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Yves Martinez-Maure
yves.martinez-maure@imj-prg.fr

Abstract

Classical (real) hedgehogs can be regarded as the geometrical realiza-
tions of formal differences of convex bodies in R"*1. Like convex bodies,
hedgehogs can be identified with their support functions. Adopting a pro-
jective viewpoint, we prove that any holomorphic function A : C* — C
can be regarded as the ‘support function’ of a complex hedgehog H}, in
C"*1. In the same vein, we introduce the notion of evolute of such a
hedgehog Hj, in C?, and a natural (but apparently hitherto unknown)
notion of complex curvature, which allows us to interpret this evolute as
the locus of the centers of complex curvature. It is of course permissible
to think that the development of a ‘Brunn-Minkowski theory for complex
hedgehogs’ (replacing Euclidean volumes by symplectic ones) might be
a promising way of research. We give first two results in this direction.
We next return to real hedgehogs in R*" endowed with a linear complex
structure. We introduce and study the notion of evolute of a hedgehog.
We particularly focus our attention on R* endowed with a linear Kihler
structure determined by the datum of a pure unit quaternion. In parallel,
we study the symplectic area of the images of the oriented Hopf circles
under hedgehog parametrizations and introduce a quaternionic curvature
function for such an image. Finally, we consider briefly the convolution
of hedgehogs, and the particular case of hedgehogs in R*" regarded as a
hyperkihler vector space.
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1 Introduction

Classical (real) hedgehogs can be regarded as the geometrical realizations of
formal differences of convex bodies in the Euclidean vector space R**'. The
idea of considering the Minkowski differences of convex bodies may be traced
back to some papers by A.D. Alexandrov [1] and H. Geppert [4] in the 1930’s.
Many notions extend to hedgehogs and quite a number of classical results find
their counterparts. Of course, a few adaptations are necessary. In particular,
volumes have to be replaced by their algebraic versions. Hedgehogs have proved
useful for studying convex bodies (one of the main successes of the theory is
the construction of counterexamples to an old conjectured characterization of
the 2-sphere [11, 15]), and for geometrizing analytical problems by considering
functions as support functions. Section 2 will provide the reader with the nec-
essary background on hedgehogs in order to facilitate an understanding of the
following sections.

Complex hedgehogs

Like convex bodies of R*!, hedgehogs of R*! are completely determined
by (and can be identified with) their support functions, which are differences of
two support functions of convex bodies of R™*! restricted to the unit sphere S™.
In section 3, we adopt a projective viewpoint in order to introduce the notion
of a ‘complex hedgehog’ in the complex Euclidean space C"*!. We prove that:

Any holomorphic function h : C* — C can be regarded as the ‘complex sup-
port function’ of a ‘complex hedgehog’ Hp, which is defined by a holomorphic
parametrization xj, : C* — C*T1 in the complex Euclidean space C™t1.

Of course, these complex hedgehogs can be interpreted in the metric contact
geometry setting where they appear as fronts of Legendrian immersions in C2*+!
(see Subsection 3.2).



In passing, we introduce the notion of a rational hedgehog in the complex
projective plane P? (C) equipped with the usual Fubini-Study Kahler form w
(for an introduction to the Fubini-Study structure, see e.g. [2]). Such a hedgehog
Hy, is modeled on P! (C) := CU {oo} via a holomorphic map h : C — C that
is such that Area [z (C)] < 4o0.

Complex evolutes and complex curvature

In classical differential geometry of curves, the evolute of a plane curve is the
locus of all its centers of curvature or, equivalently, the envelope of its normal
lines. Interpreting evolutes of hedgehog curves from a projective point of view,
we prove in Subsection 3.4 that:

There exists a natural extension of the notion of evolute curves to
complex hedgehog curves, and a very natural (but apparently hitherto
unknown) notion of complexr curvature, which allows us to interpret any
evolute of a complex hedgehog curve Hy, as the locus of its centers of complex
curvature.

Given any complex hedgehog Hj, in R*, we introduce its real and imaginary
parts as hedgehogs of R, which can be regarded globally as the images of Hj,
under the orthogonal projections onto two particular hyperplanes of R*, and
that are determined by Re [h] and Im [h].

Towards a Brunn-Minkowski theory for complex hedgehogs

The notion of a hedgehog curve or surface was born in the thirties from the
study of the Brunn-Minkowski theory by A.D. Aleksandrov, H. Geppert and
some others. In the present paper, we try to motivate the development of a
‘theory of mized volumes for complex hedgehogs’ (replacing Fuclidean volumes
by symplectic ones).

In Section 4, we mention first two results in this direction. First, identifying
complex hedgehogs with their support functions, we notice that the complex
linear space of holomorphic functions defined up to a similitude on the unit disc
D C C can be endowed with a scalar product which can be interpreted as a mized
symplectic area.

Second, we give the following sharp estimation of the (symplectic) area of
xp, (D) using the energy, say E (x1), of the loop =, : S' = R/2xZ — C2,
0— xp, (ew), in the case where h: D — C is the sum of a power series Y hpz"
with radius of convergence R > 1:

Area [z (D)] < %E (zn) .

Note that this estimate is better than that well-known for an arbitrary smooth
loop 7 : S* — V in a symplectic vector space (V,w) (namely, |A (y)| < E (v),
see for instance [14, pp. 87-88]).

Real evolutes in_even dimensions




In Section 5, we return to real hedgehogs but in R?” endowed with a linear
complex structure J. First of all, we introduce the notion of evolute of any
hedgehog with a smooth support function in (RQ", J).

We particularly focus our attention on the case n = 2. We identify R* with
the quaternion algebra H (and thus the unit sphere S? with the set Sf; of unit
quaternions), and, we associate to any pure unit quaternion v the linear complex
structure J, : R* — R*, 2 — vz. In other words, for any v € $? 2 S§;,NIm (H),
we choose to work in the Kéhler vector space (R47 Ju, wv), where w, denotes the
associated Kéhler form (i.e. the alternating 2-form w,, (X,Y) = (J,X,Y"), where
(.,.) is the standard Euclidean metric on R*). To any v € S, it thus corresponds
a Hopf fibration and a Hopf flow leaving the Hopf fibration invariant, namely
the Hopf flow {(¢v)y}geq given by (¢y), (u) := (cos ) u + (sin ) vu, (ues?).

We give a detailed study of evolutes of hedgehog hypersurfaces in these Kahler
vector spaces (R4, Ju, wy).

Mixed symplectic area and quaternionic curvature function

In parallel, we study the symplectic area of images of the oriented Hopf circles
under the hedgehog parametrizations zj : S — (R4, Jv,wv). In this setting,
we introduce the notion of mized symplectic area and prove what follows among
other results.

Theorem. Let h € C* (83;R), and let v be a pure unit quaternion.
(i) The evolute of Hp, in (R4, Jv,wv) 1s the hedgehog with support function

Oph : S* — R, u +— (Vi (=J, (u)),u),

where (.,.) is the standard Fuclidean metric on R*, and Vh the gradient of h.
Thus, Oyh is such that: Yu € S3,

(Ouh) (Ju (u)) = (VA (u), Jy (u)) = (dh), (Jo (u));

(ii) For all u € S?,
zo,n (u) = zn (u) — Ry (u,v) u,

where Ry (u,v):= —vTyxp(Jy (w))@; here @ of course refers to the quaternion
conjugate of u ;

(#it) The map Ry (.,v) : up := (cosf)u + (sinf)vu — Ry, (ug,v) can be in-
terpreted as a quaternionic curvature function of xy, (S}M), where S}, ,, is the

unit circle of C(u,v) :=Ru+RJ, (u) oriented by (u, J, (u)), in the sense that
Ry, (., v) is the unique C>°-smooth quaternionic function R(.,v):SL, — H that

u,v

is of the form R (ug,v) = —vT,, (v), where Ty, (v) is a pure quaternion, and
such that:
1 27
Vg € C® (S%;R), Suw(g,h) = 5/ (g (ug) , R (ug,v) ug) db,
0

where sy, (g, h) denotes the mized symplectic area of x, (S}w) and xj, (Sbv)



In other words, what is shown by (#ii) is that the quaternionic curvature
function R (.,v) plays, relatively to the mixed symplectic area s, ,, the same
role as the (ordinary) curvature function of plane hedgehogs does relatively to
the (ordinary) mixed area. Here, we have to recall that the mixed area of two

plane hedgehogs with support functions (g, h) € C* (Sl; R)2 is given by

a(g,h):= %/0 i (g (ug), Ry (u) ug) dd = %/0 7Tg (ug) Ry, (ug) do,

where uy = ¢ € C = R? and where zy: St = C, 00— g(0)ug+ g (0)iug is
the natural parametrization of H,, and Rj, := h + h” the so-called ‘curvature
function’ of Hj, (see [9, p. 447]).

Relationship with the area of order 2

We also show that the algebraic area of order 2 of a hedgehog H; of R*
can be interpreted in terms of the symplectic areas of Hj, in the Kihler vector
spaces (R4, Ju, wy). Here, we have to recall that the algebraic area of order 2 of
Hp, is defined to be V' (h, h,1,1), where V is the extension of the mixed volume
(of convex bodies of R*) to hedgehogs of R*.

Convolution and extension to R* =~ H"

Finally, we consider briefly the convolution of hedgehogs in R™, and evolutes
of hedgehog hypersurfaces in R*", which we identify with the hyperkihler vector
space (H",(.,.),I,J, K), where (.,.) is the standard Euclidean metric on R*",
(n > 1), and, the triple of complex structures (I, J, K) on H" is given by left
multiplication by i, j, k respectively.

2 Background on classical real hedgehogs

In this section, we recall for the convenience of the reader the background on
real hedgehogs. The set K" of all convex bodies of (n + 1)-Euclidean vector
space R™*! is usually equipped with Minkowski addition and multiplication by
nonnegative real numbers, which are respectively defined by:

() V(K,L)e (K™, K+L={s+ylzeKyeL};
(i) VAER,, VK € K A\K ={ x|z e K}.

It does not constitute a vector space since there is no subtraction in C"*!:
not for every pair (K,L) € (IC"“)2 does there exist an X € K"*! such that
L+ X = K. Now, in the same way as we construct the group Z, of integers
from the monoid N of nonnegative integers, we can construct the vector space
H" 1 of formal differences of convex bodies from "', We can then regard
K"*1 as a cone of H"*! that spans the entire space. Hedgehog theory simply
consists in:



1. considering each formal difference of convex bodies of R"*! as a geometrical
object in R"1 called a hedgehog (see below);

2. extending the mixed volume V : (IC"“)HJr1 — R to a symmetric (n + 1)-
linear form on H™t!;

3. extending certain parts of the Brunn-Minkowski theory to H"*1.

For n < 2, it goes back to a paper by H. Geppert [4] who introduced hedge-
hogs under the German names stitzbare Bereiche (n = 1) and stiitzbare Flichen
(n=2).

C? case. Here we follow more or less [8]. As is well-known, every convex
body K C R"! is determined by its support function hg : S* — R, where
hi (w) is defined by hy (u) = sup {{(z,u) |z € K}, (u € S™), that is, as the signed
distance from the origin to the support hyperplane with normal vector u. In
particular, every closed convex hypersurface of class C’i (i.e., C?-hypersurface
with positive Gaussian curvature) is determined by its support function h (which
must be of class C? on S" [16, p. 111]) as the envelope Hj, of the family
of hyperplanes with equation (z,u) = h(u). This envelope Hj is described
analytically by the following system of equations

{ (@, u) = h(u)
(@, .) = dhy(.)

The second equation is obtained from the first by performing a partial differen-
tiation with respect to u. From the first equation, the orthogonal projection of
x onto the line spanned by w is h (u) u, and from the second one, the orthogonal
projection of z onto u' is the gradient of h at u (see Figure 1). Therefore,
for each u € S™, z, (u) = h(uw)u+ (Vh) (u) is the unique solution of this system.



h(0) := 10 + 15sin(0) + cos(30)

Figure 1. Envelope parametrized by its Gauss map

Now, for any C?-function h on S, the envelope H, is in fact well-defined
(even if h is not the support function of a convex hypersurface). Its natural
parametrization zp : S" — Hp,u — h(u)u + (Vh) (u) can be interpreted as
the inverse of its Gauss map, in the sense that: at each regular point zj, (u) of
‘Hp,, w is a normal vector to Hjy,. We say that Hj, is the hedgehog with support
function h (see Figure 2). Note that z;, depends linearly on h.

Since the parametrization z; can be regarded as the inverse of the Gauss
map, the Gaussian curvature K, of Hy, at xp, (u) is given by Kp,(u) =1/det[T,z4],
where Ty xzp, is the tangent map of x;, at u. Therefore, singularities are the very
points at which the Gaussian curvature is infinite. For every u € S”, the tan-
gent map of x; at the point w is Tyxp = h(u) Idp,s» + Hp(u), where Hy(u)
is the symmetric endomorphism associated with the Hessian (V2h)u of h at w.
In particular, the so-called ‘curvature function’ Ry, (u) := det [T, zp] is given by
Ry, (u) = det [h(u) Idr,s» + Hp(u)] for all u € S™.



h(8) = cos(26)

Figure 2. Plane hedgehog with C?-support function

In computations, it is often more convenient to replace h by its positively
1—homogeneous extension to R"™*\ {0}, which is given by

o= el (75 ).

for z € R"*1\ {0}, where ||.|| is the Euclidean norm on R"*1. A straightforward
computation gives:

(1) xp, is the restriction of the Euclidean gradient of ¢ to the unit sphere S”;

(7i) For all u € S™, the tangent map T,z identifies with the symmetric
endomorphism associated with the Hessian of ¢ at u.

Hedgehogs with a C2-support function can be regarded as Minkowski differ-
ences of convex hypersurfaces of class C_z._. Indeed, given any h € C? (S™; R), for
all large enough real constants 7, the functions h+r and r are support functions
of convex hypersurfaces of class C3 such that h = (h+ 1) —r.

General case. In [12], the author extended the notion of a hedgehog by
regarding hedgehogs as Minkowski differences of arbitrary convex bodies. The
trick is to define hedgehogs inductively as collections of lower-dimensional ‘sup-
port hedgehogs’. More precisely, the definition of general hedgehogs is based on
the three following remarks.

(7) In R, every convex body K is determined by its support function hy as the
segment [—hg (—1),hk (1)], where —hg (—1) < hg (1), so that the difference
K — L of two convex bodies K, L can be defined as an oriented segment of R:
K—L:=[-(hx —hr) (1), (hx —hr) (1)].

(1) If K and L are two convex bodies of R"*! then for all u € S", their support
sets with unit normal u, say K, and L,, can be identified with convex bodies
K, and L, of the n-dimensional Euclidean vector space ut ~ R™.



(ii7) Addition of two convex bodies K, L C R™! corresponds to that of their
support sets with same unit normal vector: (K + L), = K, + L, for all u € S™;
therefore, the difference K — L of two convex bodies K,L C R"t! must be
defined in such a way that (K — L), = K, — L,, for all u € S".

A natural way of defining geometrically general hedgehogs as differences of
arbitrary convex bodies is therefore to proceed by induction on the dimension by
extending the notion of support set with normal vector u to a notion of support
hedgehog with normal vector u. Let us give an example in R?. Let K and L be
the convex bodies of R? with support function hx (z) = [{x,e1)| + [{x, e2)| and
hr (z) = |(x,e3)| + |(x,e4)|, where (.,.) is the standard inner product on R2
(e1,e2) the canonical basis of R? and e3, ey € R? the unit vectors given by
ez = % (e1 +e2) and eq4 = % (e1 — e3). These convex bodies are two squares
whose formal difference K — L can be realized geometrically as the hedgehog
with support function h = hx — hr, which is a regular octagram constructed by
connecting every third consecutive vertex of a regular octogon (i.e., a regular
star polygon with Schlafli symbol {8/3}): see Figure 3.

s | X

Figure 3. Octagram obtained as the difference of two squares

Polytopal hedgehogs and hedgehogs with an analytical support function can
also be introduced in index terms via Euler Calculus [13].

3 Complex hedgehogs in C"! or P"! (C)

3.1 Real and complex hedgehogs as dual hypersurfaces of
graphs

In order to introduce complex hedgehogs, it is convenient to recall that real
hedgehogs with a smooth support function can be regarded as dual hypersur-
faces of smooth graphs. In what follows, any hedgehog H; C R™*! with sup-
port function h € C* (S™;R) will be regarded as a hypersurface in the real
projective space P"*! (R) by adding ‘a hyperplane at the infinity’ H,, to R"*1:




P (R) = R*"*1 U H,,. More precisely, we will identify R"*! with the affine
hyperplane of P! (R) = R"*? — {0} /R* with equation X, ;2 = —1, where
[X1,..., Xnt2] denote the homogeneous coordinates of the equivalent class of
(X1,..., Xpi2) € R {0} in P"™ (R). Then, the hedgehog hypersurface

niS" — Hp, € R c PP (R) can be regarded as the dual hypersurface of

Yh: St C R —  P"ML(R)
w= (Ul ., Upsp1) —  [U1,...,Ups1,h(W)].

Indeed, the support hyperplane with equation (x,u) = h (u) then corresponds
to the point vy (u) by projective duality.

It is extremely natural to follow this idea to extend the notion of hedgehog
to the complex setting. We regard the complex Euclidean space C"! as the
affine hyperplane of P"*1 (C) = C"*2 — {0} /C* with equation X,,1» = —1, and
we define, for any holomorphic function h : C* — C, the hedgehog with support
function h as the hypersurface of C"*! that is the dual hypersurface of

Yo C? — P"(C)
z=(21,...y2n) — [L,21,...,2n,h(2)],
that is, as the envelope of the family of hyperplanes (Hj (2)),ccn With equation
X1+ zXppr =h(2). (1)
k=1

In other words:

Definition 1 Let h: C* — C be a holomorphic function. The hypersurface Hp,
of the complex Euclidean space C"1 that is parametrized by

Th (Cn N (Cn-‘rl
n oh oh oh
z2=(21,-..,2n) — ( (2) — ; 8()7621(z)”<%L(2)>
18 called the hedgehog with support function h.

Indeed, from (1) and the contact condition dwo + Y_7_, zjdw; = 0, where

(W0, W1y - vy Wy 215+« -5 2) € CPTHLIXC™ = C?7 L we deduce that for all z € C”,
the point x, (2) = (21 (2),..., 2, (2)) is the unique solution of the system
T+ Y 2kTry1 = h(2) (1)
k=1
oh

VEe{l,...,n}, xp41 = —
where (2) is obtained from (1) by performing partial differentiations with respect

to the complex variables zj, (1 < k <n). Thus, it appears that Hj, is actually
parametrized by

10



—~ _0Oh oh oh
el n+1 — _
xp :C" > C" 2= (21,...,2n) — (h(z) kE:1zkaZk (z),az1 (z),...,azn (z)) .

Example. The hedgehog of C? of which the support function h : C — C
is given by h(z) = —23 is the affine algebraic curve Hj, of C? with equation
2722 + 493 = 0. It is parametrized by:

As any complex hedgehog curve zj, : C — C2, it is such that:

VzeC, z),(2)=-h"(2)(z,—-1) € C(z,—1).

Naturally, we could have introduced complex hedgehogs of C**! in the com-
plex contact geometry setting, where they appear as fronts of Legendrian im-
mersions in C?"*! (see the next subsection).

Remark. Of course, many other parametrizations would have been possible
in order to introduce the notion of a complex hedgehog. New parametrizations
can simply be obtained by performing chart changes. For instance, for any
holomorphic function g : C — C, the complex curve

Yy :C—Comp:2— (¢ (2),9(2) — 2¢' (2))
is a hedgehog, namely the hedgehog with support function f (z) = zg (1/2):
N 1
Vz e C", y,(2) = x5 (z)

Therefore, this particular parametrization change only corresponds to the chart
change z — 1/z on the Riemann sphere P! (C) = C U {oo}.

3.2 Complex hedgehogs as fronts in C"*! of Legendrian
immersions in C?"*!

Consider the complex Euclidean space C>**! endowed with the holomorphic
contact form

w = dwy + Z zjdw;

Jj=1

where (wo, w1, ..., Wy, 21, - - -, 2n) denote the canonical complex coordinates func-
tions on C2"*1. Recall that the projection

11



T Cn+1xcnzc2n+1 — (CnJrl
(W, ) = (W, W1y« vy Wy 21, -5 2n) — W= (Wo,W1,...,W,)

is called the front projection.
Then, for every holomorphic function h : C* — C, the map

ih I GLLTN (CnJrl x C" = (C2n+1
z o (zn(2),2)
is a Legendrian immersion of C" into (C*"*!,w) (that is, i, : C* — C?"*!

is a holomorphic immersion, and (T%is) (C") C Ker |w;, (»)] for all z € C™) of
which Hy, = zp, (C") is the front (7 0 ip) (C™) in C*H1.

Indeed, for all z = (21,...,2,) € C* and i € {1,...,n}, we have

oz, ﬁi 92h 92h 92h

0z; () = “i 02;02; (2), 02,021 (2, 0202, ()]

j=1

and hence

ox dldcn " 0%h - 0h
Wi, (2) (azh (2), 8; (z)) = — Z i vor v (2) + Z i vor- vy () =0.
v v j=1 j=1

2i0%; 20z

3.3 Rational hedgehogs of the complex projective plane
P2 (C)

Here, we choose to work in the complex projective plane P? (C) equipped with
the usual Fubini-Study Kéhler form w (see e.g. [2]). For any (X3, X»,X3) €
C3\ {0}, [X1, X2, X3] will denote the homogeneous coordinates of the equiva-
lent class of (X1, X2, X3) in P? (C) = C3/C*.

Let h : C — C be a holomorphic map such that the projective curve zy, :
C— P%2(C), z+ [z (2),—1] = [zh (2) — W (2), k' (2), —1] satisfies

Area [z, (C)] < +o0.

Then, the hedgehog curve zj, : C — P? (C) extends to a rational curve

x,: P1(C)— P?(C)
z— xp (2),
which we call the rational hedgehog Hjy := xp, [Pl ((C)] with support function
h(z) if zeC
h:P'(C)— P (C),z+—

lim h(z) if z=oc.

12



Indeed Ahlfors lemma gives a description of rational curves as entire curves of
bounded area ([3]):

“Let X be a compact complex manifold and f : C — X an entire curve
(i.e. a non constant holomorphic map) such that Area[f (C)] < +o00. Then f
extends to a holomorphic map from P' (C) to X, a rational curve”.

3.4 Evolute of a plane complex hedgehog as locus of its
centers of curvature

In classical differential geometry of curves, the evolute of a plane curve is the
locus of all its centers of curvature or, equivalently, the envelope of its normal
lines. In particular, the evolute of a plane hedgehog H; C R? with support
function h € C* (S';R) is the locus of all its centers of curvature ¢ (6) =
zp (0) — Ry, (0) u(6), where Ry, (6) := det [T, pyzn] = (h+h")(0) is the so-
called curvature function of Hj, and u () := (cos,sinf), (6 € S* =R/27Z).
Equivalently, the evolute of Hj can be defined as the envelope of its ‘normal
lines’ Ny, (0) := {z (0)} + Ru(0), that is, the hedgehog Hps, with support
function (Oh) () := k' (9 — Z). Note that in the hedgehog case, the centers of
curvature cp, () are well-defined for all § € S, even if 2}, (6) = Ry, (0)u (0) is
the null vector, since the curvature function Ry, (6) = (h + h") (0) is well-defined
for all § € St. Likewise, the normal line to Hj, at x, () is well-defined, even
if z}, (8) = 0, as the perpendicular N}, (6) to the support line (z,u (0)) = h(0)
through the point zj, (f). For plane real hedgehogs, it is convenient to keep in
mind the following commutative diagram:

Th - St — p? (R) Projective duality X : St — R?% c P2 (R)

6 — [cos 6, sin 6, h (0)] & 0 — (z1, (), 1)
d o
— | derivation 0 | evolute
do
,Y;L . Sl — P2 (R) Projectiv*e duality (Ch7 _1) . Sl _ RQ c P2 (R)

—

0 — [—sin6,cos 0, h' (9)] 0+— (¢ (0),—1)

where ¢, (0) = zon (9 + g), (9 € Sl). The main purpose of this subsection is
to extend the notion of evolute to plane complex hedgehogs, together with its
interpretation as locus of the centers of curvature. To this aim, we need to
change our way of interpreting the transformation

d
— . S'cR? — St ¢ R?

do
u (0) = (cosf,sinf) — u’ () = (—sinb, cos )

in the above diagram since we cannot consider the complex ‘normal lines’ to a
complex hedgehog without antiholomorphic data being involved. Our choice is
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to identify S! with the projective line P! (R) = R U {oo} and thus to consider
the transformation
PIR)=RU{x} — P'R)=RU{x}
[cosO,sinf] =z +— [—sinf,cosf] = —
x

In the case of complex hedgehogs, it is thus the following transformation which
will play the same role:

PL(C)=CU{x} — PI(C):;CU{OO}

,z]=2 +— [z,-1]= _7

In other words, we are going to consider the envelope of the family (L}, (2)) ¢
of complex lines of C? given by L} (z) := {z), (2)} + C(z,—1). For all z € C,
L}, (z) can be completed into a projective line L} (z) of P? (C) with equation

2X1 — Xo+ (2h(2) — (14 2°) W (2)) X5 =0,
where [X7, X5, X3] denote the homogeneous coordinates of the equivalent class
of (X1, Xs, X3) € CXNJ{0} in P%(C). Now, by projective duality, this family of
projective lines ( L}, (2) . corresponds to the complex curve that is parame-
zZE

trized by

c - P2 (C)

z o [z,=1,zh(z) = (1+2%) 1 (2)].
Note that for z # 0, we have

[z,—1,zh(2) — (1 +2%) I/ (2)] = [1,w, (OR) (w)],

where w = = and (0h) (w) :=h (Z1) + (w+ 1) 0/ ().

Therefore, we have the following commutative diagram:

Yh:z e [1, 2,k (2)] P"’j““gd“amy Xp 2z [zp (2),—1]

l d | evolute

Projective duality
*

Yot w == — [L,w, (0h) (w)] & (cn,=1): 2 [zan (), —1]

where ¢, (2) == zon (Z£) = @i (2) — (L4 2%) " (2) (1,z). This expression of
¢n, (z) has to be compared to the one giving the expression of the center of
curvature of a real hedgehog Hj, at a point xp, (0): ¢, (0) = xp, (0) — Ry, (0) u (0),
where Rj, is the curvature function of Hj; C R2. We shall see below that
cn (2) == zon () = @ (2) = (1+22) " (2) (1, 2) can actually be interpreted
as the center of curvature of the complex hedgehog Hj, at the point z, (2).
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Definition 2 Let h: C — C be a holomorphic function. We shall say that the
complex hedgehog with support function (k) (z) = h (Z) + (z+ L)W/ (F) is
the evolute of the complex hedgehog Hy, .

Fundamental examples. If h is the holomorphic function defined on the open
disc D := {z € C||z| < 1} by h(2) = a12+ao+pV1 + 22, where (ag, a1, p) € C3,
then the complex hedgehog Hjy = xp (D) is reduced to the point {(ao,a1)} if
p = 0, and it lies on the complex circle C ((ag,a1);p) C C? with equation
(X1 — a0)2+(X2 — a1)2 = p?if p # 0. In both cases, the evolute Hyy, = ¢y, (D) is
reduced to the point {(ag,a1)}. Indeed, for all z € C, z;,(2) = (z}.(2),27(2)) =
(h(z) — zh/(2) ,h'(2)) is such that

! 2 =la . 22— a i = (ag,a (Lz)
(wh(z)7$h(z))—(o+ﬂ 1+ 22 T 1+\/1+z2> (a0, 1)+Pm

=z5,(2)— 22V (z 2) =xzp(2)— 2> p (1,2) = (ag,a
Ch(z)_ h() (1+ )h()(la) h() (1+ )(1—|—z2>%m (07 1)~

More generally, let us replace h : D — C, z — a1z + ag + pV' 1+ 22 by any
holomorphic function of the form h: U — C, z — a1z + ag + pq (z), where U is

a connected open subset of C\ {—¢,i}, and ¢ (z) is the support function of the
complex unit circle C ((0,0) ;1) in the neighbor of z, that is:

V422 i |zl <1

g () = Z’/1+'<i>2 it |z] > 1

z\—/g& 1+ (E—T—i) if sign[Re(z)]=¢e€ {-1,1}.

We leave it to the reader to check that : (i) the complex hedgehog H; =
xp, (U) is reduced to the point {(ag,a1)} if p = 0, and it lies on the complex
circle C ((ag, a1);p) with equation (X; —ag)® + (Xo —a1)® = p2if p # 0 ;
(#4) moreover, in both cases, the evolute Hon = cp (U) is reduced to the point

{(ag,a1)}.

Definition 3 Let Hy and Hy be two complex hedgehogs in C?, and let zg € C
be such that x5 (20) = x4 (20). We shall say that Hy and H, have a contact of
order > 2 at x¢ (20) = x4 (20), if: Ym € {0,1,2}, ™ (20) = g™ (2p).

Given any complex hedgehog with holomorphic support function h : Y — C,
where U is any connected open subset of C\ {—i,i}, a straightforward compu-
tation shows that, for any zg € U, the hedgehog with support function

c:U—Cozrcp(2):=ch (20) 2+ ¢ (20) + ¢ (20)3 ' (20)q(2),
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(which is reduced to the point {cp (20)} if A" (20) = 0, or which lies on the
complex circle with equation (X — ¢}, (zo))2+ (Xy—c3 (zo))2 = q(20)* 1" (20)*
if b (29) # 0), has a contact of order > 2 with H;, = xj, (U) at xp (20).

Definition 4 Let h: U — C be a holomorphic function where U is a connected
subset of C\ {—i,i}. For any zo € U, we shall say that cj, (20) is the center
of curvature of Hy, = x, (U) at xp, (20), and, if zo € U is a regular point of
xp, U — C2 (that is, if K’ (20) # 0), we shall say that the complex circle with
equation ,

(X1 =} (20)" + (X2 — & (20))" = q (20)° B (20)°

q
is the osculating complex circle of Hy, at xp (20).

Naturally, we define the complex curvature function of a hedgehog H; =
xp, (U) as follows.

Definition 5 Let h: U — C be a holomorphic function where U is a connected
subset of C\ {—i,i}. We define the curvature function of Hy, =z, (U) to be
the function Ry, : U — C that is given by Ry, () := q(2)* b (2) for all z € U.

Thus, for any z € U, the center of curvature of H;, = zp, (U) at zp () can
be expressed as follows:

cn(z2) =ap (2) — Rp (2)u(2),

where

1 2
w(z) = = (1,2) €C((0,0):1).
q(z)
Of course, this expression of ¢, (z) has to be compared to the one giving the
expression of the center of curvature of a real hedgehog H; at a point xj (6):
cn (0) = zp (0) — Ry (0) u (), where Ry, is the curvature function of H; C R2.

Remark. With our definitions, the complex circle C ((ag,a1); p) C C? with
equation (X1 —ag)® + (Xo —a1)® = p?, where (ag,a1 p) € C? x C*, can be
locally regarded as a hedgehog with radius of curvature equal to p (possibly
after a suitable chart change on the Riemann sphere).

3.5 Real and imaginary parts of H;, C C? regarded as
hedgehogs of R?

We know that if f and g are taken to be the real and imaginary parts respectively
of a holomorphic function h: C — C, z =z +iy — h(z) = f(z,y) + ig (z,v),
then f and ¢ are harmonic functions satisfying the Cauchy-Riemann equations,
that is,

Of (=29 Of (=29
ax (-’I;,y) - ay (mvy) and ay (.’I),y) - ax (:va)a
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for all (z,y) € R%. The aim of this subsection is to show that, in this context, f
and g determine two hedgehogs Hr and Hg of R? that can be regarded globally
as the orthogonal projections of the complex hedgehog Hj, of C2 = R* into ey
and e; respectively, where (eq, ez, €3, e4) is the canonical basis of R* and where
ef- denotes the 3-dimensional subspace of R* that is orthogonal to e; (1<i<4).
These hedgehogs Hr and Hg of R? will be modeled on the hemisphere Si of
S? € R x C that is contained in R} x C. To any z € C we associate the point

v(z) = (1,2) /\/1+ |2|* of S%. The orthogonal projection map from C? = R*

onto e will be denoted by 7,1 .

Proposition 6 Leth : C — C be a holomorphic function the real and imaginary
parts of which are f and g respectively:

h(z+iy) = f(x,y) +ig(z,y) for all (z,y) € R%
We have then
Tet [Tn (Z)] =2p (v (2))  and my [z, (iZ)] = 2 (v (2)),
where F and G are respectively defined by:
_ Re(h(2)) Im (h (i%))

V142 V1+ 2

We shall of course say that the hedgehogs Hr and Hg are the real and
imaginary hedgehog parts of Hp,.

F(v(z)) and G (v (z)) =

Proof. We first note that an easy computation making use of the Cauchy-
Riemann equations gives:

vh(2) = (21(2) +iy1 (2), 22 (2) +iga (2)) € C?

= (21 (2), 1 (2), 22 (2) 92 (2)) € R,

where o 5
X1 (Z) :f(m,y)—ma—i (xay)_y% (l',y)

vi(2) =g(@y) —ogl (z.y) —y5t (z,y)
2 (2) =5 (w,y) = 5 (z,y)
Y2 (Z) :_% (%,y):%(l‘,y),

for all z =z + iy, ((z,y) € R?).
Next, we consider the positively 1-homogeneous function F': R x RZ - R
given by

Y Z
F(X,Y,Z)::Xf( > for all (X,Y,Z) € R% x R%

XX
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A straightforward computation then shows that the Euclidean gradient of F' is
given by

VEXY2) = (F(G-%) - X E R 45 (%),

-5 %-9)
for all (X,Y,Z) € R x R% Thus,
zp(v(z) =VF(v(2))

= (1 @ —y) — 2% @ —) = (-9) % (2. —9) . & (2.-9) .~ 5L (3. -))

= (21(2),22(2),92 (7)) = 7y [z (2)],

for all z =z + 1y, ((JJ, y) € R2). In the same manner, we can easily check that

zp (v (2)) = (y1 (12) , 22 (1Z) , y2 (iZ)) = 71 [z (iZ)]  for all z € C.

4 Towards a Brunn-Minkowski theory for com-
plex hedgehogs

As already mentioned above, the notion of a hedgehog curve or surface was born
from the study of the Brunn-Minkowski theory. It is therefore permissible to
think that the development of a ‘theory of mixed volumes for complex hedge-
hogs’ (replacing Euclidean volumes by symplectic ones) might be a promising
way of research. In this section, we will just mention first two observations.

4.1 Mixed symplectic area

Let C? be the complex Euclidean space endowed with the standard Hermitian
inner product (.,.)c2. We are interested in the symplectic area of complex
hedgehogs in this Kihler manifold ((Cz7 J, w), where J is the complex structure
and w the 2-form w (X,Y’) := Re ((JX,Y)¢2). Any nontrivial complex hedgehog
of C? modeled on the unit open disk D of C is a holomorphic curve (i.e. a
nonconstant map from the complex plane to C?). Now, it is well-known that
the Riemannian area of holomorphic curves is equal to their symplectic area,
and hence that holomorphic curves have positive area (the reader that is not
familiar with holomorphic curves can find details in Subsection 1.1 of [17] ).
An immediate consequence is the following result, which has to be compared to
classical geometric inequalities for convex bodies (see [16, p. 369 and p. 382]).
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Theorem 7 Let H (D) be the complex linear space of holomorphic functions
h: D — C defined up to a similitude and consider

Area [z, (D)) := / w.
zp (D)
Then the map VA : H(D) — Ry, h — +/Area[z, (D)] is a norm associated
with a scalar product (h,k) — A (h, k), which can be interpreted as a mixed
symplectic area. In particular, for any (h, k) € H (D)?, we have

VA(h+E) < /AR) + \/A(k)
and

A(h, k)* < A(h) A(k),

with equalities if, and only if, Hn and Hy are homothetic (here, “homothetic”
means that there exists (A, p) € R? — {(0,0)} such that A\h + uk = 0).

4.2 A sharp estimation of the area using the energy

Note that we have the following sharp estimate of Area [z, (D)], which is better
than that well-known for an arbitrary smooth loop v : S! — V in a symplectic
vector space (V,w) (namely, |A (v)] < E (v), see for instance [14, pp. 87-88]):

Theorem 8 Assume that h: D — C is the sum of a power series Y hyz" with
radius of convergence R > 1:

+oo
h(z) =Y hnz" forallz€D.
n=0

Then 3
Area [z, (D)] < EE (zn),

2

where E (x1,) is the energy of the loop xy : S = R/27Z — C2%, § — ay, (ew),
d
de.

that is:
1 2m "
E(xh) = 5/0 @ I:.'Eh (ez )]

Furthermore, the equality holds if, and only if, the function h is of the form
h(z) = @mz™ + a1z + ag, where m € N and (ag, a1, a,,) € C3.

Proof. Consider the Fourier expansion of H (6) := h (") on S' = R/2nZ:
+oo ]
H(0) =Y hne™.
n=0
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An easy computation immediately gives:

+oo
Vo eS', z,(0):= Zei"e (1 =n)hp,(n4+1) hyptr).

n=0

Using the formula known for the action A () := (1/2) fo% w(v(8),~ (6))do of
an arbitrary smooth loop v : S' — C? (see e.g. at the top of the page 88 in
[14]), we then deduce that:

+oo
Area [z, (D) = —A(zp) = wZn ((n — 12 |l + (n+1)? |hn+1|2) .
n=0

Separating into two sums and re-indexing in the first one, we then obtain:

—+oo n
Area [z, (D)) = WZn (n+1)2n+1)|hnp|’ = 671'2 (Zk2> |hnia |
n=1 \k=1

On the other hand, we have: V0 € S',

d

g [ ()] = e (' (0) +iH" (9)) (€, -1)

and hence

d 10
& Lo ()

Therefore Parseval’s identity yields:

2
= 2|H' +iH"|(0)% = 2|H" —iH'| (0)* = 2|n" ()]

2

E (zp) = 5/0 2 [on (e 1| do :/0 W' ()| do = sw; (;k> [
since
400 +oo n
h// Zn n+ 1) h,12" " = Z <Z ) nt12"
n=1 n=1
This completes the proof. [

5 Real hedgehogs in C" & R?" and their evolutes

In the Euclidean plane, the evolute of a hedgehog is the locus of all its centers of
curvature or, equivalently, the envelope of its normal lines. In order to find an
analogue in any even higher dimension, we make use of the following trick. First,
we fix a linear complex structure J on R?" (that is, an endomorphism J of R?"
such that J2 = —Idg2»). Given any hedgehog with smooth support function h in
R?" we then define the normal hyperplane to H;, at a point x, (u), say N, (u),
as the affine hyperplane {z), (u)}+.J (u*), where u" is the (2n — 1)-dimensional
subspace of R?" that is orthogonal to u. Finally, we define the evolute of Hj, in
(RZ”, J ) as the envelope of the family of normal hyperplanes (N, (u)),cg2n-1 in
R2". Let us begin by considering carefully the four dimensional case.
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5.1 Evolutes of hedgehogs hypersurfaces in R*

In what follows, we identify R* with the quaternion algebra H and thus the unit
sphere S* with the set S}; of unit quaternions. To any pure unit quaternion v, we
associate the linear complex structure .J, : R* — R* 2 +—— vz. We denote by w,
the associated Kéhler form (i.e. the alternating 2-form w, (X,Y) = (J,X,Y),
where (., .) is the standard Euclidean metric on R*). Recall that we can retrieve
(., from w,: (X,Y) = w, (X, J,Y). Particularizing our definition of evolute
hedgehogs to the four dimensional case, we get the following definition.

Definition 9 Let h € C* (83;R). We define the evolute of Hy, in the Kdihler
vector space (R4, Jv,wv) to be the envelope of the family of normal hyperplanes
(NE (1)) yegs with equation

(x —xp (u), Jy (u)) =0.

Proposition 10 Let h € C* (83;R), The evolute of Hy, in (]R‘l7 Jv,wv) 1s the
hedgehog Ho, 1, with support function

Ooh = S* 5 R, u—s (Vh(=J, (u)),u),

where {.,.) is the standard Euclidean metric on R*, and Vh the gradient of h.

Proof. Since J, : R* — R* is an isometry such that J2 = —Idg, the evolute of
‘Hp, in (R4, Jo, wv) can be regarded as the envelope of the family of hyperplanes
(N (=Jy (1)), css With equation

(x —xp (—Jy (w),u) =0,
that is, as the hedgehog Hp, 1, of R* with support function
Ouh (u) = (zp (=Jo (w) ,u) = (VA (=Jy (u)) ,u) .

Remark 11 By abuse of language, the hedgehog with support function Oyh will
also be called ‘the evolute of Hyp, with respect to (the pure unit) quaternion v’.

Parametrization of the evolute of Hj, ; and interpretation

It follows immediately from definitions that zg,;, : S* — R* associates with
each u € S? the unique solution of the system

{ (@, Jy (u)) = (zn (u), Jo (v))
VX € T,S?, (x,J, (X)) = (Tyzy (X)), Jy (w) + (zh (u), J, (X)),

which is equivalent to
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{ (x —xp, (u) s Iy (w) =0
VX € Tussv <33 — Th (U) s o (X)> = <Jv (Tuxh (Jv (u))) s Ju (X)> ,

because (Tyxp (X)), Jy (w)) = (Tuxp (Jy (w), X)) = (Jy (Tuzn (Jy (w))), Jy (X))
since T,z is a symmetric endomorphism of T,,S® and J, an isometry of R%.
Therefore:

Yu €S, xo,n (u) =z (u) + Jy (Tuzn (Jy (0)) =z, (w) + vTyzs (J, ().
In other words, we have the following.

Proposition 12 Let h € C (S3;R) and let v be a pure unit quaternion. For
allu € S3,

xo,n (u) = xp, (u) — Ry, (u,v) u,

where Rp(u,v):= —vTyxp(Jy, (w))U; here U of course refers to the quaternion
conjugate of u.

Comparison to the planar case and interpretation

This expression of zy,p (1) has to be compared to the one of the center of
curvature of a plane hedgehog H;, at a point xp, (0):

cn (0) ==z (0) — Rp () u (0),

where Ry, := h + h" is the curvature function of Hj,. Identifying R? to C, and
thus T, S* with R(ie?), this last formula can be rewritten as

cn (ew) =z, (ew) — Ry, (61‘9) eie,

where Ry, (ew) = —iT,,xp (ieie) e,
We shall see below that:

Ry, (1,v) : ug := (cos0) u + (sin 0) vu — Ry, (ug,v) can be interpreted as a
quaternionic curvature function of xj, (S}hv), where St denotes the unit

circle of the vector plane C (u,v) := Ru + RJ, (u) oriented by (u, Jy (u)).

The reason why the map 6 — Ry (ew) is real for h € C° (Sl;R), whereas
u +— Ry, (u,v) is quaternionic for h € C° (83; R), is because the product of two
purely imaginary complex numbers is a real number, whereas the product of two
purely imaginary quaternions can have both nontrivial real and imaginary parts.

Complement to the planar case

We introduced “the” evolute Hgy, of a plane hedgehog Hj, as the envelope of
its normal lines. But in fact there are two of them if we take into account the
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choice of coorientation of the normal line. Of course, we could have introduce
evolutes of hedgehog curves in R? in the same way as we have just done for
evolutes of hedgehogs hypersurfaces in R*. Identifying R? with the complex
plane C, we can associate to any v € {—i,i} the linear complex structure J, :
C — C, z — vz and the associated Kahler form w, (X,Y) = (J,X,Y), where
(.,.) is the standard Euclidean metric on R?, and then, define the evolute of
the plane hedgehog with support function h € C*° (Sl; R) in (RQ, Jv) to be the
envelope Hg, 5, of the family of normal lines (N} (u)), s With equation

(x —ap (u),Jy (w)) =0.

If we do so, we can immediately check that Ha,n has support function

Oyh : St = R, ur—s (Vh(=J, (u)),u).
In other words, (9;h) (0) = b’ (0 —7/2) and (0_;h) (§) = —h' (0 + 7/2) for all
6 € St = R/2nZ.
Note that, in the 2 or 4-dimensional case, the evolutes Hp, ;, and Hp_,p are

one and the same hypersurface of R?" (n = 1,2) but corresponding to opposite
coorientations of the normal hyperplanes of H,:

(0-uh) (u) = (Vh(=J-y (u),u) = = (Vh(=Jy (=u)), —u) = = (0,h) (—u).

Geometrical interpretation of the Hodge Laplacian

Taking the Hodge Laplacian of h € C* (Sl; R) is tantamount to taking the
evolute in (RQ, Ji) of the evolute of Hy, in (RQ, J_i), or conversely, the evolute
in (R?,J_;) of the evolute of Hj, in (R?,J;). Indeed, for any h € C* (S%;R),
we have (9;00_;)(h) = (0_;008;)(h) = —h"” = Ah, where A is the Hodge
Laplacian on S*.

This result can be extended as follows to dimension 4. Let h € C* (S?’; R)
and u € S3. If v is a pure unit quaternion such that J, (u) is an eigenvector of
the Hessian (Vzh)u of h at u corresponding to the eigenvalue A, then:

Oy (Ouh) (u) = =0y (9yh) (—u) = —02h (—u) = —02h (J2 (u))
=—(V?h), (Jo (u),Jy (u) = =X

Therefore, if vy, v9, v3 are pure unit quaternions such that J,, (u), Jy, (u), Ju, (u)
are eigenvectors of the Riemannian Hessian (VQh)u, corresponding to eigenval-
ues A1, A2, A3, that form an orthonormal basis of T,,S3, then:

3 3

M) = =3 () =3 (D0 00,) (h) (u).
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Decomposition of hedgehogs into sums of remarkable pedal hyper-
surfaces

Let (v, w) be any couple of pure unit quaternions that are orthogonal when
they are regarded as vectors of R*. The quadruple (1, v, w,vw) is then a direct
orthonormal basis of H = R*. For any hedgehog of R* with support function
h e C*® (83 ; R) and, for any u € S?, we have the following decompositions

o (u) = h(u)u+Vh(u)

=h(uw)u+ ((Vh(u),vu) vu+ (Vi (u) , wu) wu + (Vh (u) , vwu) vwu)
= h (u) u + Oph (vu) vu + Oy h (wWu) wu + Oyyh (Vwu) vwuy

(h (u) 4+ Oyh (Vi) v + Oph (W) W + Dyyh (VwWL) VW) u

In particular, the hedgehog zj, : S* — H = R* is the sum of parametrizations
of 4 remarkable pedal surfaces: its own pedal surface and the pedal surfaces of
its evolutes with respect to v, w,vw (it being understood that, for all u € S?,
and, any pure unit quaternion ¢, we take the foot of the perpendicular from the
origin to the support hyperplane with unit normal vector J, (u) := qu).

Evolutes and orthogonal projections

For every (u,v) € S* x §?, let S , be the oriented geodesic of S* through
u in the direction of J, (u). Thlb orlented circle of S? can be regarded as the
unit circle of the vector plane C (u,v) := Ru + RJ, (u) oriented by (u, J, (u)).
Restriction of support functions to S! . commutes with taking the evolutes in
(R, Ty, wy):

u,v

Proposition 13 Let h € C* (S?’;R). For allv € $* 2 S} N Im (H),

@R, =00 (s, )
Proof. Define ugy := (cosf)u + (sin @) J, (u) for all § € S. We have then

d

(8uh) (J, (ua)) = (Vh () Ty (u0)) = =5 [ (uo)] = Oy (hysy ) (Jo (ua)-

Higher order evolutes

Of course, we can define inductively higher order evolutes. Let 0h = h and,
for any positive integer n, define the nth evolute of Hy in (R4, Ju, wv) to be the
hedgehog with support function 9;'h := 9, (02 'h).

Proposition 14 Let C*° (83;R). Forallm e N*, v e S?, andu € S3,

(Oh) (77 () = S (o) gy

where ug := (cos ) u + (sin ) J, (u).
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Proof. By induction, we deduce from the previous proposition that
nEN,  (@h)g =0k (b, ),

and the result follows immediately. ]

5.2 Symplectic and mixed symplectic area

Any pure unit quaternion v determines a linear complex structure J, : R* — R*,
to which it corresponds a Hopf flow induced on S* = S}; by the vector field
X, (u) := J, (u). We denote by S? the set S* NIm (H) of pure unit quaternions.
For every (u,v) € S* x S?, let S}w be the oriented geodesic of S through u
in the direction of J, (u). This oriented Hopf circle of S* C (R*,J,) can be
regarded as the unit circle of the vector plane C (u,v) := Ru+RJ, (u) oriented
by (u,J, (u)). Conversely, any oriented vector plane ¢ in R* determines an
oriented unit circle Sg = S$?N€ and a pure unit quaternion ve that is such that:
Vu € S}, TuS% is oriented by the unit vector J,, (u).
Now, consider the integral

se (h) = /Ih(sé)%g,

where av, is the 1-form given by (aw, )  (dz) = jwy, (2, dz), which is such that
day,, = wy,. This integral does not depend on the orientation of the plane £
(if we change the orientation of £, the orientation of the curve zy, : Sé — R*
changes as well and the 1-form o, is changed into its opposite). Therefore,
s¢ (h) can be defined for any unoriented vector plane § in R%. Tt will be called

the symplectic area of xp (S%) relative to &.
Expression of the symplectic area of z; (St,’u)

Let s, (h) be this symplectic area:

)
where o, is the 1-form given by (), (dz) == tw, (z,dz) = 5 (z, (—J,) (dz)).
Proposition 15 For all h € C*° (Ss;R) and (u,v) € S* x §2,

1

2
s ()= 5 [ an (o) R (0,0 )

where ug := (cos @) u + (sinf) J, (v) and Ry, (ug,v) := —v (Ty,xn) (Jy (ug)) g.

Proof. By definition
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)= [ = [T (ontw) 0 (Gl o)

u,v
Now

% [xh (ue)} = (Tu91’h) (Jv (UQ))

and hence

(=2 (5 on (] ) = =0 (T (2 () = o () .

Proposition 16 For all h € C*® (83;R) and (u,v) € S3 x §2,
Suv (h) = Ay (h) + Si_,v (Vh)

where a,, (h) is the algebraic area of the hedgehog of C(u,v) = Ru + RJ, (u)
whose support function is the restriction of h to SY ,, and where s (Vh) is the

symplectic area of Vh ( uw) in the Kdhler vector space (R ,Jv,wv), that is,

u,v’

m = a _1 wy (z,dz) .
o (VR) 2= /Vh(Sl ) ! 2/Vh(sl ) v (% d2)

u,v u,v

Proof. It is just the fact that the symplectic area of a closed curve in the Kéhler
vector space (R4, Ju, wv) is the sum of the algebraic areas of its projections onto

the planes C (u,v) and C (u, v)J‘. In the present case, we can retrieve the result
as follows.
Let 0 € S*. We have xy, (ug) = h (ug) ug + Vh (ug), and

(=Jo)(Tugwn (Ju(ug)))
(=Jv) (R (ue) Jo(ug) + V 1, (ug) VE (ug))
h(ug) wo + (—Ju) (V 1, u) VI (u0)) ,

Ry, (ug,v) ug

where V is the Levi-Civita connection on S3. In addition,

(ug, (o) (V) VR (u9)) = (Jo (), V.1, (ug) V()

LTy (ug) , Vh (ug))] = L5 [h (up)],

and

(91 te) (=02 (5 1,0 Vo 10))) = (V) 55 90 )]
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since & [Vh (ug)] = V1, (uy) VI (ug) — (VI (ug) , J, (ug)) up. Hence

(e (=35 on )] ) ) = ) () + 25 ()] )+ (V). 25 (90

The result is then an immediate consequence of the previous proposition. [

Mixed symplectic area
Proposition 17 (Symmetry) For all (f,g) € C* (S?’;R)Q, and (u,v) € S3xS?,

27 27
/ (27 (up) , Ry (g, v) up) db = / (5 (o) , Ry (g, v) ) d.
0 0

Proof. For all § € S,

% [wo (25 (up) g (ug))] = wo (Tuy s (Ju (u)), g (ug))+wy (21 (ug) , Tupg (Jo (up))) -

By integration, we deduce that

ey () Ty (o)) 0 = [ (o (). Tang (s () a0,
0 0

which is the desired equality since

Wy (mh (UG) 7Tugxh (Jv (UG))) = <']’U$h (U'Q) 7Tu9$h (Ju (U'Q)»
= (@n (ug) , =Ju [Tugzn (o (ue))])
= <xh ('LLQ) ; Ry, (Ue, 'U) u9>

for h € {f, g} [
Definition 18 Let (f,g) € C* (83;R)2 and (u,v) € S* x S2. We call

1

S (£19) = 5 (F +0) = 50al) = 50 =5 [ (o) Ry, )

the mized symplectic area of T (S,lw) and x4 (Siv)
A straightforward computation shows that

Su,v (f7 g) = Qyu,v (f7 g) + Siv (Vf, v.g) ’

where a,, (f, ¢) is the mixed symplectic area of the hedgehogs of C (u,v) with
support functions fis: ~and gjs1 , and where siv (Vf,Vg) is the mixed sym-

plectic area of V f (S}w) and Vg (S}w) in (R4, Jv,wv), that is,
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Si_,v (Vf, vy) = % (Siv(v (f + g)) - Si,v(vf) - Si,v(v‘g))

[ O Dot
3 [ Fotue) 5 9w

Symplectic area of Hj,

Definition 19 Let h € C* (S3; R). We define the symplectic area of Hy, to be

V4

s (h) = /G s (h) dwas (€),

V2

where v, 41 15 the volume of the unit ball in R"1, G2 the Grassman manifold
of 2-dimensional subspaces of R* and wy > the normalized Haar measure on Gy o:

wa2 (Ga2) = 1.

Recall that the mixed volume V : (IC4)4 — R extends to a symmetric
4—linear form on the vector space H* of hedgehogs of R*. Besides, the algebraic
area of order 2 of a hedgehog H;, of R*, denoted by Vs (h), is defined to be the
mixed volume V (h, h,1,1).

Proposition 20 For any h € C* (83;R), the symplectic area of Hy is equal
to its algebraic area of order 2, that is, s(h) := Va (h).
Proof. From Kubota’s formula

Vg

V2 (K) = E g V(P§ (K))dwsp (§),

for all convex body K in R*, where pg¢ (K) is the orthogonal projection of K
on & € G2, V (pe (K)) its area and V5 (K) the mixed volume V (K, K, B, B),
B denoting the unit ball in R* (see [16, Section 5.3]). This formula can be
extended to hedgehogs by multilinearity, so that:

v
v =3 | a(hgy) desa ©),

for all h € C* (Sg; R). Note that the algebraic area of Hh‘Sl does not depend
¢

on a choice of orientation for £&. Now, we have proved above that

suw (h) =a (hlS}m,) + 5, (Vh)
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for all (u,v) € S* x S%. So, it suffices to prove that for all u € S?,

/S o (VR (), V5,V () dor () =0,

where o is the spherical Lebesgue measure.

Now, let (v1, v2,v3) € S? = SizNIm (H) be such that (J,, (u), Ju, (v), Ju, (1))
is an orthonormal basis of T,S® formed by eigenvectors of the Riemannian
Hessian (Vzh)u, corresponding to eigenvalues (A1, A2, A3). The product of two
imaginary quaternions q1, g2 € Im (H) = R3 is given by ¢1q2 = — (¢1, ¢2)+¢1 X 2,
where (., .) is the Euclidean inner product and x the usual vector product on R3.
Since the orthonormal basis (v1, ve, v3) is formed by imaginary quaternions, we
thus have: v;v;+v;v; = 0 for all (4, 5) € [1, 3]% such that i # j. A straightforward
calculation then gives, for any v = Z?Zl zv; € S?,

3 3
(*Jv) (VJU(u)Vh (U)) = (7J1,) sz)\ijj (U) = Z zi:cj)\,;)\jvivju
j=1

ij=1

and hence

/ Wy (Vh (), Vi, ) Vh (u)) do (v) = / (=Jv) (VJv(u)Vh (u)) do (v)
s2 s2

= Z /SZ.’I}Z'.’EjdG‘ ()\z — )\j) V;VjU.

1<i<j<3 | ¢ ,
=0
=0,

which achieves the proof. [

5.3 Quaternionic curvature function

Let K be a convex body with class C$° in (n+ 1)-Euclidean vector space R™ .
One says that K has the (C*°-smooth) curvature function Rg : S™ — R if its
surface area measure S, (K,.) has R as density with respect to spherical area
measure o or, equivalently, if

V(L,K,...,K) = ﬁ/snhL (u) Ri (u) do (u)

= %H/Sn (xh, (v), Rk (u)u)do (u),
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for all convex body L with support function hy : S* — R (see e.g. [16, p.
545]). The notion of curvature function naturally extends to C*-hedgehogs of
R™*1 [10]. The aim of this subsection is to use the notion of the mixed symplec-
tic area of x4 (S}, ,) and ), (S}, ,) to introduce the notion of the (quaternionic)
curvature function of xy, (S}M). As already mentioned, the reason why the map
0 — Ry, (ew) is real for h € C'* (Sl; R), whereas u — Ry, (u,v) is quaternionic
for h € C* (83;R), is because the product of two purely imaginary complex
numbers is a real number, whereas the product of two purely imaginary quater-
nions can have both nontrivial real and imaginary parts.

Proposition 21 Let h € C*® (SB;R), and (u,v) € S* x S%. There exists one
and only one C*-smooth quaternionic function R (.,v) : S}M — H that is of the
form

up := (cosf) u + (sin @) vu — R (ug,v) = —vT,, (v),

where T, (v) denotes a pure quaternion, and such that:

1 2
Vg e C® (S%R), suu(g,h):= 5/ (x4 (ug) , R (ug,v) ug) do,
0
where ug := (cos@) u + (sin @) vu. Namely, the quaternionic function given by:

Ry, (ug,v) :== —v (Tu,zp) (vug) g for all 6 € S*.
Proof. For all § € S', T},,S® = Im (H) up and hence (T, ) (vug) g € Im (H).

Thus, Ry, (.,v) : ug — Rp (ug,v) = —v (Ty,xn) (vue) Ug is of the required form
since
1 27
Vg e C™® (S%R), suw(g,h) = 5/0 (g (ug) , Ry (ug,v) ug) db.

Conversely, let R(.,v) be any function satisfying the required conditions.
Note that the map ug — R (ug,v) ug has then the form ug — p (ug) ug+p* (ug),

where p € C* (S}, ,;R) and p+ € C* (S}w; C (u, v)J‘). Indeed, we have

(R (ug,v) ug, Jy (ug)) = (Jo (=T, (v) ug) , Ju (ug)) = (=Tu, (v) ug, ug) =0

for all § € St since —T,,, (v) ug € Im (H) ug = T,,S>. Besides, in the case where
R(.,v) = R (.,v), we have R (ug,v) ug = Ry (ug,vug) ug —vﬂiv [Vou, VR (ug)],
where Ry, (ug,vug) is the radius of curvature of xp , : St ., — C(u,v) at

u,v

T (ug) (or, equivalently, the tangential radius of curvature of Hy, at xp, (ug)

‘S}L,v
in the direction vug, which is given by: Ry (ug,vug) := (Ty,xp (vug) ,vug) =
h(ug) + (V2h) , (vug, vug); see e.g. [10]), and 7, the orthogonal projection
onto the subspace of R* that is orthogonal to C (u,v). Indeed,

u

Ry (ug,v)ug = —v (Ty,xp) (vug)
= —v (h (ug) vug + Vyu, VI (ug))

= —w ((h (ug) + (VQh)M (vug, vue)> Vg + ﬂj‘w [Vyu, Vh (ue)])
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We already know that S, ,, — R, ug — Ry, (ug, vug) is the unique C*-smooth
function R : S}, , — R that satisfies:

1 27
Vg€ C™ (S,.,;R), auw(g,h) = 5/ g (ug) R (ug) db.
0

Now, any g € C* (Si,wR) can be extended into a function gg € C* (S?’;R)

that is such that Wiv {(Vgg)‘gl } = 0: it suffices, for instance, to define gg by

0 if pll=0

VYgeS?, gs(q):=
Flplg () i lell #0,

where p is the orthogonal projection of ¢ onto C (u,v) and,

/wmu—ﬂdr
0

F(t):=

)

1
| emea-na
where ¢ is the function defined on R by

0 if 7<0
p(t) = )
e @ if 7>0.
(F : R — R is C*°-smooth, and such that F'(0) =0, F (1) = 1, and: Vn € N*,
FM (0) = F(" (1) = 0). For any g € C* (S} ;R), such an extension gg is
such that )

™

g (ug) p(ug) do,
0

since sy, (Vgs, Vh) = 0. Therefore p (ug) = Ry, (ug,vug) for all 0 € S.

Now, it remains to prove that p* (ug) = —vmy, [V, Vh (ug)] for all 6 € ST
Since p (ug) = Ry, (ug,vug) for all § € S, the integral condition can be rewritten
as follows:

Su,v (gSa h) = Qu,v (97 h) =

N | =

27
Vg € C* (83;R) , siv (Vg,Vh) = %/ <Vg (ug)J‘ 7pJ‘ (ue)> do,
0

where Vg (ug)" := i [V (ug)], that is,
2
Vg € C™ (S%R), / <Vg (ug)™, p* (ug) + VT [Vou, VR (ug)]> df = 0.
0

Note that Vg (ug)™ has the form

Vg (ug)™ = (Vg (ug) , wug) + (Vg (ug) , vwug) v) wug,
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where w is a pure unit quaternion that is (., .) —orthogonal to v, so that (v, w, vw)
is an orthonormal basis of Im (H). Moreover, p* (ug) + v [VWQ Vh (ug)] has
the form (A (ug) + p (ug) v) wug, where A and p are real since it belongs to
Rwug + Rowuy = C (u,v)J‘. Thus, the integral condition is that the function
Suw — C (u,v)", ug — p* (ug) + vm [VWSVh (ug)] is L?-orthogonal to all
the functions St | — C(u,v)", ug —> Vg (ug)™ where g € C™ (S*;R). Now,
for any two real C‘X’-functlons a,b on SL | let us define g : S* — H by:

U,V

g (q (9757’7)) = [a’ (UG) <q (0,5,7) ,’U)U9> + b(ue) <q (gvﬁa’)/) ’ku9>] F(COSB),

where

q(0,8,7) = (cosfB)ug+ (sinf) ((cosy) wug + (siny) vwug) € S
= (cos f3) (cos0) u + (cos () (sin @) vu+
(cos (v — 0) (sin B)) wu + (sin (y — 6)) (sin B) vwu.

We then obtain
Zlo@®.6) 5 = (V9(a(6,0,7), 3% (6,0.7)
=(V
a

g () , (cos ) wug + (sin ) vwug)
(1) cosy + b (ug) iny,

and thus, for v = 0 and v = 7/2, we have respectively a (ug) = (Vg (ug) , wug)
and b(ug) = (Vg (up),vwup) . In other words, all the functions of the form
St, — C(u,0)", ug — (a(ug) +b(ug)v)wug can be written in the form
S}L o — (C(u,v)L, ug — Vg (ue)L where g € C™ (83;R).

Therefore, p* (ug) = —vmy, [Vou, Vh (ug)] for all § € S*. |

Definition 22 For every h € C* (S*R), we say that Ry (.,v) : S, — H,
ug — —v (Ty,xn) (vug) g is the quaternionic curvature function of xp, (S},,).

5.4 Convolution of hedgehogs

Differences of (arbitrary) convex bodies of R? do not only constitute a real vector
space (H2, +, ) but also a commutative and associative R-algebra. Indeed, as
noticed by H. Gortler in [5] and [6], we can define the convolution product of
two plane hedgehogs H; and H, in R? as the plane hedgehog whose support
function is given by

27
(F29) O =5 [ F(0-a)g(a)da,
T Jo
for all § € S'; and we can check at once that (H2, +, ., *) is then a commutative
and associative algebra. H. Gortler also noticed that the convolution product of
two plane convex bodies is still a plane convex body. The interest of convolution
of hedgehogs is that properties of one factor are often transmitted to the product.
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Of course, we think immediately of regularity properties but we also mentioned
the following properties in [12]: to be centered (centrally symmetric with center
at the origin), to be projective (i.e., to have an antisymmetric support function),
to be of constant width.

A natural way of defining a (non-abelian) convolution product on the vector
space H" T of arbitrary hedgehogs of R"*! is to proceed as follows: 1. First, we
identify S™ with the homogeneous space G/H, where G is the group SO (n + 1)
of rotations of R**! and H the stabilizer subgroup of G' with respect to the
north pole of S™, say v (that is, the subgroup H of G formed by the rotations
r € G that leave v fixed); any support function h : S — R can thus be regarded
as a function h : G — R such that h (rs) = h (r) for all (r,s) € G x H; 2. Next,
given any two arbitrary hedgehogs H; and H, of R"*! we can define their
convolution product Hy * H, as the hedgehog H ¢., with support function

(f*xg)(r)= /Gf (th) g(t)dmg(t) forallre G,

where m is the normalized Haar measure on G. This construction of H s *H, is
essentially due to E. Grindberg and G. Zhang [7]. As expected, this convolution
product behaves well with respect to expansions in series of spherical harmonics,
and properties of one factor are often transmitted to the product (for instance,
to be centred, projective, convex, of constant width, or a zonoid).

But of course, in the case of hedgehogs of R* it is simpler to make use of
quaternions and thus to define the convolution product Hy * H, of Hy and H,
in R* to be the hedgehog H ., with support function

(f*g)(u):/§3f(vﬂ)g(v)da(v) for all u € S = 3,

where o is the spherical Lebesgue measure on S3.

5.5 Evolutes of hedgehogs hypersurfaces in H" = R4"

We identify R*" with the hyperkiihler vector space (H",{(.,.),I,J, K), where
(.,.) is the standard Euclidean metric on R*"* = H", (n > 1), and, the triple
of complex structures (I, J, K) on H" is given by left multiplication by i, j, k
respectively. On this hyperkiihler vector space, we have a whole S? family of
linear Kihler structures given by:

I, :=ail +asJ +a3K and w,(X,Y)=(,(X),Y),

for all a = (a1, a2,a3) € S? C R® and, (X,Y) € (TqH")2. Most of the results we
saw for evolutes of hedgehogs in R* = H can be extended to (H",(.,.), I, J, K)
with a few adaptations. In particular, for all h € C* (84"’1;11%)7 the evolute
of the hedgehog H}, in the Kihler vector space (R4, Imwa) is defined to be the
envelope of the family of normal hyperplanes (N (u)),cgin-1 With equation

(x —ap (u), I, (w)) =0.
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Proposition 23 Let h € C* (84"_1;R). The evolute of Hy in (H",I,,w,) is
the hedgehog Ho,n with support function

Oah : S S R, wr— (VA (—1, (u)),u),

where {.,.) is the standard Euclidean metric on R* = H", and Vh the gradient
of h. Thus, d,h is such that: Yu € S 1,

(0ah) (o (w)) = (VR (u), Lo (u)) = (dh), (Ia (u)) .

The proof (very similar to that of the proposition concerning evolutes of
hedgehogs in (H, J,,w,), (ve€ S? =$*N1Im (H))) is left to the reader.
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