M. Asch, M. Bocquet, and M. Nodet, Data assimilation: methods, algorithms, and applications, SIAM, vol.11, p.4, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01402885

P. Battaglia, R. Pascanu, M. Lai, and D. J. Rezende, Interaction networks for learning about objects, relations and physics, Advances in neural information processing systems (NeurIPS), pp.4502-4510, 2016.

P. Becker, H. Pandya, G. Gebhardt, C. Zhao, C. J. Taylor et al., Recurrent Kalman networks: Factorized inference in high-dimensional deep feature spaces, International Conference on Machine Learning (ICML), vol.2, p.5, 2019.

M. Bocquet, J. Brajard, A. Carrassi, and L. Bertino, Data assimilation as a learning tool to infer ordinary differential equation representations of dynamical models, Nonlinear Processes in Geophysics, vol.26, issue.3, p.4, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02517929

S. L. Brunton, J. L. Proctor, and J. N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proceedings of the National Academy of Sciences, vol.113, issue.15, pp.3932-3937, 2016.

W. Byeon, Q. Wang, R. K. Srivastava, and P. Koumoutsakos, ContextVP: Fully context-aware video prediction, European Conference on Computer Vision (ECCV), pp.753-769, 2018.

L. Castrejon, N. Ballas, and A. Courville, Improved conditional VRNNs for video prediction, International Conference on Computer Vision (ICCV), 2019.

T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. , Duvenaud. Neural ordinary differential equations, Advances in neural information processing systems, vol.1, 2018.

C. Corbière, N. Thome, A. Bar-hen, M. Cord, and P. Pérez, Addressing failure prediction by learning model confidence, Advances in Neural Information Processing Systems (NeurIPS), pp.2902-2913, 2019.

M. Cuturi and M. Blondel, Soft-dtw: a differentiable loss function for time-series, International Conference on Machine Learning (ICML), pp.894-903, 2017.

E. De-bezenac, A. Pajot, and P. Gallinari, Deep learning for physical processes: Incorporating prior scientific knowl, International Conference on Learning Representations (ICLR), p.6, 2005.

E. L. Denton, Unsupervised learning of disentangled representations from video, Advances in neural information processing systems (NeurIPS), vol.1, pp.4414-4423, 2017.

B. Dong, Q. Jiang, and Z. Shen, Image restoration: Wavelet frame shrinkage, nonlinear evolution PDEs, and beyond

, Multiscale Modeling & Simulation, vol.15, issue.1, p.5, 2017.

S. A. Eslami, N. Heess, T. Weber, Y. Tassa, D. Szepesvari et al., Attend, infer, repeat: Fast scene understanding with generative models, Advances in Neural Information Processing Systems (NeurIPS), pp.3225-3233, 2016.

R. Fablet, S. Ouala, and C. Herzet, Bilinear residual neural network for the identification and forecasting of geophysical dynamics, 26th European Signal Processing Conference (EUSIPCO), vol.2, pp.1477-1481, 2018.

C. Finn, I. Goodfellow, and S. Levine, Unsupervised learning for physical interaction through video prediction, Advances in neural information processing systems (NeurIPS), vol.1, pp.64-72, 2016.

M. Fraccaro, S. Kamronn, U. Paquet, and O. Winther, A disentangled recognition and nonlinear dynamics model for unsupervised learning, Advances in Neural Information Processing Systems (NeurIPS), pp.3601-3610, 2017.

Y. Gal and Z. Ghahramani, Dropout as a bayesian approximation: Representing model uncertainty in deep learning, International Conference on Machine Learning (ICML), pp.1050-1059, 2016.

H. Gao, H. Xu, Q. Cai, R. Wang, F. Yu et al., Disentangling propagation and generation for video prediction, International Conference on Computer Vision (ICCV), pp.9006-9015, 2019.

T. Haarnoja, A. Ajay, S. Levine, and P. Abbeel, Backprop KF: Learning discriminative deterministic state estimators, Advances in Neural Information Processing Systems (NeurIPS), pp.4376-4384, 2016.

J. Hsieh, B. Liu, D. Huang, L. F. Fei-fei, and J. C. Niebles, Learning to decompose and disentangle representations for video prediction, Advances in Neural Information Processing Systems (NeurIPS), vol.7, pp.517-526, 2006.

C. Ionescu, D. Papava, V. Olaru, C. Sminchisescu, and . Human3, 6M: Large scale datasets and predictive methods for 3D human sensing in natural environments, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.36, issue.7, pp.1325-1339, 2013.

J. Jia and A. R. Benson, Neural jump stochastic differential equations, Advances in Neural Information Processing Systems, pp.9843-9854, 2019.

X. Jia, B. De-brabandere, T. Tuytelaars, and L. V. Gool, Dynamic filter networks, Advances in Neural Information Processing Systems (NeurIPS), vol.1, pp.667-675, 2016.

R. Kalman, A new approach to linear filtering and prediction problems, Trans. ASME, D, vol.82, p.4, 1960.

T. Kipf, E. Fetaya, K. Wang, M. Welling, and R. Zemel, Neural relational inference for interacting systems, ternational Conference on Machine Learning (ICML), pp.2693-2702, 2018.

A. Kosiorek, H. Kim, Y. W. Teh, and I. Posner, Sequential attend, infer, repeat: Generative modelling of moving objects, Advances in Neural Information Processing Systems (NeurIPS), pp.8606-8616, 2018.

R. G. Krishnan, U. Shalit, and D. Sontag, Deep Kalman filters. ArXiv, 2015.

Y. Kwon and M. Park, Predicting future frames using retrospective cycle GAN, Conference on Computer Vision and Pattern Recognition (CVPR), vol.1, pp.1811-1820, 2019.

V. , L. Guen, and N. Thome, Shape and time distortion loss for training deep time series forecasting models, Advances in Neural Information Processing Systems (NeurIPS), pp.4191-4203, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02291601

Y. Li, C. Fang, J. Yang, Z. Wang, X. Lu et al., Flow-grounded spatial-temporal video prediction from still images, European Conference on Computer Vision (ECCV), pp.600-615, 2018.

X. Liang, L. Lee, W. Dai, and E. P. Xing, Dual motion GAN for future-flow embedded video prediction, International Conference on Computer Vision (ICCV), pp.1744-1752, 2017.

Z. Liu, R. A. Yeh, X. Tang, Y. Liu, and A. Agarwala, Video frame synthesis using deep voxel flow, International Conference on Computer Vision (ICCV), vol.1, pp.4463-4471, 2017.

Z. Long, Y. Lu, and B. Dong, PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network, Journal of Computational Physics, vol.2, p.5, 2019.

Z. Long, Y. Lu, X. Ma, and B. Dong, PDE-Net: Learning PDEs from data, International Conference on Machine Learning, pp.3214-3222, 2005.

C. Lu, M. Hirsch, and B. Scholkopf, Flexible spatiotemporal networks for video prediction, Conference on Computer Vision and Pattern Recognition (CVPR), pp.6523-6531, 2017.

Y. Lu, A. Zhong, Q. Li, and B. Dong, Beyond finite layer neural networks: Bridging deep architectures and numerical differential equations, International Conference on Machine Learning (ICML), pp.3282-3291, 2004.

Z. Luo, B. Peng, D. Huang, A. Alahi, and L. Fei-fei, Unsupervised learning of long-term motion dynamics for videos, Conference on Computer Vision and Pattern Recognition (CVPR), pp.2203-2212, 2017.

S. Mallat, A wavelet tour of signal processing, 1999.

M. Mathieu, C. Couprie, and Y. Lecun, Deep multi-scale video prediction beyond mean square error, International Conference on Learning Representations (ICLR), vol.1, 2015.

M. Minderer, C. Sun, R. Villegas, F. Cole, K. Murphy et al., Unsupervised learning of object structure and dynamics from videos, Advances in neural information processing systems (NeurIPS), vol.1, 2019.

D. Mrowca, C. Zhuang, E. Wang, N. Haber, L. F. Fei-fei et al., Flexible neural representation for physics prediction, Advances in Neural Information Processing Systems (NeurIPS), pp.8799-8810, 2018.

J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh, Actionconditional video prediction using deep networks in Atari games, Advances in neural information processing systems (NeurIPS), pp.2863-2871, 2015.

M. Oliu, J. Selva, and S. Escalera, Folded recurrent neural networks for future video prediction, European Conference on Computer Vision (ECCV), vol.2, p.5, 2018.

R. Palm, U. Paquet, and O. Winther, Recurrent relational networks, Advances in Neural Information Processing Systems (NeurIPS), pp.3368-3378, 2018.

V. Patraucean, A. Handa, and R. Cipolla, Spatio-temporal video autoencoder with differentiable memory, ICLR 2016 Workshop Track, 2015.

T. Qin, K. Wu, and D. Xiu, Data driven governing equations approximation using deep neural networks, Journal of Computational Physics, issue.2, 2019.

M. Raissi, Deep hidden physics models: Deep learning of nonlinear partial differential equations, The Journal of Machine Learning Research, vol.19, issue.1, pp.932-955, 2018.

M. Raissi, P. Perdikaris, and G. E. Karniadakis, Data-driven discovery of nonlinear partial differential equations, 2017.

F. A. Reda, G. Liu, K. J. Shih, R. Kirby, J. Barker et al., SDC-Net: Video prediction using spatially-displaced convolution, European Conference on Computer Vision (ECCV), pp.718-733, 2018.

T. Robert, N. Thome, and M. Cord, Hybridnet: Classification and reconstruction cooperation for semi-supervised learning, European Conference on Computer Vision (ECCV), pp.153-169, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02073640

S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz, Datadriven discovery of partial differential equations, Science Advances, vol.3, issue.4, 2017.

A. Sanchez-gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Riedmiller et al., Graph networks as learnable physics engines for inference and control, International Conference on Machine Learning (ICML), pp.4467-4476, 2018.

H. Schaeffer, Learning partial differential equations via data discovery and sparse optimization, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.473, issue.2, 2017.

S. Seo and Y. Liu, Differentiable physics-informed graph networks, vol.1, 2019.

N. Srivastava, E. Mansimov, and R. Salakhudinov, Unsupervised learning of video representations using LSTMs, International Conference on Machine Learning (ICML), vol.2, p.5, 2015.

I. Sutskever, O. Vinyals, and Q. V. Le, Sequence to sequence learning with neural networks, Advances in neural information processing systems (NeurIPS), pp.3104-3112, 2014.

S. Tulyakov, M. Liu, X. Yang, and J. Kautz, Mocogan: Decomposing motion and content for video generation, Computer Vision and Pattern Recognition (CVPR), vol.1, pp.1526-1535, 2018.

S. Van-steenkiste, M. Chang, K. Greff, and J. Schmidhuber, Relational neural expectation maximization: Unsupervised discovery of objects and their interactions, International Conference on Learning Representations (ICLR), 2018.

R. Villegas, J. Yang, S. Hong, X. Lin, and H. Lee, Decomposing motion and content for natural video sequence prediction, International Conference on Learning Representations (ICLR, 2002.

R. Villegas, J. Yang, Y. Zou, S. Sohn, X. Lin et al., Learning to generate long-term future via hierarchical prediction, International Conference on Machine Learning (ICML), vol.2, p.7, 2017.

C. Vondrick, H. Pirsiavash, and A. Torralba, Generating videos with scene dynamics, Advances In Neural Information Processing Systems (NeurIPS), vol.1, pp.613-621, 2016.

J. Walker, K. Marino, A. Gupta, and M. Hebert, The pose knows: Video forecasting by generating pose futures, ternational Conference on Computer Vision (ICCV), pp.3332-3341, 2017.

Y. Wang, Z. Gao, M. Long, J. Wang, and P. S. Yu, PredRNN++: Towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning, vol.5, p.6, 2004.

Y. Wang, L. Jiang, M. Yang, L. Li, M. Long et al., Eidetic 3D LSTM: A model for video prediction and beyond, International Conference on Learning Representations (ICLR), vol.2, p.5, 2019.

Y. Wang, M. Long, J. Wang, Z. Gao, and S. Y. Philip, PredRNN: Recurrent neural networks for predictive learning using spatiotemporal lstms, Advances in Neural Information Processing Systems (NeurIPS), vol.5, p.6, 2004.

Y. Wang, J. Zhang, H. Zhu, M. Long, J. Wang et al., Memory in memory: A predictive neural network for learning higher-order non-stationarity from spatiotemporal dynamics, Computer Vision and Pattern Recognition (CVPR), vol.5, p.6, 2004.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Transactions on Image Processing, vol.13, issue.4, pp.600-612, 2004.

M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller, Embed to control: A locally linear latent dynamics model for control from raw images, Advances in neural information processing systems (NeurIPS), pp.2746-2754, 2015.

N. Watters, D. Zoran, T. Weber, P. Battaglia, R. Pascanu et al., Visual interaction networks: Learning a physics simulator from video, Advances in neural information processing systems (NeurIPS), pp.4539-4547, 2017.

E. Weinan, A proposal on machine learning via dynamical systems, Communications in Mathematics and Statistics, vol.5, issue.1, pp.1-11, 2017.

J. Wu, E. Lu, P. Kohli, B. Freeman, and J. Tenenbaum, Learning to see physics via visual de-animation, Advances in Neural Information Processing Systems (NeurIPS), pp.153-164, 2017.

S. Xingjian, Z. Chen, H. Wang, D. Yeung, W. Wong et al., Convolutional LSTM network: A machine learning approach for precipitation nowcasting, Advances in neural information processing systems (NeurIPS), vol.5, p.6, 2003.

J. Xu, B. Ni, Z. Li, S. Cheng, and X. Yang, Structure preserving video prediction, Conference on Computer Vision and Pattern Recognition (CVPR), pp.1460-1469, 2018.

T. Xue, J. Wu, K. Bouman, and B. Freeman, Visual dynamics: Probabilistic future frame synthesis via cross convolutional networks, Advances in neural information processing systems (NeurIPS), vol.1, pp.91-99, 2016.

Y. Ye, M. Singh, A. Gupta, and S. Tulsiani, Compositional video prediction, Computer Vision and Pattern Recognition (CVPR), pp.10353-10362, 2019.

J. Zhang, Y. Zheng, and D. Qi, Deep spatio-temporal residual networks for citywide crowd flows prediction, Thirty-First AAAI Conference on Artificial Intelligence, 2017.

M. Zhu, B. Chang, and C. Fu, Convolutional neural networks combined with Runge-Kutta methods, International Conference on Learning Representations (ICLR), 2019.

M. Moving and . Conv-block-;-upconv-block, ) upconv-block(64,32,1) conv-block(32,32,1) upconv-block(64,16,2) conv-block(32,64,2) upconv-block(32,8,1) conv-block(64,64,1) upconv(16,1,1) Traffic: Encoder Decoder conv-block(2,32,1) upconv-block, Encoder Decoder conv-block(1,8,1) upconv-block, vol.64, pp.conv-block

, 1) upconv-block(256,128,1) conv-block(16,32,1) upconv-block(256,64,2) conv-block(32,64,2) upconv-block(128,64,1) conv-block(64,64,1) upconv-block, vol.16

S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, Scheduled sampling for sequence prediction with recurrent neural networks, Advances in Neural Information Processing Systems, pp.1171-1179, 2015.

K. Cho, B. Van-merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares et al., Learning phrase representations using rnn encoder-decoder for statistical machine translation, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01433235

A. Emmanuel-de-bezenac, P. Pajot, and . Gallinari, Deep learning for physical processes: Incorporating prior scientific knowledge, 2017.

. Emily-l-denton, Unsupervised learning of disentangled representations from video, Advances in neural information processing systems, pp.4414-4423, 2017.

S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural computation, vol.9, issue.8, pp.1735-1780, 1997.

J. Hsieh, B. Liu, D. Huang, L. F. Fei-fei, and J. C. Niebles, Learning to decompose and disentangle representations for video prediction, Advances in Neural Information Processing Systems, vol.6, p.7, 2018.

C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, Human3. 6m: Large scale datasets and predictive methods for 3d human sensing in natural environments, IEEE transactions on pattern analysis and machine intelligence, vol.36, pp.1325-1339, 2013.

N. Srivastava, E. Mansimov, and R. Salakhudinov, Unsupervised learning of video representations using lstms, International Conference on Machine Learning, pp.843-852, 2015.

R. Villegas, J. Yang, Y. Zou, S. Sohn, X. Lin et al., Learning to generate longterm future via hierarchical prediction, ICML, vol.3, p.4, 2017.

Y. Wang, L. Jiang, M. Yang, L. Li, M. Long et al., Eidetic 3d lstm: A model for video prediction and beyond, 2018.

Y. Wang, J. Zhang, H. Zhu, M. Long, J. Wang et al., Memory in memory: A predictive neural network for learning higher-order nonstationarity from spatiotemporal dynamics, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol.3, p.4, 2019.

Y. Wu and K. He, Group normalization, Proceedings of the European Conference on Computer Vision (ECCV), pp.3-19, 2018.

Z. Shi-xingjian, H. Chen, D. Wang, W. Yeung, W. Wong et al., Convolutional lstm network: A machine learning approach for precipitation nowcasting, Advances in neural information processing systems, pp.802-810, 2015.

J. Zhang, Y. Zheng, and D. Qi, Deep spatiotemporal residual networks for citywide crowd flows prediction, Thirty-First AAAI Conference on Artificial Intelligence, 2017.