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Derivation of Heard-of Predicates

from Elementary Behavioral Patterns
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{adam.shimi,aurelie.hurault,philippe.queinnec}@irit.fr

Abstract. There are many models of distributed computing, and no
unifying mathematical framework for considering them all. One way to
sidestep this issue is to start with simple communication and fault mod-
els, and use them as building blocks to derive the complex models studied
in the field. We thus define operations like union, succession or repeti-
tion, which makes it easier to build complex models from simple ones
while retaining expressivity.

To formalize this approach, we abstract away the complex models
and operations in the Heard-Of model. This model relies on (possibly
asynchronous) rounds; sequence of digraphs, one for each round, capture
which messages sent at a given round are received before the receiver
goes to the next round. A set of sequences, called a heard-of predicate,
defines the legal communication behaviors – that is to say, a model of
communication. Because the proposed operations behave well with this
transformation of operational models into heard-of predicates, we can
derive bounds, characterizations, and implementations of the heard-of
predicates for the constructions.

Keywords: Message-passing · Asynchronous rounds · Failures ·
Heard-of model

1 Introduction

1.1 Motivation

Let us start with a round-based distributed algorithm; such an algorithm is 
quite common in the literature, especially in fault-tolerant settings. We want to 
formally verify this algorithm using the methods of our choice: proof-assistant, 
model-checking, inductive invariants, abstract interpretation. . . But how are we 
supposed to model the context in which the algorithm will run? Even a passing 
glance at the distributed computing literature shows a plethora of models defined 
in the mixture of english and mathematics.

Thankfully, there are formalisms for abstracting round-based models of dis-
tributed computing. One of these is the Heard-Of model of Charron-Bost and 
Schiper [4]; it boils down the communication model to a description of all
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accepted combinations of received messages. Formally, this is done by consider-
ing communications graphs, one for each round, and taking the sets of infinite
sequences of graphs that are allowed by the model. Such a set is called a heard-of
predicate, and captures a communication model.

An angle of attack for verification is therefore to find the heard-of predicate
corresponding to a real-world environment, and use the techniques from the
literature to verify an algorithm for this heard-of predicate. But which heard-of
predicate should be used? What is the “right” predicate for a given environment?
For some cases, the predicates are given in Charron-Bost and Schiper [4]; but
this does not solve the general case.

Actually, the answer is quite subtle. This follows from a fundamental part of
the Heard-Of model: communication-closedness [7]. This means that for p to use
a message from q at round r, p must receive it before or during its own round r.
And thus, knowing whether p receives the message from q at the right round or
not depends on how p waits for messages. That is, it depends on the specifics of
how rounds are implemented on top of it.

Once again, the literature offers a solution: Shimi et al. [12] propose to first
find a delivered predicate – a description of which messages will eventually be
delivered, without caring about rounds –, and then to derive the heard-of pred-
icate from it. This derivation explicitly studies strategies, the aforementioned
rules for how processes waits for messages before changing round.

But this brings us back to square one: now we are looking for the delivered
predicate corresponding to a real-world model, instead of the heard-of predicate.
Basic delivered predicates for elementary failures are easy to find, but delivered
predicates corresponding to combinations of failures are often not intuitive.

In this paper, we propose a solution to this problem: building a complex
delivered predicate from simpler ones we already know. For example, consider a
system where one process can crash and may recover later, and another process
can definitively crash. The delivered predicate for at most one crash is PDelcrash

1 ,
and the predicate where all the messages are delivered is PDeltotal. Intuitively,
a process that can crash and necessarily recover is described by the behavior
of PDelcrash

1 followed by the behavior of PDeltotal. We call this the succes-
sion of these predicates, and write it PDelrecover

1 � PDelcrash
1 � PDeltotal.

In our system, the crashed process may never recover: hence we have either
the behavior of PDelrecover

1 or the behavior of PDelcrash
1 . This amounts to a

union (or a disjunction); we write it PDelcanrecover
1 � PDelrecover

1 ∪ PDelcrash
1 .

Finally, we consider a potential irremediable crash, additionally to the previ-
ous predicate. Thus we want the behavior of PDelcrash

1 and the behavior of
PDelcanrecover

1 . We call it the combination (or conjunction) of these predicates,
and write it PDelcrash

1

⊗

PDelcanrecover
1 The complete system is thus described

by PDelcrash
1

⊗

((PDelcrash
1 � PDeltotal) ∪ PDelcrash

1 ). In the following, we
will also introduce an operator ω to express repetition. For example, a system
where, repeatedly, a process can crash and recover is (PDelcrash

1 � PDeltotal)ω.



Lastly, the analysis of the resulting delivered predicate can be bypassed: its
heard-of predicate arises from our operations applied to the heard-of predicates
of the elementary building blocks.

1.2 Related Work

The heard-of model was proposed by Charron-Bost and Schiper [4] as a combina-
tion of the ideas of two previous work. First, the concept of a fault model where
the only information is which message arrives, from Santoro and Widmayer [11];
and second, the idea of abstracting failures in a round per round fashion, from
Gafni [8]. Replacing the operational fault detectors of Gafni with the fault model
of Santoro and Widmayer gives the heard-of model.

This model was put to use in many ways. Obviously computability and com-
plexity results were proven: new algorithms for consensus in the original paper
by Charron-Bost and Schiper [4]; characterizations for consensus solvability by
Coulouma et al. [5] and Nowak et al. [10]; a characterization for approximate
consensus solvability by Charron-Bost et al. [3]; a study of k set-agreement by
Biely et al. [1]; and more.

The clean mathematical abstraction of the heard-of model also works well
with formal verification. The rounds provide structure, and the reasoning can
be less operational than in many distributed computing abstractions. We thus
have a proof assistant verification of consensus algorithms in Charron-Bost et
al. [2]; cutoff bounds for the model checking of consensus algorithms by Marić
et al. [9]; a DSL to write code following the structure of the heard-of model and
verify it with inductive invariants by Drăgoi et al. [6]; and more.

1.3 Contributions

The contributions of the paper are:

– A definition of operations on delivered predicates and strategies, as well as
examples using them in Sect. 2.

– The study of oblivious strategies, the strategies only looking at messages for
the current round, in Sect. 3. We provide a technique to extract a strategy
dominating the oblivious strategies of the built predicate from the strate-
gies of the initial predicates; exact computations of the generated heard-of
predicates; and a sufficient condition on the building blocks for the result of
operations to be dominated by an oblivious strategy.

– The study of conservative strategies, the strategies looking at everything but
messages from future rounds, in Sect. 4. We provide a technique to extract a
strategy dominating the conservative strategies of the build predicate from
the strategies of the initial predicates; upper bounds on the generated heard-
of predicates; and a sufficient condition on the building blocks for the result
of operations to be dominated by a conservative strategy.

Due to size constraints, many of the complete proofs are not in the paper
itself, and can be found in the full paper [13].



2 Operations and Examples

2.1 Basic Concepts

We start by providing basic definitions and intuitions. The model we consider
proceed by rounds, where processes send messages tagged with a round number,
wait for some messages with this round number, and then compute the next
state and increment the round number. N

∗ denotes the non-zero naturals.

Definition 1 (Collections and Predicates). Let Π a set of processes. An
element of (N∗ × Π) �→ P(Π) is either a Delivered collection c or a Heard-
Of collection h for Π, depending on the context. ctot is the total collection such
that ∀r > 0,∀p ∈ Π : ctot(r, p) = Π.

An element of P((N∗ ×Π) �→ P(Π)) is either a Delivered predicate PDel
or a Heard-Of predicate PHO for Π. Ptot = {ctot} is the total delivered
predicate.

For a heard-of collection h, h(r, p) are the senders of messages for round r
that p has received at or before its round r, and thus has known while at round
r. For a delivered collection c, c(r, p) are the senders of messages for round r
that p has received, at any point in time. Some of these messages may have
arrived early, before p was at r, or too late, after p has left round r. c gives an
operational point of view (which messages arrive), and h gives a logical point of
view (which messages are used).

Remark 1. We also regularly use the “graph-sequence” notation for a collec-
tion c. Let GraphsΠ be the set of graphs whose nodes are the elements of Π.
A collection gr is an element of (GraphsΠ)ω. We say that c and gr represent
the same collection when ∀r > 0,∀p ∈ Π : c(r, p) = Ingr[r](p), where In(p) is
the incoming vertices of p. We will usually not define two collections but use
one collection as both kind of objects; the actual type being used in a particular
expression can be deduced from the operations on the collection. For example
c[r] makes sense for a sequence of graphs, while c(r, p) makes sense for a function.

In an execution, the local state of a process is the pair of its current round
and all the received messages up to this point. We disregard any local variable,
since our focus is on which messages to wait for. A message is represented by a
pair 〈round, sender〉. For a state q, and a round r > 0, q(r) is the set of peers
from which the process has received a message for round r.

Definition 2 (Local State). Let Q = N
∗ × P(N∗ × Π). Then q ∈ Q is a local

state.
For q = 〈r,mes〉, we write q.round for r, q.mes for mes and ∀i > 0 : q(i) �

{k ∈ Π | 〈i, k〉 ∈ q.mes}.

We then define strategies, which constrain the behavior of processes. A strat-
egy is a set of states from which a process is allowed to change round. It captures
rules like “wait for at least F messages from the current round”, or “wait for
these specific messages”. Strategies give a mean to constrain executions.

Definition 3 (Strategy). f ∈ P(Q) is a strategy.



2.2 Definition of Operations

We can now define operations on predicates and their corresponding strategies.
The intuition behind these operations is the following:

– The union of two delivered predicates is equivalent to an OR on the two
communication behaviors. For example, the union of the delivered predicate
for one crash at round r and of the one for one crash at round r + 1 gives a
predicate where there is either a crash at round r or a crash at round r + 1.

– The combination of two behaviors takes every pair of collections, one from
each predicate, and computes the intersection of the graphs at each round.
Meaning, it adds the loss of messages from both, to get both behaviors at once.
For example, combining PDelcrash

1 with itself gives PDelcrash
2 , the predicate

with at most two crashes. Although combination intersects graphs round by
round in a local fashion, it actually combines two collections globally, and
thus can combine several global predicates like hearing from a given number
of process during the whole execution.

– For succession, the system starts with one behavior, then switch to another.
The definition is such that the first behavior might never happen, but the
second one must appear.

– Repetition is the next logical step after succession: instead of following one
behavior with another, the same behavior is repeated again and again. For
example, taking the repetition of at most one crash results in a potential
infinite number of crash-and-restart, with the constraint of having at most
one crashed process at any time.

Definition 4 (Operations on predicates). Let P1, P2 be two delivered or
heard-of predicates.

– The union of P1 and P2 is P1 ∪ P2.
– The combination P1

⊗

P2 � {c1

⊗

c2 | c1 ∈ P1, c2 ∈ P2}, where for c1 and
c2 two collections, ∀r > 0,∀p ∈ Π : (c1

⊗

c2)(r, p) = c1(r, p) ∩ c2(r, p).
– The succession P1 � P2 �

⋃

c1∈P1,c2∈P2

c1 � c2,

with c1 � c2 � {c | ∃r ≥ 0 : c = c1[1, r].c2}.
– The repetition of P1, (P1)

ω � {c | ∃(ci)i∈N∗ ,∃(ri)i∈N∗ : r1 = 0 ∧ ∀i ∈ N
∗ :

(ci ∈ P1 ∧ ri < ri+1 ∧ c[ri + 1, ri+1] = ci[1, ri+1 − ri])}.

For all operations on predicates, we provide an analogous one for strategies.
We show later that strategies for the delivered predicates, when combined by the
analogous operation, retain important properties on the result of the operation
on the predicates.

Definition 5 (Operations on strategies). Let f1, f2 be two strategies.

– Their union f1 ∪ f2 � the strategy such that ∀q a local state: (f1 ∪ f2)(q) �
f1(q) ∨ f2(q).



– Their combination f1

⊗

f2 � {q1

⊗

q2 | q1 ∈ f1 ∧ q2 ∈ f2 ∧ q1.round =
q2.round}, where for q1 and q2 at the same round r, q1

⊗

q2 � 〈r{〈r′, k〉 |
r′ > 0 ∧ k ∈ q1(r

′) ∩ q2(r
′)}〉

– Their succession f1 � f2 � f1 ∪ f2 ∪ {q1 � q2 | q1 ∈ f1 ∧ q2 ∈ f2} where

q1 � q2 �

〈

q1.round + q2.round,
{

〈r, k〉 | r > 0 ∧

(

k ∈ q1(r) if r ≤ q1.round
k ∈ q2(r − q1.round) if r > q1.round

)}

〉

– The repetition of f1, fω
1 � {q1 � q2 � ... � qk | k ≥ 1 ∧ q1, q2, ..., qk ∈ f1}.

The goal is to derive new strategies for the resulting model by applying
operations on strategies for the starting models. This allows, in some cases,
to bypass strategies, and deduce the Heard-Of predicate for a given Delivered
predicate from the Heard-Of predicates of its building blocks.

2.3 Executions and Domination

Before manipulating predicates and strategies, we need to define what is an
execution: a specific ordering of events corresponding to a delivered collection. An
execution is an infinite sequence of either delivery of messages (deliver(r, p, q)),
change to the next round (nextj), or a deadlock (stop). Message sending is
implicit after every change of round. An execution must satisfy three rules: no
message is delivered before it is sent, no message is delivered twice, and once
there is a stop, the rest of the sequence can only be stop.

Definition 6 (Execution). Let Π be a set of n processes. Let the set of tran-
sitions T = {nextj | j ∈ Π} ∪ {deliver(r, k, j) | r ∈ N

∗ ∧ k, j ∈ Π} ∪ {stop}.
nextj is the transition for j changing round, deliver(r, k, j) is the transition for
the delivery to j of the message sent by k in round r, stop models a deadlock.
Then, t ∈ Tω is an execution �

– (Delivery after sending)
∀i ∈ N : t[i] = deliver(r, k, j) =⇒ card({l ∈ [0, i[| t[l] = nextk}) ≥ r − 1

– (Unique delivery)
∀〈r, k, j〉 ∈ (N∗ × Π × Π) : card({i ∈ N | t[i] = deliver(r, k, j)}) ≤ 1

– (Once stopped, forever stopped)
∀i ∈ N : t[i] = stop =⇒ ∀j ≥ i : t[j] = stop

Let c be a delivered collection. Then, execs(c), the executions of c �














t an execution

∣
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∣

∣

∣

∣

∣

∣

∀〈r, k, j〉 ∈ N
∗ × Π × Π :

(k ∈ c(r, j) ∧ card({i ∈ N | t[i] = nextk}) ≥ r − 1)
⇐⇒
(∃i ∈ N : t[i] = deliver(r, k, j))















For a delivered predicate PDel, execs(PDel) � {execs(c) | c ∈ PDel}.
Let t be an execution, p ∈ Π and i ∈ N. The state of p in t after i transitions is

qt
p[i] � 〈card({l < i | t[l] = nextp}) + 1, {〈r, k〉 | ∃l < i : t[l] = deliver(r, k, p)}〉)



Notice that such executions do not allow process to “jump” from say round
5 to round 9 without passing by the rounds in-between. The reason is that the
Heard-Of model does not give processes access to the decision to change rounds:
processes specify only which messages to send depending on the state, and what
is the next state depending on the current state and the received messages.

Also, the only information considered here is the round number and the
received messages. This definition of execution disregards the message contents
and the internal states of processes, as they are irrelevant to the implementation
of Heard-Of predicates.

Recall that strategies constrain when processes can change round. Thus, the
executions that conform to a strategy change rounds only when allowed by it,
and do it infinitely often if possible.

Definition 7 (Executions of a Strategy). Let f be a strategy and t an
execution. t is an execution of f � t satisfies:

– (All nexts allowed) ∀i ∈ N,∀p ∈ Π : (t[i] = nextp =⇒ qt
p[i] ∈ f)

– (Fairness) ∀p ∈ Π : card({i ∈ N | t[i] = nextp}) < ℵ0 =⇒ card({i ∈ N |
qt
p[i] /∈ f}) = ℵ0

For a delivered predicate PDel, execsf (PDel) � {t ∈ execs(PDel) | t is an
execution of f }.

The fairness property can approximately be expressed in LTL as ∀p ∈ Π :
♦�(qt

p ∈ f) ⇒ �♦nextp. Note however that executions are here defined as
sequences of transitions, whereas LTL models are sequences of states.

An important part of this definition considers executions where processes can-
not necessarily change round after each delivery. That is, in the case of “waiting
for at most F messages”, an execution where more messages are delivered than
F at some round is still an execution of the strategy. This hypothesis captures
the asynchrony of processes, which are not always scheduled right after deliver-
ies. It is compensated by a weak fairness assumption: if a strategy forever allows
the change of round, it must eventually happen.

Going back to strategies, not all of them are equally valuable. In general,
strategies that block forever at some round are less useful than strategies that
don’t – they forbid termination in some cases. The validity of a strategy captures
the absence of such an infinite wait.

Definition 8 (Validity).
An execution t is valid � ∀p ∈ Π : card({i ∈ N | t[i] = nextp}) = ℵ0.

Let PDel a delivered predicate and f a strategy. f is a valid strategy for
PDel � ∀t ∈ execsf (PDel) : t is a valid execution.

Because in a valid execution no process is ever blocked at a given round, there
are infinitely many rounds. Hence, the messages delivered before the changes of
round uniquely define a heard-of collection.



Definition 9 (Heard-Of Collection of Executions and Heard-Of Pred-
icate of Strategies). Let t be a valid execution. ht is the heard-of collection
of t �

∀r ∈ N
∗,∀p ∈ Π : ht(r, p) =







k ∈ Π

∣

∣

∣

∣

∣

∣

∃i ∈ N :





qt
p[i].round = r

∧ t[i] = nextp
∧ 〈r, k〉 ∈ qt

p[i].mes











Let PDel be a delivered predicate, and f be a valid strategy for PDel. We
write PHOf (PDel) for the heard-of predicate composed of the collections of the

executions of f on PDel: PHOf (PDel) � {ht | t ∈ execsf (PDel)}.

Lastly, the heard-of predicate of most interest is the strongest one that can be
generated by a valid strategy on the delivered predicate. Here strongest means
the one that implies all the other heard-of predicates that can be generated on
the same delivered predicate. The intuition boils down to two ideas:

– The strongest predicate implies all the heard-of predicates generated on the
same PDel, and thus it characterizes them completely.

– When seeing predicates as sets, implication is the reverse inclusion. Hence the
strongest predicate is the one included in all the others. Less collections means
more constrained communication, which means a more powerful model.

This notion of strongest predicate is formalized through an order on strategies
and their heard-of predicates.

Definition 10 (Domination). Let PDel be a delivered predicate and let f and
f ′ be two valid strategies for PDel. f dominates f ′ for PDel, written f ′ ≺PDel f ,
� PHOf ′(PDel) ⊇ PHOf (PDel).

A greatest element for ≺PDel is called a dominating strategy for PDel.
Given such a strategy f , the dominating predicate for PDel is PHOf (PDel).

2.4 Examples

We now show the variety of models that can be constructed from basic building
blocks. Our basic blocks are the model PDeltotal with only the collection ctotal

where all the messages are delivered, and the model PDelcrash
1,r with at most one

crash that can happen at round r.

Definition 11 (At most 1 crash at round r). Pcrash
1,r �
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∣
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∃Σ ⊆ Π :

|Σ| ≥ n − 1

∧ ∀j ∈ Π





∀r′ ∈ [1, r[: c(r′, j) = Π
∧ c(r, j) ⊇ Σ
∧ ∀r′ ≥ r : c(r′, j) = Σ



















.

From this family of predicates, various predicates can be built. Table 1 show
some of them, as well as the Heard-Of predicates computed for these predicates
based on the results from Sect. 3.3 and Sect. 3.4. For example the predicate with
at most one crash Pcrash

1 If a crash happens, it happens at one specific round r.
We can thus build Pcrash

1 from a disjunction for all values of r of the predicate
with at most one crash at round r; that is, by the union of Pcrash

1,r for all r.



Table 1. A list of delivered predicate built using our operations, and their correspond-
ing heard-of predicate. The HOProduct operator is defined in Definition 16.

Description Expression HO Proof

At most 1 crash Pcrash
1

=
∞⋃

i=1

Pcrash
1,i HOProd({T ⊆ Π | |T | ≥ n − 1}) [12]

At most F crashes Pcrash
F =

F⊗

j=1

Pcrash
1

HOProd({T ⊆ Π | |T | ≥ n − F}) [12]

At most 1 crash,

which will restart

Precover
1

= Pcrash
1

�

Ptotal
HOProd({T ⊆ Π | |T | ≥ n − 1}) Theorem4

At most F

crashes, which will

restart

Precover
F =

F⊗

j=1

Precover
1

HOProd({T ⊆ Π | |T | ≥ n − F}) Theorem4

At most 1 crash,

which can restart

Pcanrecover
1

= Precover
1

∪ Pcrash
1

HOProd({T ⊆ Π | |T | ≥ n − 1}) Theorem4

At most F

crashes, which can

restart

Pcanrecover
F

=
F⊗

j=1

Pcanrecover
1

HOProd({T ⊆ Π | |T | ≥ n − F}) Theorem4

No bound on

crashes and

restart, with only

1 crash at a time

P
recovery
1

= (Pcrash
1

)ω
HOProd({T ⊆ Π | |T | ≥ n − 1}) Theorem4

No bound on

crashes and

restart, with max

F crashes at a

time

P
recovery
F

=
F⊗

j=1

P
recovery
1

HOProd({T ⊆ Π | |T | ≥ n − F}) Theorem4

At most 1 crash,

after round r

Pcrash
1,≥r =

∞⋃

i=r

Pcrash
1,i ⊆ HOProd({T ⊆ Π | |T | ≥ n − 1}) Theorem10

At most F

crashes, after

round r

Pcrash
F,≥r =

∞⋃

i=r

Pcrash
F,i ⊆ HOProd({T ⊆ Π | |T | ≥ n − F}) Theorem10

At most F crashes

with no more than

one per round

P
crash �=
F

=
⋃

i1 �=i2...�=iF

F⊗

j=1

Pcrash
1,ij

⊆ HOProd({T ⊆ Π | |T | ≥ n − F}) Theorem10

2.5 Families of Strategies

Strategies as defined above are predicates on states. This makes them incredibly
expressive; on the other hand, this expressivity creates difficulty in reasoning
about them. To address this problem, we define families of strategies. Intuitively,
strategies in a same family depend on a specific part of the state – for example
the messages of the current round. Equality of these parts of the state defines an
equivalence relation; the strategies of a family are strategies on the equivalence
classes of this relation.

Definition 12 (Families of strategies). Let ≈: Q × Q → bool. The family of
strategies defined by ≈, family(≈) � {f a strategy | ∀q1, q2 ∈ Π : q1 ≈ q2 =⇒
(q1 ∈ f ⇐⇒ q2 ∈ f)}.

3 Oblivious Strategies

The simplest non-trivial strategies use only information from the messages of the
current round. These strategies that do not remember messages from previous



rounds, do not use messages in advance from future rounds, and do not use
the round number itself. These strategies are called oblivious. They are simple,
the Heard-Of predicates they implement are relatively easy to compute, and
they require little computing power and memory to implement. Moreover, many
examples above are dominated by such a strategy. Of course, there is a price to
pay: oblivious strategies tend to be coarser than general ones.

3.1 Minimal Oblivious Strategy

An oblivious strategy is defined by the different subsets of Π from which it has
to receive a message before allowing a change of round.

Definition 13 (Oblivious Strategy). Let obliv be the function such that ∀q ∈
Q : obliv(q) = {k ∈ Π | 〈q.round, k〉 ∈ q.mes}. Let ≈obliv the equivalence
relation defined by q1 ≈obliv q2 � obliv(q1) = obliv(q2). The family of oblivious
strategies is family(≈obliv). For f an oblivious strategy, let Nextsf � {obliv(q) |
q ∈ f}. It uniquely defines f .

We will focus on a specific strategy, that dominates the oblivious strategies
for a predicate. This follows from the fact that it waits less than any other valid
oblivious strategy for this predicate.

Definition 14 (Minimal Oblivious Strategy). Let PDel be a delivered
predicate. The minimal oblivious strategy for PDel is fmin � {q | ∃c ∈
PDel,∃p ∈ Π,∃r > 0 : obliv(q) = c(r, p)}.

Lemma 1 (Domination of Minimal Oblivious Strategy). Let PDel be
a PDel and fmin be its minimal oblivious strategy. Then fmin is a dominating
oblivious strategy for PDel.

Proof (Proof idea). fmin is valid, because for every possible set of received mes-
sages in a collection of PDel, it accepts the corresponding oblivious state by def-
inition of minimal oblivious strategy. It is dominating among oblivious strategies
because any other valid oblivious strategy must allow the change of round when
fmin does it: it contains fmin. If an oblivious strategy does not contain fmin,
then there is a collection of PDel in which at a given round, a certain process
might receive exactly the messages for the oblivious state accepted by fmin and
not by f . This entails that f is not valid.

3.2 Operations Maintain Minimal Oblivious Strategy

As teased above, minimal oblivious strategies behave nicely under the proposed
operations. That is, they give minimal oblivious strategies of resulting delivered
predicates. One specificity of minimal oblivious strategies is that there is no need
for the succession operation on strategies, nor for the repetition. An oblivious
strategy has no knowledge about anything but the messages of the current round,
and not even its round number, so it is impossible to distinguish a union from a
succession, or a repetition from the initial predicate itself.



Theorem 1 (Minimal Oblivious Strategy for Union and Succession).
Let PDel1, PDel2 be two delivered predicates, f1 and f2 the minimal oblivious
strategies for, respectively, PDel1 and PDel2. Then f1 ∪f2 is the minimal obliv-
ious strategy for PDel1 ∪ PDel2 and PDel1 � PDel2.

Proof (Proof idea). Structurally, all proofs in this section consist in showing
equality between the strategies resulting from the operations and the minimal
oblivious strategy for the delivered predicate.

For a union, the messages that can be received at each round are the messages
that can be received at each round in the first predicate or in the second. This is
also true for succession. Given that f1 and f2 are the minimal oblivious strategies
of PDel1 and PDel2, they accept exactly the states with one of these sets of
current messages. And thus f1 ∪f2 is the minimal oblivious strategy for PDel1 ∪
PDel2 and PDel1 � PDel2.

Theorem 2 (Minimal Oblivious Strategy for Repetition). Let PDel be
a delivered predicate, and f be its minimal oblivious strategy. Then f is the
minimal oblivious strategy for PDelω.

Proof (Proof idea). The intuition is the same as for union and succession. Since
repetition involves only one PDel, the sets of received messages do not change
and f is the minimal oblivious strategy.

For combination, a special symmetry hypothesis is needed.

Definition 15 (Totally Symmetric PDel). Let PDel be a delivered predi-
cate. PDel is totally symmetric � ∀c ∈ PDel,∀r > 0,∀p ∈ Π,∀r′ > 0,∀q ∈
Π,∃c′ ∈ PDel : c(r, p) = c′(r′, q)

Combination is different because combining collections is done round by
round. As oblivious strategies do not depend on the round, the combination
of oblivious strategies creates the same combination of received messages for
each round. We thus need these combinations to be independent of the round –
to be possible at each round – to reconcile those two elements.

Theorem 3 (Minimal Oblivious Strategy for Combination). Let PDel1,
PDel2 be two totally symmetric delivered predicates, f1 and f2 the minimal
oblivious strategies for, respectively, PDel1 and PDel2. Then f1

⊗

f2 is the
minimal oblivious strategy for PDel1

⊗

PDel2.

Proof (Proof idea). The oblivious states of PDel1
⊗

PDel2 are the combination
of an oblivious state of PDel1 and of one of PDel2 at the same round, for the
same process. Thanks to total symmetry, this translates into the intersection of
any oblivious state of PDel1 with any oblivious state of PDel2. Since f1 and
f2 are the minimal oblivious strategy, they both accept exactly the oblivious
states of PDel1 and PDel2 respectively. Thus, f1

⊗

f2 accept all combinations of
oblivious states of PDel1 and PDel2, and thus is the minimal oblivious strategy
of PDel1

⊗

PDel2.



3.3 Computing Heard-of Predicates

The computation of the heard-of predicate generated by an oblivious strategy
is easy thanks to a characteristic of this HO: it is a product of sets of possible
messages.

Definition 16 (Heard-Of Product). Let S ⊆ P(Π). The heard-of product
generated by S, HOProd(S) � {h | ∀p ∈ Π,∀r > 0 : h(r, p) ∈ S}.

Lemma 2 (Heard-Of Predicate of an Oblivious Strategy). Let PDel be
a delivered predicate containing ctot and let f be a valid oblivious strategy for
PDel. Then PHOf (PDel) = HOProd(Nextsf ).

Proof. Proved in [12, Theorem 20, Section 4.1].

Thanks to this characterization, the heard-of predicate generated by the min-
imal strategies for the operations is computed in terms of the heard-of predicate
generated by the original minimal strategies.

Theorem 4 (Heard-Of Predicate of Minimal Oblivious Strategies).
Let PDel, PDel1, PDel2 be delivered predicates containing ctot. Let f, f1, f2 be
their respective minimal oblivious strategies. Then:

– PHOf1∪f2
(PDel1 ∪ PDel2) = PHOf1∪f2

(PDel1 � PDel2) = HOProd
(Nextsf1

∪ Nextsf2
).

– If PDel1 or PDel2 are totally symmetric, PHOf1

⊗
f2

(PDel1
⊗

PDel2) =
HOProd({n1 ∩ n2 | n1 ∈ Nextsf1

∧ n2 ∈ Nextsf2
}).

– PHOf (PDelω) = PHOf (PDel).

Proof (Proof idea). We apply Lemma 2. The containment of ctot was shown in
the proof of Theorem5. As for the equality of the oblivious states, it follows
from the intuition in the proofs of the minimal oblivious strategy in the previous
section.

3.4 Domination by an Oblivious Strategy

From the previous sections, we can compute the Heard-Of predicate of the dom-
inating oblivious strategies for our examples. We first need to give the minimal
oblivious strategy for our building blocks PDelcrash

1 and PDeltotal.

Definition 17 (Waiting for n−F messages). The strategy to wait for n−F
messages is: fn,F � {q ∈ Q | |obliv(q)| ≥ n − F}

For all F < n, fn,F is the minimal oblivious strategy for PDelcrash
F (shown

by Shimi et al. [12, Thm. 17]). For PDeltotal, since every process receives all the
messages all the time, the strategy waits for all the messages (fn,0).

Using these strategies, we deduce the heard-of predicates of dominating obliv-
ious strategies for our examples.



– For PDelrecover
1 � PDelcrash

1 � PDeltotal, the minimal oblivious strategy
frecover
1 = fn,1 ∪ fn,0 = fn,1. This entails that

PHOfrecover
1

= HOProd({T ⊆ Π | |T | ≥ n − 1}).

– For PDelcanrecover
1 � PDelrecover

1 ∪PDelcrash
1 , the minimal oblivious strategy

fcanrecover
1 = frecover

1 ∪ fn,1 = fn,1. This entails that
PHOfcanrecover

1
= HOProd({T ⊆ Π | |T | ≥ n − 1}).

– For PDelcrash
1

⊗

PDelcanrecover
1 the minimal oblivious strategy

f = fn,1
⊗

f canrecover
1 = fn,1

⊗

fn,1 = fn,2. This entails that
PHOf = HOProd({T ⊆ Π | |T | ≥ n − 2}).

The computed predicate is the predicate of the dominating oblivious strategy.
But the dominating strategy might not be oblivious, and this predicate might
be too weak. The following result shows that PDelcrash

1 and PDeltotal satisfy
conditions that imply their domination by an oblivious strategy. Since these con-
ditions are invariant by our operations, all PDel constructed with these building
blocks are dominated by an oblivious strategy.

Theorem 5 (Domination by Oblivious for Operations). Let PDel,
PDel1, PDel2 be delivered predicates that satisfy:

– (Total collection) They contains the total collection ctot,
– (Symmetry up to a round) ∀c a collection in the predicate, ∀p ∈ Π,∀r >

0,∀r′ > 0,∃c′ a collection in the predicate: c′[1, r′ − 1] = ctot[1, r
′ − 1] ∧ ∀q ∈

Π : c′(r′, q) = c(r, p)

Then PDel1 ∪ PDel2, PDel1
⊗

PDel2, PDel1 � PDel2, PDelω satisfy the
same two conditions and are dominated by oblivious strategies.

Both Pcrash
1 from Table 1 and Ptotal = {ctot} satisfy this condition. So do all

the first 8 examples from Table 1, since they are built from these two.

4 Conservative Strategies

We now broaden our family of considered strategies, by allowing them to con-
sider past and present rounds, as well as the round number itself. This is a
generalization of oblivious strategies, that tradeoff simplicity for expressivity,
while retaining a nice structure. Even better, we show that both our building
blocks and all the predicates built from them are dominated by such a strategy.
For the examples then, no expressivity is lost.

4.1 Minimal Conservative Strategy

Definition 18 (Conservative Strategy). Let cons be the function such that
∀q ∈ Q, cons(q) � 〈q.round, {〈r, k〉 ∈ q.mes | r ≤ q.round}〉. Let ≈cons the
equivalence relation defined by q1 ≈cons q2 � cons(q1) = cons(q2). The family of
conservative strategies is family(≈cons). We write NextsR

f � {cons(q) | q ∈ f}
for the set of conservative states in f . This uniquely defines f .



In analogy with the case of oblivious strategies, we can define a minimal
conservative strategy of PDel, and it is a strategy dominating all conservative
strategies for this delivered predicate.

Definition 19 (Minimal Conservative Strategy). Let PDel be a delivered
predicate. The minimal conservative strategy for PDel is fmin � the con-
servative strategy such that f = {q ∈ Q | ∃c ∈ PDel,∃p ∈ Π,∀r ≤ q.round :
q(r) = c(r, p)}.

Lemma 3 (Domination of Minimal Conservative Strategy). Let PDel
be a delivered predicate and fmin be its minimal conservative strategy. Then fmin

dominates the conservative strategies for PDel.

Proof (Proof idea). Analogous to the case of minimal oblivious strategies: it
is valid because it allows to change round for each possible conservative state
(the round and the messages received for this round and before) of collections
in PDel. And since any other valid conservative strategy f must accept these
states (or it would block forever in some execution of a collection of PDel), we
have that f contains fmin and thus that fmin dominates f .

4.2 Operations Maintain Minimal Conservative Strategies

Like oblivious strategies, minimal conservative strategies give minimal conserva-
tive strategies of resulting delivered predicates.

Theorem 6 (Minimal Conservative Strategy for Union). Let
PDel1, PDel2 be two delivered predicates, f1 and f2 the minimal conservative
strategies for, respectively, PDel1 and PDel2. Then f1 ∪ f2 is the minimal con-
servative strategy for PDel1 ∪ PDel2.

Proof (Proof idea). A prefix of a collection in PDel1 ∪PDel2 comes from either
PDel1 or PDel2, and thus is accepted by f1 or f2. And any state accepted by
f1 ∪ f2 corresponds to some prefix of PDel1 or PDel2.

For the other three operations, slightly more structure is needed on the pred-
icates. More precisely, they have to be independent of the processes. Any prefix
of a process p in a collection of the predicate is also the prefix of any other pro-
cess q in a possibly different collection of the same PDel. Hence, the behaviors
(fault, crashes, loss) are not targeting specific processes. This restriction fits the
intuition behind many common fault models.

Definition 20 (Symmetric PDel). Let PDel be a delivered predicate. PDel
is symmetric � ∀c ∈ PDel,∀p ∈ Π,∀r > 0,∀q ∈ Π,∃c′ ∈ PDel,∀r′ ≤ r :
c′(r′, q) = c(r′, p)

Theorem 7 (Minimal Conservative Strategy for Combination). Let
PDel1, PDel2 be two symmetric delivered predicates, f1 and f2 the minimal
conservative strategies for, respectively, PDel1 and PDel2. Then f1

⊗

f2 is the
minimal conservative strategy for PDel1

⊗

PDel2.



Proof (Proof idea). Since f1 and f2 are the minimal conservative strategies of
PDel1 and PDel2, NextsRf1 is the set of the conservative states of prefixes of
PDel1 and NextsR

f2
is the set of the conservative states of prefixes of PDel2.

Also, the states accepted by f1

⊗

f2 are the combination of the states accepted
by f1 and the states accepted by f2. And the prefixes of PDel1

⊗

PDel2 are
the prefixes of PDel1 combined with the prefixes of PDel2 for the same pro-
cess. Thanks to symmetry, we can take a prefix of PDel2 and any process, and
find a collection such that the process has that prefix. Therefore the combined
prefixes for the same process are the same as the combined prefixes of PDel1
and PDel2. Thus, NextsR

f1

⊗
f2

is the set of conservative states of prefixes of

PDel1
⊗

PDel2, and f1

⊗

f2 is its minimal conservative strategy.

Theorem 8 (Minimal Conservative Strategy for Succession). Let
PDel1, PDel2 be two symmetric delivered predicates, f1 and f2 the minimal
conservative strategies for, respectively, PDel1 and PDel2. Then f1 � f2 is the
minimal conservative strategy for PDel1 � PDel2.

Proof (Proof idea). Since f1 and f2 are the minimal conservative strategies of
PDel1 and PDel2, NextsRf1 is the set of the conservative states of prefixes of
PDel1 and NextsR

f2
is the set of the conservative states of prefixes of PDel2.

Also, the states accepted by f1 � f2 are the succession of the states accepted by
f1 and the states accepted by f2. And the prefixes of PDel1 � PDel2 are the
successions of prefixes of PDel1 and prefixes of PDel2 for the same process.
But thanks to symmetry, we can take a prefix of PDel2 and any process, and
find a collection such that the process has that prefix.

Therefore the succession of prefixes for the same process are the same as
the succession of prefixes of PDel1 and PDel2. Thus, NextsR

f1�f2
is the set of

conservative states of prefixes of PDel1 � PDel2, and is therefore its minimal
conservative strategy.

Theorem 9 (Minimal Conservative Strategy for Repetition). Let PDel
be a symmetric delivered predicate, and f be its minimal conservative strategy.
Then fω is the minimal conservative strategy for PDelω.

Proof (Proof idea). The idea is the same as in the succession.

4.3 Computing Heard-Of Predicates

Here we split from the analogy with oblivious strategies: the heard-of predicate
of conservative strategies is hard to compute, as it depends in intricate ways on
the delivered predicate itself.

Yet it is still possible to compute interesting information on this HO: upper
bounds. These are overapproximations of the actual HO, but they can serve for
formal verification of LTL properties. Indeed, the executions of an algorithm
for the actual HO are contained in the executions of the algorithm for any
overapproximation of the HO, and LTL properties must be true for all executions
of the algorithm. So proving the property on an overapproximation also proves
it on the actual HO.



Theorem 10 (Upper Bounds on HO of Minimal Conservative Strate-
gies). Let PDel, PDel1, PDel2 be delivered predicates containing ctot. Let
fcons, fcons

1 , fcons
2 be their respective minimal conservative strategies, and

fobliv, fobliv
1 , fobliv

2 be their respective minimal oblivious strategies. Then:

– PHOfcons
1

∪fcons
2

(PDel1 ∪ PDel2) ⊆ HOProd(Nextsfobliv
1

∪ Nextsfobliv
2

).

– PHOfcons
1

�fcons
2

(PDel1 � PDel2) ⊆ HOProd(Nextsfobliv
1

∪ Nextsfobliv
2

).

– PHOfcons
1

⊗
fcons
2

(PDel1
⊗

PDel2) ⊆ HOProd({n1 ∩ n2 | n1 ∈ Nextsfobliv
1

∧

n2 ∈ Nextsfobliv
2

}).

– PHO(fcons)ω (PDelω) ⊆ HOProd(Nextsfobliv ).

Proof (Proof idea). These bounds follow from the fact that an oblivious strategy,
is a conservative strategy, and thus the minimal conservative strategy dominates
the minimal oblivious strategy.

5 Conclusion

To summarize, we propose operations on delivered predicates that allow the con-
struction of complex predicates from simpler ones. The corresponding operations
on strategies behave nicely regarding dominating strategies, for the conservative
and oblivious strategies. This entails bounds and characterizations of the domi-
nating heard-of predicate for the constructions.

What needs to be done next comes in two kinds: first, the logical continuation
is to look for constraints on delivered predicates for which we can compute
the dominating heard-of predicate of conservative strategies. More ambitiously,
we will study strategies looking in the future, i.e. strategies that can take into
account messages from processes that have already reached a strictly higher
round than the recipient. These strategies are useful for inherently asymmetric
delivered predicates. For example, message loss is asymmetric, in the sense that
we cannot force processes to receive the same set of messages.
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