with ROS kinetic and
Ubuntu 16.04 installed.



external memory

external memory
interface

RR1 RR2

IN IMAGE
FLOW

FPGA FABRIC ARM (HPS)

DPR 
Manager

Bitsteam 
Fetcher

Bitstream 
Initilizer

Fig. 3. Architecture model used in the experiments.

ROS allows us to exploit communication topics to connect
most of the components within the Cyclone V. First of all,
we have created a ROS node named mission manager. This
node has to supervise applications selection in order to decide
which application to prioritize. According to the mission
manager requests in terms of application needs recovered
from topics, another ROS node, called configuration con-
troller, launches application in their HW or SW versions. If
necessary the controller configures the FPGA by means of
DPR to allocate resources according to application priorities.
A synchronization mechanism is introduced to guarantee the
end of a hardware task before any reconfiguration. Then,
prioritized applications, like tracking for instance, can benefit
from HW acceleration and reduce the CPU.

The ROS node sensor interface sends to the mission
manager sensors raw data via topics. There are sensors
data for the obstacle avoidance (from on-board sensors)
mentioned in Section III-A. From these raw sensor data,
a data fusion is performed to enhance obstacle detection
reliability as described in [4]. The sensor interface also
retrieves the two camera video flows.

ROS topics are used within the Cyclone V and the
MAVLink communication protocol is employed through a
serial link between the Cyclone V board and the PixHawk
board. Thus, the mission manager is able to send orders such
as waypoints to the PixHawk to drive the UAV. Similarly, the
PixHawk sends sensors data and information about the UAV
state such as the battery level and sensors state. A GPS and
a px4flow are connected to the PixHawk by an USB serial
link. The GPS gives the global positioning and the PX4flow
provides the altitude and the UAV speed. We now present
the HIL software setup and emphasize differences with the
UAV setup.

2) HIL software setup: With the aim to carry out HIL
simulations with the Cyclone V, we have to replace Cyclone
V external connections. Indeed, on-board sensors and the
two cameras are substituted by Gazebo and the PixHawk by
the SITL software. The scheme in Figure. 5 illustrates the
HIL software setup. A host PC is the new interlocutor of
the Cyclone V, Ubuntu 16.04 and ROS kinetic are installed
as well. Cyclone V and the host PC are connected via an
ethernet link.

In order to allow communications with Gazebo, the sensor
interface has been replaced by the node Gazebo interface.
Hence, the board is able to retrieve data from Gazebo virtual

sensors. In Gazebo, it is possible to model every sensors
needed and they will react to the virtual world created in
this software. Thus, obstacle detection sensors, cameras,
IMU and so on are emulated and provide data through
topics. These sensors can be configured to approach the
characteristics of real ones. PixHawk related sensors data
are sent to SITL and on-board sensors with cameras data are
sent to the Cyclone V with topics. Sending data through a
topic between two different machines is done by configuring
the same ROS master node for both machines. In this way,
the host PC and the UAV board may exchange data using
ROS.

In order to recover PixHawk sensors data with SITL,
Gazebo plugins allows SITL to exploit these sensors. It
is important to remind that SITL emulates the autopilot
ArduCopter embedded in the PixHawk. The connection
between the Cyclone V remains a serial MAVLink link
thanks to MAVROS and the SITL capabilities to reproduce
the MAVLink communication protocol. SITL owns a feature
that let us simulate sensors or UAV parts failures which
is very interesting to evaluate adaptation abilities of the
UAV program. Finally, the telemetry and the base station
are not appearing in Figure. 5 since it is only used in real
experiments to perform emergency landings, and as the UAV
in HIL simulations moves in a virtual world, there is no harm
in case of crashes during test phases.

Once the HIL setup is complete, we can perform ex-
periments with several applications in order to validate the
process using DPR.

IV. CASE STUDY

In this case study, we show an UAV performing computer
vision while flying in a virtual world with the real SoC board.
It allows to validate the FPGA reconfiguration system by
switching the application executed in hardware. Thus, we
first present applications that will be executed on the UAV
board in software or in hardware and we explain how they
work. Then, we show results from HIL simulations of the
whole system.

A. Detection and Tracking
The first two co-processors considered in this study are

the main blocks of the Tracking Detection Learning (TLD)
tracking algorithm. The details of the co-processors, as
well as their hardware implementations, are discussed in a
previous paper dedicated to the architecture optimization to
be disclosed in the final version.

1) Tracking: The TLD algorithm uses a median flow
tracker [10] which is based on a grid of points where the
Kanade Lucas Tomasi (KLT) method is applied individually
to each of them. The points in a bounding box are firstly
tracked with KLT in order get their displacements in the next
frame, these displacements being called a forward tracking.
After that, these points (with their neighborhood) are tracked
inversely to the original frame to assess the capability of the
algorithm to find back their original position. The points
with a low forward-backward error (difference between
original positions and predicted original positions) and a
high similarity between original and tracked patches are
considered as reliable and their tracking is used to retrieve
the scale and object displacement. The remaining points are
considered as outliers. The similarity between the original
and predicted patches is assessed using the Normalized



Hexarotor

Cyclone V

Base station

I2C busPixhawk

serial link
MAVlink 
protocol

ROS topics

on-board sensors

sensor interface*

ROS topics

low-level control

IMU

px4flowGPS

HW/SW 
interface*

mission 
manager*

USB serial

image 
processing

DPR 
orders

radio 2.4GHz 

optical flow

remote controller

Telemetry
interface

app request

app feedback

inputs from the 
operator

sensors data

bottom and front cameras

Raw data

MAVROS
interface* commands

ROS topics

HW 
accelerators

(FPGA)

*: executed on the ARM HPS

Fig. 4. Scheme of the UAV software setup.

ROS topics over
ethernet connection

Host PC

Gazebo

SITL

Cyclone V

ROS topics

Gazebo interface*

ROS topics

HW 
accelerators

(FPGA)

HW/SW 
interface*

mission 
manager*

image 
processing

DPR 
orders

app request

app feedback

MAVROS
interface* commands

ROS topics

serial link MAVlink 
protocol over

ethernet connection

"Pixhawk" data

on-board sensors

bottom and 
front cameras

flight simulation
rotors commands

IMU data, pose, altitude

Model plugins over
virtual serial link

*: executed on the ARM HPS

Fig. 5. Scheme of the HIL simulations software setup.

Correlation Coefficient (NCC). The normalization in NCC
overcomes the problems of changing brightness. The scale
is the median of all relative displacements of reliable points.

2) Detection: Detection is executed at different scales
and positions. It performs object detection and recognition
based on a learned object model. This model is composed
of Binary Robust Independent Elementary Features (BRIEF)
probabilities and patches representing the different object
appearances. The first stage discards the windows with small
variance, those that are likely to be background. After that, a
BRIEF-based classifier [2] detects the windows where texture
looks like those of the desired object. In the BRIEF classifier,
10 BRIEF codes of 13 different pairs of pixel are computed
for each window already passed the first stage. To each
resulting BRIEF code is associated a posterior probability
measuring the probability of being the object of interest given
the correlation result. If the mean of probabilities for the 10
BRIEF codes is lower than 50%, the corresponding window
is rejected. For non-rejected windows, a similarity with
respect to all object model patches is measured by computing
the NCC. Finally, if the similarity is beyond a threshold, the
corresponding window is considered as a detected object and
the BRIEF probabilities are updated positively. Otherwise,
the probabilities are updated negatively. A final stage aims to
minimize the detected windows by clustering them in groups
of overlapping windows.

B. Emergency landing
The emergency landing application seeks areas in the

picture where the UAV can land. This is characterized by
an area with a low luminance variance that indicates a low
amplitude relief. A median filter is used on the grayscale
image as a preprocessing step to remove noise. Then, a

Canny filter is applied to detect area edges. A morphological
closing is performed with dilation and erosion operations. If
the area contrast is under a defined threshold the area is filled
in white, otherwise the area is colored in black. The next
step is to label each white areas that have a minimum size
according to the UAV height to allow the landing. Thereafter,
each white area selected is sorted such as the first area is the
closest to the image center (location of the UAV).

C. Simulation results
First Table. I shows implementation results in terms of

hardware resources for each application that can be imple-
mented on each reconfigurable region. The percentage indi-
cates the use ratio of a region according to the application.
We observe that the detection application is the largest one
and requires more than 90% of all ALMs and DSPs of a
region. On the other hand, the emergency landing is only
using 21% of ALMs.

In order to validate our all HIL platform with DPR,
the simulation scenarios, namely the mission, were defined
statically with predefined trajectories and application pri-
orities assigned to the map regions. Detection, Tracking
and Emergency Landing applications have been successfully
executed in software or hardware according to the location,
while basic UAV applications such as the navigation, obstacle
detection and avoidance were running in software only.

Figure. 6 illustrates a phase of the HIL demonstration
where the Emergency landing is running on one region.
Part B is a view of the UAV downward facing camera,
Part A shows the camera image after processing executed in
hardware, Part C shows Gazebo 3D scene with the UAV in
the center and part D shows a terminal with software and
hardware timings of the emergency landing. Performance



results are summerized in Table II. The execution time of
the software version of emergency landing is on average
300 ms against 8 ms for the hardware one. It generates
a speed factor of 37.5 and relieves significantly the CPU
load. Similarly, the execution of the software version of TLD
requires 285 ms against 8.1 ms for the detection and 7 ms
for the tracking both in hardware. We have considered the
case where the detection and tracking are running in parallel
on the two regions, this configuration brings a speed factor
of 35. Nevertheless, the reconfiguration time requires 7 ms,
which is of the same order of a hardware execution, so the
reconfiguration rate must be limited. In the context of UAV
mission, the evolution of application priorities and so the
configuration rate is expected to be slow.

Finally, this case study provides a simple way to validate
different sequences of configurations of the DPR architecture
within a HIL simulation. Indeed, it allows designers to
check the hardware behavior in a simulation near of real
conditions. Moreover, we can perform an entire mission
with different scenarios in order to limit risks for the UAV
and its environment by anticipating possible events related
to obstacles, target behaviour and UAV or Sensors failures.
However the HIL simulation introduces a bias the designers
must be aware of. Due to the ethernet connection, the UAV
board needs to copy the camera image from Gazebo (the host
PC). This overhead copy takes on average 7 ms, as indicated
in part D of Figure. 6. This time must be subtracted from
the total execution time in order to estimate the performances
of the final embedded implementation. Finally, our work is
by definition meant to be shared with the communities of
robotics and embedded systems designers. Our open-source
framework is available on github server which is still in work
in progress1.

TABLE I
IMPLEMENTATION RESULTS IN TERMS OF HARDWARE RESOURCES

ALMs Registers DSPs RAM(bits)

Tracking 6569 (66%) 6203 (16%) 34 (90%) 232203 (15%)

Detection 9534 (95%) 11124 (28%) 34 (90%) 581976 (37%)

E Landing 2125 (21%) 4042 (10%) 3 (8%) 128592 (8%)

TABLE II
PERFORMANCE RESULTS OF APPLICATIONS IN SOFTWARE AND

HARDWARE VERSIONS

SW execution time HW execution time Speed factor

Tracking 285 msa 7 ms 40.7

Detection 285 msa 8.1 ms 35

E Landing 300 ms 8 ms 37.5
a This execution time includes both SW Detection and Tracking parts
using OpenTLD application.

V. CONCLUSION

In this paper we presented the first complete framework
for HIL simulation that targets DPR architectures. This
framework is composed of well known and open-source tools
such as Gazebo, ROS and SITL. The simulation system
has been tested on an Cyclone V FPGA board. It allows

1https://github.com/Kamiwan/HPeC-sources

A

B

D
C

Fig. 6. Hardware In The Loop demonstration picture using DPR. A: image
result from emergency landing image processing. B: View of the UAV’s
downward facing camera. C: Gazebo’s world view. D: Terminal showing
hardware and software timings of emergency landing application.

to specify and simulate a UAV mission in a virtual world
but running real applications on the final embedded system.
This systems is based on a DPR architecture that can
be dynamically reconfigured during the mission. So UAV
missions can be now tested with an embedded system that
can benefit from DPR architectures in order to speedup
high priority applications according to the scenario phases.
The platform has been validated with real life computer
vision applications executed with different HW and SW
versions and dynamically configured on the FPGA during
the simulation.

Our future work will be dedicated to the implementation of
the advanced version of the mission manager. It will allows
the UAV to fly autonomously and so to reconfigure the DPR
architecture according to the mission scenario in an uncertain
environment.

REFERENCES

[1] A Babushkin. Jmavsim, 2018.
[2] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief: Binary robust

independent elementary features. Computer Vision–ECCV, 2010.
[3] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart. RotorS A

Modular Gazebo MAV Simulator Framework. In Robot Operating
System (ROS), Studies in Computational Intelligence, pages 595–625.
Springer, Cham, 2016.

[4] N. Gageik, P. Benz, and S. Montenegro. Obstacle detection and
collision avoidance for a uav with complementary low-cost sensors.
IEEE Access, 3:599–609, 2015.

[5] D. Göhringer, M. Hübner, E. N. Zeutebouo, and J. Becker. Operating
system for runtime reconfigurable multiprocessor systems. Int. Journal
of Reconfigurable Computing, 2011:3, 2011.

[6] X. Iturbe, K. Benkrid, C. Hong, A. Ebrahim, R. Torrego, and T. Arslan.
Microkernel architecture and hardware abstraction layer of a reliable
reconfigurable real-time operating system (r3tos). ACM Trans. on
Reconfigurable Technology and Systems (TRETS), 8(1):5, 2015.

[7] A. Jara-Berrocal and A. Gordon-Ross. Scores: A scalable and
parametric streams-based communication architecture for modular
reconfigurable systems. In DATE Conf., 2009.

[8] A. Jara-Berrocal and A. Gordon-Ross. An integrated development
toolset and implementation methodology for partially reconfigurable
system-on-chips. In 22nd ASAP Conf., 2011.

[9] D. Jung and P. Tsiotras. Modeling and hardware-in-the-loop simulation
for a small unmanned aerial vehicle. In AIAA Infotech@ Aerospace
Conference and Exhibit, 2007.

[10] Z. Kalal, K. Mikolajczyk, and J. Matas. Forward-backward error:
Automatic detection of tracking failures. In 20th Int. conf. on Pattern
recognition (ICPR), 2010.

[11] L. Kessal, N. Abel, and D. Demigny. Real-time image processing
with dynamically reconfigurable architecture. Real-Time Imaging,
9(5):297–313, 2003.

[12] N.P. Koenig and A. Howard. Design and use paradigms for gazebo, an
open-source multi-robot simulator. In IROS, volume 4, pages 2149–
2154. Citeseer, 2004.

[13] M. Majer, J. Teich, A. Ahmadinia, and C. Bobda. The erlangen slot
machine: A dynamically reconfigurable fpga-based computer. The
Journal of VLSI Signal Processing Systems for Signal, Image, and
Video Technology, 47(1):15–31, 2007.



[14] K-D. Nguyen and C. Ha. Development of hardware-in-the-loop
simulation based on gazebo and pixhawk for unmanned aerial vehicles.
Int. Journal of Aeronautical and Space Sciences, 19(1):238–249, Mar
2018.

[15] M. Odelga, P. Stegagno, H. H. Blthoff, and A. Ahmad. A setup for
multi-uav hardware-in-the-loop simulations. In 2015 Workshop on
Research, Education and Development of Unmanned Aerial Systems
(RED-UAS), pages 204–210, Nov 2015.

[16] T. Ohkawa, K. Yamashina, T. Matsumoto, K. Ootsu, and T. Yokota. Ar-
chitecture exploration of intelligent robot system using ros-compliant
fpga component. In 27th Int. Symp. on Rapid System Prototyping
(RSP), 2016.

[17] S. Shah, D. Dey, C. Lovett, and A. Kapoor. AirSim: High-Fidelity
Visual and Physical Simulation for Autonomous Vehicles. In Field
and Service Robotics, Springer Proceedings in Advanced Robotics.
Springer, Cham, 2018.

[18] ArduPilot Dev Team. SITL simulator (software in
the loop). http://ardupilot.org/dev/docs/
sitl-simulator-software-in-the-loop.html, 2016.
[Online; accessed 13-July-2018].

[19] K. Yamashina, H. Kimura, T. Ohkawa, K. Ootsu, and T. Yokota.
crecomp: Automated design tool for ros-compliant fpga compo-
nent. In 2016 IEEE 10th International Symposium on Embed-
ded Multicore/Many-core Systems-on-Chip (MCSOC), pages 138–145,
Sept 2016.

[20] K.I. Yamashina, T. Ohkawa, K. Ootsu, and T. Yokota. Proposal of
ros-compliant fpga component for low-power robotic systems. In
2nd International Workshop onFPGAs for Software Programmers(FSP
2015), Sep 2015.

[21] J. Yang, L. Yan, L. Ju, Y. Wen, S. Zhang, and T. Chen. Homogeneous
noc-based fpga: The foundation for virtual fpga. In 10th Int. Conf. on
Computer and Information Technology (CIT), 2010.


