B. Arellano-reynoso, N. Lapaque, S. Salcedo, G. Briones, A. E. Ciocchini et al., Cyclic beta-1,2-glucan is a Brucella virulence factor required for intracellular survival, Nat Immunol, vol.6, pp.618-625, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00165692

T. Beaudoin, L. Zhang, A. J. Hinz, C. J. Parr, and T. F. Mah, The biofilm-specific antibiotic resistance gene ndvB is important for expression of ethanol oxidation genes in Pseudomonas aeruginosa biofilms, J Bacteriol, vol.194, pp.3128-3136, 2012.

A. A. Bhagwat, W. Jun, L. Liu, P. Kannan, M. Dharne et al., Osmoregulated periplasmic glucans of Salmonella enterica serovar Typhimurium are required for optimal virulence in mice, Microbiology, vol.155, pp.229-237, 2009.

J. P. Bohin, Osmoregulated periplasmic glucans in Proteobacteria, FEMS Microbiol Lett, vol.186, pp.11-19, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00021381

J. P. Bohin and J. M. Lacroix, Osmoregulation in the periplasm, pp.325-341, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00106289

S. Bontemps-gallo, V. Cogez, C. Robbe-masselot, K. Quintard, J. Dondeyne et al., Biosynthesis of Osmoregulated Periplasmic Glucans in Escherichia coli : The Phosphoethanolamine Transferase Is Encoded by opgE, BioMed Res International, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02133971

S. Bontemps-gallo, E. Madec, J. Dondeyne, B. Delrue, C. Robbe-masselot et al., Concentration of osmoregulated periplasmic glucans (OPGs) modulates the activation level of the RcsCD RcsB phosphorelay in the phytopathogen bacteria Dickeya dadantii, Environ Microbiol, vol.15, pp.881-894, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02133974

S. Bontemps-gallo, E. Madec, and J. M. Lacroix, Inactivation of pecS restores the virulence of mutants devoid of osmoregulated periplasmic glucans in the phytopathogenic bacterium Dickeya dadantii, Microbiology, vol.160, pp.766-777, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02134614

F. Bouchart, . Ph, and . Manuscript, Impact des mutations OPG chez Erwinia chrysanthemi : recherche de suppresseurs et analyse protéomique des mutants, Impact of OPG mutations of Erwinia chrysanthemi, 2006.

F. Bouchart, A. Delangle, J. Lemoine, J. P. Bohin, and J. M. Lacroix, Proteomic analysis of a non-virulent mutant of the phytopathogenic bacterium Erwinia chrysanthemi deficient in osmoregulated periplasmic glucans: change in protein expression is not restricted to the envelope, but affects general metabolism, Microbiology, vol.153, pp.760-767, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00123725

F. Bouchart, G. Boussemart, A. F. Prouvost, V. Cogez, E. Madec et al., The virulence of a Dickeya dadantii 3937 mutant devoid of osmoregulated periplasmic glucans (OPGs) is restored by inactivation of the RcsCD RcsB phosphorelay, J Bacteriol, vol.192, pp.3484-3490, 2010.

M. W. Breedveld and K. J. Miller, Cyclic beta-glucans of members of the family Rhizobiaceae, Microbiol Rev, vol.58, pp.145-161, 1994.

G. Briones, N. Inon-de-iannino, M. Roset, A. Vigliocco, P. S. Paulo et al., Brucella abortus cyclic beta-1,2-glucan mutants have reduced virulence in mice and are defective in intracellular replication in HeLa cells, Infect Immun, vol.69, pp.4528-4535, 2001.

D. J. Clarke, The Rcs phosphorelay ; more than just a two-component pathway, Future Microbiol, vol.5, pp.1173-1184, 2010.

E. J. Clarke and C. A. Voigt, Characterization of combinatorial patterns generated by multiple two-component sensors in E. coli that respond to many stimuli, Biotechnol Bioeng, vol.108, pp.666-675, 2011.

V. Cogez, P. Talaga, J. Lemoine, and J. P. Bohin, Osmoregulated periplasmic glucans of Erwinia chrysanthemi, J Bacteriol, vol.183, pp.3127-3133, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00021373

B. Cooper, R. Chen, W. M. Garrett, C. Murphy, C. Chang et al., Proteomic pleiotropy of opgGH an operon necessary for efficient growth of Salmonella enterica serovar Typhimurium under low-osmotic conditions, J Proteome Res, vol.11, pp.1720-1727

P. S. Dehal, M. P. Joachimiak, M. N. Price, J. T. Bates, J. K. Baumohl et al., MicrobesOnline: an integrated portal for comparative and functional genomics, Nucleic Acids Res, vol.38, pp.396-400, 2010.

J. Dunlap, E. Minami, A. A. Bhagwat, D. L. Keister, and G. Stacey, Nodule development induced by mutants of Bradyrhizobium japonicum defective in cyclic B-glucan synthesis, MPMI, vol.9, pp.546-555, 1996.

T. Dylan, D. R. Helinski, and G. Ditta, Hypoosmotic Adaptation in Rhizobium meliloti Requires ?, vol.2

G. Gomez, L. G. Adams, A. Rice-ficht, and T. A. Ficht, Host-Brucella interactions and the Brucella genome as tools for subunit antigen discovery and immunization against brucellosis, Front Cell Infect Microbiol, vol.16, pp.3-17, 2013.

J. P. Gorvel and E. Moreno, Brucella intracellular life: from invasion to intracellular replication, Vet Microbiol, vol.90, pp.281-297, 2002.

N. S. Hill, P. J. Buske, Y. Shi, and P. A. Levin, A moonlighting enzyme links Escherichia coli cell size with central metabolism, PLoS Genet, vol.9, issue.7, p.1003663, 2013.

S. Lee, E. Cho, and S. Jung, Periplasmic glucans isolated from Proteobacteria, BMB Rep, vol.42, pp.769-775, 2009.

Y. Lequette, E. Rollet, A. Delangle, E. P. Greenberg, and J. P. Bohin, Linear osmoregulated periplasmic glucans are encoded by the opgGH locus of Pseudomonas aeruginosa, Microbiology, vol.153, pp.3255-3263, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00169032

L. Liu, S. Tan, W. Jun, A. Smith, J. Meng et al., Osmoregulated periplasmic glucans are needed for competitive growth and biofilm formation by Salmonella enterica serovar Typhimurium in leafy-green vegetable wash waters and colonization in mice, FEMS Microbiol Lett, vol.292, pp.13-20, 2009.

L. Liu, M. Dharne, P. Kannan, A. Smith, J. Meng et al., Osmoregulated periplasmic glucans synthesis gene family of Shigella flexneri, Arch Microbiol, vol.192, pp.167-174, 2010.

I. Loubens, L. Debarbieux, A. Bohin, J. M. Lacroix, and J. P. Bohin, Homology between a genetic locus (mdoA) involved in the osmoregulated biosynthesis of periplasmic glucans in Escherichia coli and a genetic locus (hrpM) controlling pathogenicity of Pseudomonas syringae, Mol Microbiol, vol.10, pp.329-340, 1993.

I. Loubens, G. Richter, D. Mills, and J. P. Bohin, A pathogenicity of Pseudomonas syringae pv. syringae complements a defect in periplasmic glucans biosynthesis in Escherichia coli K-12, Plant Pathogenic Bacteria, vol.66, pp.491-496, 1992.

T. F. Mah, B. Pitts, B. Pellock, G. C. Walker, P. S. Stewart et al., A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance, Nature, vol.426, pp.306-310, 2003.

E. Madec, S. Bontemps-gallo, and J. M. Lacroix, Increased phosphorylation of the RcsB regulator of the RcsCDB phosphorelay in strains of Dickeya dadantii devoid of osmoregulated periplasmic glucans revealed by Phos-tag gel analysis, Microbiology, vol.160, pp.2763-2770, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02134615

S. Mahajan-miklos, M. W. Tan, L. G. Rahme, and F. M. Ausubel, Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model, Cell, vol.96, pp.47-56, 1999.

N. Majdalani and S. Gottesman, The Rcs phosphorelay: a complex signal transduction system, Annu Rev Microbiol, vol.59, pp.379-405, 2005.

A. Martirosyan, C. Pérez-gutierrez, R. Banchereau, H. Dutartre, P. Lecine et al., Brucella ? 1,2 cyclic glucan is an activator of human and mouse dendritic cells, PLoS Pathog, vol.8, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02459199

F. C. Mcintire, W. H. Peterson, and J. A. Riker, A Polysaccharide produced by the crown-gall organism, J Biol Chem, vol.143, pp.491-496, 1942.

K. J. Miller, E. P. Kennedy, and V. N. Reinhold, Osmotic adaptation in Gram-negative bacteria: possible role for periplasmic oligosaccharides, Science, vol.231, pp.48-51, 1986.

G. V. Minsavage, M. B. Mudgett, R. E. Stall, and J. B. Jones, Importance of opgHXcv of Xanthomonas campestris pv. vesicatoria in host-parasite interactions, MPMI, vol.17, pp.152-161, 2004.

H. Nothaft, X. Liu, D. J. Mcnally, J. Li, and C. M. Szymanski, Study of free oligosaccharides derived from the bacterial N-glycosylation pathway, Proc Natl Acad Sci USA, vol.106, pp.15019-15024, 2009.

H. Nothaft, X. Liu, J. Li, and C. M. Szymanski, Campylobacter jejuni free oligosaccharides: function and fate, Virulence, vol.1, pp.546-550, 2010.

F. Page, S. Altabe, N. Hugouvieux-cotte-pattat, J. M. Lacroix, J. Robert-baudouy et al., Osmoregulated periplasmic glucan synthesis is required for Erwinia chrysanthemi pathogenicity, J Bacteriol, vol.183, pp.3134-3141, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00021372

V. Puvanesarajah, F. M. Schell, G. Stacey, C. J. Douglas, and E. W. Nester, Role for 2-linked-beta-D-glucan in the virulence of Agrobacterium tumefaciens, J Bacterial, vol.164, pp.102-106, 1985.

S. Rajagopal, N. Eis, M. Bhattacharya, and K. W. Nickerson, Membrane-derived oligosaccharides (MDOs) are essential for sodium dodecyl sulfate resistance in Escherichia coli, FEMS Microbiol Lett, vol.223, pp.25-31, 2003.

S. Reverchon and W. Nasser, Dickeya ecology, environment sensing and regulation of virulence programme, Env Microbiol Reports, vol.5, pp.622-636, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01997073

M. S. Roset, A. E. Ciocchini, and R. A. Ugalde, Inon de Iannino N. Molecular cloning and characterization of cgt the Brucella abortus cyclic beta-1,2-glucan transporter gene, and its role in virulence, Infect. Immun, vol.72, pp.2263-2271, 2004.

I. Sadovskaya, E. Vinogradov, J. Li, A. Hachani, K. Kowalska et al., High-level antibiotic resistance in Pseudomonas aeruginosa biofilm: the ndvB gene is involved in the production of highly glycerol-phosphorylated beta-(1->3)-glucans, which bind aminoglycosides, Glycobiology, vol.20, pp.895-904, 2010.

O. Steele-mortimer, The Salmonella-containing vacuole-Moving with the times, Curr Opin Microbiol, vol.11, pp.38-45, 2008.

K. A. Sochacki, I. A. Shkel, M. T. Record, and J. C. Weisshaar, Protein diffusion in the periplasm of E. coli under osmotic stress, Biophys J, vol.100, pp.22-31, 2011.

I. K. Toth, J. M. Van-der-wolf, G. Saddler, E. Lojkowska, V. Hélias et al., Dickeya species: an emerging problem for potato production in Europe, Plant Pathol, vol.60, pp.385-399, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02650352

L. Van-golde, H. Schulman, and E. P. Kennedy, Metabolism of membrane phospholipids and its relation to a novel class of oligosaccharides in Escherichia coli, Proc. Natl. Acad. Sci. USA, vol.70, pp.1368-1372, 1973.

X. Wu, Q. Zeng, B. J. Koestler, C. M. Waters, G. W. Sundin et al., Deciphering the components that coordinately regulate virulence factors of the soft rot pathogen Dickeya dadantii, MPMI, vol.27, pp.1119-1131, 2014.

G. M. Young and V. L. Miller, Identification of novel chromosomal loci affecting Yersinia enterocolitica pathogenesis, Mol Microbiol, vol.25, pp.319-328, 1997.