A. G. Barbour, M. Adeolu, R. Gupta, and . Margos, Division of the genus Borrelia into two genera (corresponding to Lyme disease and relapsing fever groups) reflects their genetic and phenotypic distinctiveness and will lead to a better understanding of these two groups of microbes, Int. J. Syst. Evol. Microbiol, vol.67, issue.6, pp.2058-67, 2016.

G. Stanek, G. P. Wormser, J. Gray, and F. Strle, Lyme borreliosis, Lancet, vol.379, issue.9814, pp.60103-60110, 2012.

A. C. Steere, R. L. Grodzicki, A. N. Kornblatt, J. E. Craft, A. G. Barbour et al., The spirochetal etiology of Lyme disease, N Engl J Med, vol.308, issue.13, pp.733-773, 1983.

P. E. Stewart and P. A. Rosa, Physiologic and Genetic Factors Influencing the Zoonotic Cycle of Borrelia burgdorferi, Curr Top Microbiol Immunol, 2017.

W. Burgdorfer, A. G. Barbour, S. F. Hayes, J. L. Benach, E. Grunwaldt et al., Lyme disease-a tick-borne spirochetosis?, Science, vol.216, issue.4552, pp.1317-1326, 1982.

B. M. Kuehn, CDC estimates 300,000 US cases of Lyme disease annually, JAMA, vol.310, issue.11, p.1110, 2013.

R. M. Bacon, K. J. Kugeler, and P. S. Mead, Centers for Disease C, Prevention. Surveillance for Lyme disease-United States, MMWR Surveill Summ, vol.57, issue.10, pp.1-9, 1992.

E. Lindgren and T. Jaenson, Lyme borreliosis in Europe: Influences of Climate and Climate change, Epidemiology, Ecology and Adaptation Measures. World Health Organization, 2006.

J. S. Brownstein, T. R. Holford, and D. Fish, Effect of Climate Change on Lyme Disease Risk in North America, Ecohealth, vol.2, issue.1, p.19008966, 2005.

A. G. Barbour, Isolation and cultivation of Lyme disease spirochetes, Yale J Biol Med, vol.57, issue.4, pp.521-526, 1984.

A. G. Barbour, W. Burgdorfer, S. F. Hayes, O. Péter, and A. Aeschlimann, Isolation of a cultivable spirochete fro-mIxodes ricinus ticks of Switzerland, Current Microbiology, vol.8, issue.2, pp.123-129, 1983.

G. Baranton, D. Postic, S. Girons, I. Boerlin, P. Piffaretti et al., Delineation of Borrelia burgdorferi sensu stricto, Borrelia garinii sp. nov., and group VS461 associated with Lyme borreliosis, Int J Syst Bacteriol, vol.42, issue.3, pp.378-83, 1992.

B. S. Pritt, P. S. Mead, D. K. Johnson, D. F. Neitzel, L. B. Respicio-kingry et al., Identification of a novel pathogenic Borrelia species causing Lyme borreliosis with unusually high spirochaetaemia: a descriptive study, Lancet Infect Dis, vol.16, issue.5, pp.464-472, 2016.

B. Jaulhac, S. De-martino, and N. Boulanger, Centre National de référence des Borrelia-Rapport annuel d'activité, 2013.

T. Cerar, F. Strle, D. Stupica, E. Ruzic-sabljic, G. Mchugh et al., Differences in Genotype, Clinical Features, and Inflammatory Potential of Borrelia burgdorferi sensu stricto Strains from Europe and the United States, Emerg Infect Dis, vol.22, issue.5, pp.818-845, 2016.

A. C. Steere, F. Strle, G. P. Wormser, L. T. Hu, J. A. Branda et al., Lyme borreliosis, Nat Rev Dis Primers, vol.2, p.16090, 2016.

S. Casjens, N. Palmer, R. Van-vugt, W. M. Huang, B. Stevenson et al., A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi, Mol Microbiol, vol.35, issue.3, pp.490-516, 2000.

C. M. Fraser, S. Casjens, W. M. Huang, G. G. Sutton, R. Clayton et al., Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi, Nature, vol.390, issue.6660, pp.580-586, 1997.

S. R. Casjens, E. F. Mongodin, W. G. Qiu, J. J. Dunn, B. J. Luft et al., Whole-genome sequences of two Borrelia afzelii and two Borrelia garinii Lyme disease agent isolates, J Bacteriol, vol.193, issue.24, pp.6995-7001, 2011.

S. R. Casjens, E. F. Mongodin, W. G. Qiu, B. J. Luft, S. E. Schutzer et al., Genome stability of Lyme disease spirochetes: comparative genomics of Borrelia burgdorferi plasmids, PLoS One, vol.7, issue.3, p.33280, 2012.

S. E. Schutzer, C. M. Fraser-liggett, S. R. Casjens, W. G. Qiu, J. J. Dunn et al., Whole-genome sequences of thirteen isolates of Borrelia burgdorferi, J Bacteriol, vol.193, issue.4, pp.1018-1038, 2011.

, Ixodes Ticks, PLoS Pathog, vol.12, issue.8, p.1005791, 2016.

M. Siegemund, J. Van-bommel, and C. Ince, Assessment of regional tissue oxygenation, Intensive Care Med, vol.25, issue.10, pp.1044-60, 1999.

B. Venkatesh, T. J. Morgan, and J. Lipman, Subcutaneous oxygen tensions provide similar information to ileal luminal CO2 tensions in an animal model of haemorrhagic shock, Intensive Care Med, vol.26, issue.5, pp.592-600, 2000.

M. A. Motaleb, J. Liu, and R. M. Wooten, Spirochetal motility and chemotaxis in the natural enzootic cycle and development of Lyme disease, Curr Opin Microbiol, vol.28, pp.106-119, 2015.

N. W. Charon and S. F. Goldstein, Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes, Annu Rev Genet, vol.36, pp.47-73, 2002.

S. Z. Sultan, A. Manne, P. E. Stewart, A. Bestor, P. A. Rosa et al., Motility is crucial for the infectious life cycle of Borrelia burgdorferi, Infect Immun, vol.81, issue.6, pp.2012-2033, 2013.

M. A. Motaleb, L. Corum, J. L. Bono, A. F. Elias, P. Rosa et al., Borrelia burgdorferi periplasmic flagella have both skeletal and motility functions, Proc Natl Acad Sci U S A, vol.97, issue.20, pp.10899-904, 2000.

D. E. Sonenshine and J. M. Anderson, Mouthparts and digestive system, Biology of Ticks. 1, pp.122-62, 2014.

J. A. Boylan, K. A. Lawrence, J. S. Downey, and F. C. Gherardini, Borrelia burgdorferi membranes are the primary targets of reactive oxygen species, Mol Microbiol, vol.68, issue.3, pp.786-99, 2008.

M. Cinco, R. Murgia, S. Perticarari, and G. Presani, Simultaneous measurement by flow cytometry of phagocytosis and metabolic burst induced in phagocytic cells in whole blood by Borrelia burgdorferi, FEMS Microbiol Lett, vol.122, issue.1-2, pp.187-93, 1994.

K. Georgilis, A. C. Steere, and M. S. Klempner, Infectivity of Borrelia burgdorferi correlates with resistance to elimination by phagocytic cells, J Infect Dis, vol.163, issue.1, pp.150-155, 1991.

P. K. Peterson, C. C. Clawson, D. A. Lee, D. J. Garlich, P. G. Quie et al., Human phagocyte interactions with the Lyme disease spirochete, Infect Immun, vol.46, issue.2, pp.608-619, 1984.

L. Reik, IntroductionBorrelia burgdorferi Infection: A Neurologist's Perspective, Annals of the New York Academy of Sciences, vol.539, issue.1, pp.1-3, 1988.

J. Suhonen, K. Hartiala, H. Tuominen-gustafsson, and M. K. Viljanen, Borrelia burgdorferi-induced oxidative burst, calcium mobilization, and phagocytosis of human neutrophils are complement dependent, J Infect Dis, vol.181, issue.1, pp.195-202, 2000.

J. B. Benoit and D. L. Denlinger, Meeting the challenges of on-host and off-host water balance in blood-feeding arthropods, J Insect Physiol, vol.56, issue.10, pp.1366-76, 2010.

D. Kim, J. Urban, D. L. Boyle, and Y. Park, Multiple functions of Na/K-ATPase in dopamine-induced salivation of the Blacklegged tick, Ixodes scapularis. Sci Rep, vol.6, p.21047, 2016.

A. D. Lees, The water balance in Ixodes ricinus L. and certain other species of ticks, Parasitology, vol.37, issue.1-2, pp.1-20, 1946.

A. D. Lees, Transpiration and the Structure of the Epicuticle in Ticks, Journal of Experimental Biology, vol.23, issue.3-4, pp.379-410, 1947.

A. D. Lees, The Sensory Physiology of the Sheep Tick, Ixodes Ricinus L. Journal of Experimental Biology, vol.25, issue.2, pp.145-207, 1948.

W. R. Kaufman and J. E. Phillips, Ion and Water Balance in the Ixodid Tick Dermacentor Andersoni, Journal of Experimental Biology, vol.58, issue.2, pp.537-584, 1973.

W. R. Kaufman and J. E. Phillips, Ion and Water Balance in the Ixodid Tick Dermacentor Andersoni, Journal of Experimental Biology, vol.58, issue.2, pp.549-64, 1973.

W. R. Kaufman and J. E. Phillips, Ion and Water Balance in the Ixodid Tick Dermacentor Andersoni. I Routes of Ion and Water Excretion, vol.58, pp.523-559, 1973.

C. Waymouth, Osmolality of mammalian blood and of media for culture of mammalian cells, In Vitro, vol.6, issue.2, pp.109-136, 1970.

E. Dolgin, Climate change: As the ice melts, Nature, vol.543, issue.7647, pp.54-59, 2017.

A. J. Monaghan, S. M. Moore, K. M. Sampson, C. B. Beard, and R. J. Eisen, Climate change influences on the annual onset of Lyme disease in the United States, Ticks Tick Borne Dis, vol.6, issue.5, pp.615-637, 2015.

J. A. Simon, R. R. Marrotte, N. Desrosiers, J. Fiset, J. Gaitan et al., Climate change and habitat fragmentation drive the occurrence of Borrelia burgdorferi, the agent of Lyme disease, at the northeastern limit of its distribution, Evol Appl, vol.7, issue.7, pp.750-64, 2014.

B. L. Stone, Y. Tourand, and C. A. Brissette, Brave New Worlds: The Expanding Universe of Lyme Disease. Vector Borne Zoonotic Dis, vol.17, pp.619-648, 2017.

G. Veinovic, E. Ruzic-sabljic, F. Strle, and T. Cerar, Comparison of Growth of Borrelia afzelii, Borrelia garinii, and Borrelia burgdorferi Sensu Stricto at Five Different Temperatures, PLoS One, vol.11, issue.6, p.157706, 2016.

Z. Hubalek, J. Halouzka, and M. Heroldova, Growth temperature ranges of Borrelia burgdorferi sensu lato strains, J Med Microbiol, vol.47, issue.10, pp.929-961, 1998.

M. Jacquet, D. Genne, A. Belli, E. Maluenda, A. Sarr et al., The abundance of the Lyme disease pathogen Borrelia afzelii declines over time in the tick vector Ixodes ricinus, Parasit Vectors, vol.10, issue.1, p.257, 2017.

J. Piesman, B. S. Schneider, and N. S. Zeidner, Use of quantitative PCR to measure density of Borrelia burgdorferi in the midgut and salivary glands of feeding tick vectors, J Clin Microbiol, vol.39, issue.11, pp.4145-4153, 2001.

J. M. Wood, Osmosensing by bacteria, Sci STKE, issue.357, p.43, 2006.

J. M. Wood, Bacterial osmoregulation: a paradigm for the study of cellular homeostasis, Annu Rev Microbiol, vol.65, pp.215-253, 2011.

T. J. Bourret, K. A. Lawrence, J. A. Shaw, T. Lin, S. J. Norris et al., The Nucleotide Excision Repair Pathway Protects Borrelia burgdorferi from Nitrosative Stress in Ixodes scapularis Ticks. Front Microbiol, vol.7, 2016.

M. E. Ramsey, J. A. Hyde, D. N. Medina-perez, T. Lin, L. Gao et al., A high-throughput genetic screen identifies previously uncharacterized Borrelia burgdorferi genes important for resistance against reactive oxygen and nitrogen species, PLoS Pathog, vol.13, issue.2, 2017.

J. A. Boylan, J. E. Posey, and F. C. Gherardini, Borrelia oxidative stress response regulator, BosR: a distinctive Zn-dependent transcriptional activator, Proc Natl Acad Sci, vol.100, issue.20, pp.11684-11693, 2003.

Y. Xu, C. Kodner, L. Coleman, and R. C. Johnson, Correlation of plasmids with infectivity of Borrelia burgdorferi sensu stricto type strain B31, Infect Immun, vol.64, issue.9, pp.3870-3876, 1996.

A. F. Elias, P. E. Stewart, D. Grimm, M. J. Caimano, C. H. Eggers et al., Clonal polymorphism of Borrelia burgdorferi strain B31 MI: implications for mutagenesis in an infectious strain background, Infect Immun, vol.70, issue.4, pp.2139-50, 2002.

W. J. Simpson, C. F. Garon, and T. G. Schwan, Analysis of supercoiled circular plasmids in infectious and noninfectious Borrelia burgdorferi, Microb Pathog, vol.8, issue.2, pp.109-127, 1990.

C. Y. Chu, P. E. Stewart, A. Bestor, B. Hansen, T. Lin et al., Function of the Borrelia burgdorferi FtsH Homolog Is Essential for Viability both In Vitro and In Vivo and Independent of HflK/C, MBio, vol.7, issue.2, pp.404-420, 2016.

D. S. Samuels, Electrotransformation of the spirochete Borrelia burgdorferi, Methods Mol Biol, vol.47, pp.253-262, 1995.

M. Sicklinger, R. Wienecke, and U. Neubert, In vitro susceptibility testing of four antibiotics against Borrelia burgdorferi: a comparison of results for the three genospecies Borrelia afzelii, Borrelia garinii, and Borrelia burgdorferi sensu stricto, J Clin Microbiol, vol.41, issue.4, pp.1791-1794, 2003.