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We show that domain walls, or kinks, can be constructed in simple scalar theories where the scalar has no
potential. These theories belong to a class of k-essence where the Lagrangian vanishes identically when one
lets the derivatives of the scalar vanish. The domain walls we construct have positive energy and stable
quadratic perturbations. As particular cases, we find families of theories with domain walls and their
quadratic perturbations identical to the ones of the canonical Mexican hat or sine-Gordon scalar theories.We
show that canonical and noncanonical cases are nevertheless distinguishablevia higher order perturbations or
a careful examination of the energies. In particular, in contrast to the usual case, our walls are local minima of
the energy among the field configuration having some fixed topological charge, but not global minima.
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I. INTRODUCTION

Topological and nontopological solitons play an important
role in various domains of physics ranging from liquid
crystals, fluid mechanics to cosmology (see e.g., [1–5]).
The simplest and canonical example of such objects are
certainly domain walls, or kinks, which are known to exist
in particular in simple scalar theories where the vacuum
manifold possesses several connected components.
Considering such a theory, with a scalar ϕ, and a potential
VðϕÞ, domain walls can exist if the potential has more than
one minimum. The purpose of this work is to show that
similar domain wall solutions exist in scalar theories with no
potential; i.e., theories where the Lagrangian vanishes
identically when the derivatives of the scalar vanish.
Among such theories, we will concentrate here on Lorentz
invariant theories where the Lagrangian depends both on the
real scalar field ϕ and on its kinetic term X, defined by

X ¼ −
1

2
ημν∂μϕ∂νϕ; ð1Þ

assuming space-time is endowed with a Lorentzian flat
metric ημν (we will not consider here gravitating solutions).
Hence we will consider Lagrangians L of the form

L ¼ Pðϕ; XÞ ð2Þ

where the dependence of P on X and ϕ is nontrivial and in
particular not given by a sum of a free kinetic energy X and
potential energyVðϕÞ. Such theories have been considered in
many instances and are usually denoted as k-essence in the
context of cosmology and gravitation [6–9]. They have
second order equations of motion and can even be gener-
alized toLagrangian includingup to second derivatives of the
field, the so-called Horndeski theories [10,11]. Such theories
can be used in particular tomimic darkmatter via theMOND
paradigm [6,12] or even possibly as darkmatter itself [13], to
generate inflation without a potential [9,14,15] or get a late
time accelerated expansion [8,16].
In this context, the possibility of finding solitonic

configurations in theories with noncanonical kinetic terms
was considered in several works, in particular in the
Horndeski framework [17–34] and the corresponding field
configuration are sometimes dubbed “k-defects” [17].
Similar solutions also arose in the past in other contexts
for example in the well known Skyrme model [35]. The k-
defects, in particular, were found to behave differently from
standard defects due to the different nature of the kinetic
terms [17,30], however, at least in the single field case, all
the existing k-defects, are, despite their name, supported by
a nontrivial potential in the action, just as the usual
topological defects are. I.e., in the solutions considered
so far, Pðϕ; X ¼ 0Þ has a nontrivial dependence in the field.
Here we show that defects field configurations, specifi-

cally kinks, can be obtained in theories with no potential,
i.e., theories where the Lagrangian vanishes identically if
the kinetic term X is set to zero. This might not come as a
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surprise considering that one is allowed to freely choose the
function P to produce a given specified field profile,
however, we will also show that the quadratic perturbation
theory around these solutions can be made stable. In fact we
will further show that simple models can be considered
where both the kink solution and its perturbations are
identical to those of the canonical theories usually consid-
ered. We will not attempt here a full classification of the
theories allowing such kinks “without a potential” but will
only exhibit some simple models as an existence proof and
discuss some of the properties of these kinks in comparison
with the usual ones.
This work is organized as follows: in the next Sec. II we

recall some properties of kinks of usual scalar theories. We
then introduce k-essence domain walls (Sec. III) and show
how one can obtain kinks which have a profile just identical
to the one of the canonical mexican hat model and discuss
their stability and topological properties in a nonperturba-
tiveway. This is then generalized to other canonical profiles
including the one of the sine-Gordon model (Sec. IV). In a
following section, we discuss the perturbation theory
around our wall solutions (Sec. V) before concluding
(Sec. VI). Two appendixes give technical details on some
results introduced in the body of the text.

II. CANONICAL DOMAIN WALLS REVISITED

A. Actions and field equations
for canonical domain walls

Canonical domain walls can be constructed in a fairly
standard theory for a scalar field ϕ with a Lagrangian of the
form

Lcanðϕ; XÞ ¼ X − VðϕÞ: ð3Þ

where the field is assumed to live in a D dimensional flat
space-time with metric ημν ¼ diagð−1; 1;…; 1Þ, and VðϕÞ
is the potential energy. In the canonical case, V is chosen so
that it has two or more minima (with the same values of the
potential V) at different values ϕk

min of the field (where k
index the different minima). Domain walls1 are then
obtained as static vacuum solutions ϕðzÞ of the field
equations which only depend on one space-like direction
z (to simplify the discussion, one also usually assumes that
the field live inD ¼ 2 dimensions) and interpolate between
different adjacent minima ϕ−∞

min at z ¼ −∞ and ϕþ∞
min at

z ¼ þ∞. For the canonical models (3), a given vacuum
profile ϕðzÞ obeys the vacuum field equation which has the
first integral

1

2
ϕ02 − V ≈ J 0; ð4Þ

where J 0 is a constant, and here and henceforth a prime
means a derivative with respect to z. Note further that, when
we want to stress that a given expression is valid only on
shell for the background domain wall solution, we will
replace there the straight symbols (e.g., “¼”) (designating
off-shell relations) by curly symbols (e.g., “≈”). As a
consequence, the kink profile obeys

ϕ0 ≈�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV þ J 0Þ

p
ð5Þ

B. Some energy considerations

A standard trick due to Bogomol’nyi [36] (that we write
here in a slightly nonstandard way) allows then to discuss
easily the total energy2 H of such a configuration. Indeed,
this energy (or the energy per unit transverse to the
direction z if D > 2) is given by the integral over z of
the Hamiltonian density HðzÞ given by

HðzÞ ¼ 1

2
ϕ02ðzÞ þ VðϕÞ; ð6Þ

so that one has

H ¼
Z

HðzÞdz ð7Þ

¼
Z

dz

�
1

2

�
ϕ0�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðVþJ 1Þ

p �
2∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðVþJ 1Þ
p

ϕ0−J 1

�
ð8Þ

≥ ∓
Z

dz
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðV þ J 1Þ
p

ϕ0 � J 1

i
ð9Þ

where J 1 is an arbitrary constant. Choosing J 1 ¼ J 0 we
see that the last bound is saturated for a solution of the field
equations obeying (4), as the square appearing in the right
hand side of (8) vanishes. Moreover, it is possible to make
this energy finite for such a solution representing a domain
wall. In this case, one takes J 0 ¼ 0 and the domain wall
energy Hdw is given by the simple expression

Hdw ¼ �
Z

dz
h ffiffiffiffiffiffi

2V
p

ϕ0
i
¼ �

Z
ϕþ∞
min

ϕ−∞
min

dϕ
ffiffiffiffiffiffi
2V

p
ð10Þ

We will later enforce this finiteness as well as demand that
the energy density of the wall is locally finite. Thus we shall
require that

1Note that we will later specialize to D ¼ 2 where one calls
usually domains wall, kinks. As our result can be easily extended
from “kinks” in 2 dimensions to “domain walls” in arbitraryDwe
will use both terms interchangeably.

2Throughout this work, we use the same letterH to denote the
total energy and the energy density of the field configuration, the
difference between the two is just indicated by the dependence
on z of the energy density which is explicitly indicated when
necessary.
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Z
HðzÞdz < þ∞ ð11Þ

∀ z; jHðzÞj < þ∞ ð12Þ

C. Changing variables

The simple form of the first integral (4) can be used to
enlighten the nature of the canonical domain wall solutions
as well as ease the finding of the solutions to be discussed
thereafter. Indeed, for a generic ϕ, we define ψ as obeying

dψ ¼ � dϕffiffiffiffiffiffi
2V

p : ð13Þ

I.e., the ϕðψÞ solution of the above equation is given by the
same functional dependance as ϕðzÞ solution of the domain
wall profile equation (4) with J 0 ¼ 0. And using the new
variable ψ as field variable, the domain wall field equation
simply read ψ 0 ¼ 1, and in the ψ variable, the solution is
then simply represented by3 ψ ¼ z. Using the ψ variable,
we see that the Lagrangian (3) simply reads

Lcanðϕ; XÞ ¼ 2vðψÞ
�
Xψ −

1

2

�
≡ Lcanðψ ; Xψ Þ ð14Þ

≡vðψÞwðXψÞ ð15Þ

where vðψÞ is defined simply by the relation vðψÞ ¼
VðϕðψÞÞ, Xψ is defined as in (1) replacing there ϕ by ψ,
and the above equation also defines the function wðXψ Þ.
Considering the above Lagrangian as a starting point, and
looking for a one dimensional profile ψðzÞ, we see that the
part of the field equations deriving from this Lagrangian
and not proportional to second derivatives of the field
simply reads

v0ðψÞð2Xψw0ðXψÞ − wðXψÞÞ ¼ 0 ð16Þ

Hence, looking for a profile of the form ψ ¼ λz, and using
that for such a profile one has obviously ψ 00 ¼ 0 and
Xψ ≈ −λ2=2, we see that we get a solution provided −λ2=2
is a root of the function y defined by

yðXψÞ ¼ 2Xψw0ðXψÞ − wðXψ Þ: ð17Þ

In the canonical case, one has wðXψÞ ¼ 2Xψ − 1 and hence
yðXψÞ ¼ 2Xψ þ 1. Obviously λ ¼ �1 generates a solution
irrespectively of the form of v (say provided that v does not
vanish as ψ varies over the real line). To get a proper
domain wall, one should then check that the obtained

profile has localized energy and is stable. The previous
expression (10) yields the following form of the energy
density

HdwðzÞ ¼ 2vðψðzÞÞ ð18Þ
yielding the total energy

Hdw ¼ 2

Z þ∞

−∞
vðψÞdψ : ð19Þ

Hence, a necessary condition to have a domain wall is that
the above integral converges.

D. Some canonical models

Among the most studied and well-known cases which
have these properties is the model with the mexican hat
potential

Vmh ¼
1

2
ð1 − ϕ2Þ2 ð20Þ

The kink and antikink solutions are given by the profiles

ϕmhðzÞ ¼ � tanhðzÞ ð21Þ

and interpolate between the vacua ϕ�∞
min ¼ �1. This also

yields the following relation between ϕ and ψ as defined in
Eq. (13)

ϕ ¼ tanhðψÞ ⇔ ψ ¼ tanh−1ϕ: ð22Þ
Using the variable ψ , the Lagrangian reads

Lmhðψ ; XψÞ ¼
Xψ − 1

2

cosh4ðψÞ ; ð23Þ

the function vðψÞ is given here by

vmhðψÞ ¼ ð2 cosh4 ψÞ−1 ð24Þ

and the energy of the solution is just found to be

Hmh ¼
Z þ∞

−∞

dψ
coshðψÞ4 ¼

4

3
: ð25Þ

Another case of interest is the sine-Gordon potential

VsG ¼ 1 − cosðϕÞ ð26Þ

which obviously has the infinitely many minima V ¼ 0

at the fields values ϕk
min ¼ 2πk. The kink profile which

interpolate between the adjacent minima ϕk
min and ϕkþ1

min is
obtained to be

ϕsGðzÞ ¼ 2πkþ 4 arctan ez: ð27Þ
3Note that here and henceforth one can freely choose the

position of the domain wall. For simplicity, we will hence assume
it lays at the origin z ¼ 0.
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Remarkably, the sine-Gordon theory looks very similar to
the mexican hat theory (23) when using the ψ variable.
Indeed, in that case, we get that the relation between ψ and
ϕ is given by

ϕðψÞ¼ 2πkþ4arctaneψ ⇔ψ ¼ð−1Þk ln
				 tan

�
ϕ

4

�				 ð28Þ

and the function v is just obtained to be given by

vsGðψÞ ¼ 2cosh−2ψ : ð29Þ

As a result, the sine-Gordon Lagrangian reads now

LsGðψ ; XψÞ ¼
4

cosh2ðψÞ
�
Xψ −

1

2

�
: ð30Þ

Note that of course, the above changes of variables ϕðψÞ
are so-defined that its maps the real line (domain of
variation of ψ) to a finite interval (domain of variation
of ϕ) which does not represent the full range of variation
of the ϕ field of the original model, and e.g., it does not
cover the large values of ϕ in the mexican hat potential.
Note also that the Lagrangians (23) and (30) are singular at
the end of the interval of definition of ψ . Wewill come back
to this issue later.
Given the similarity between Lagrangians (23) and (30),

we can easily generalize these canonical models to a larger
set with Lagrangians of the forms

Lk;canðψ ; XψÞ ¼
K

cosh2kðψÞ
�
Xψ −

1

2

�
; ð31Þ

whereK is some positive constant and k an integer (an even
larger family exists letting k be half integer). It is easy to see
that ψ 0 ¼ �1 provides a solution of the field equations
of the kink type. The energy of this solution is finite and
given by

Hk;can ¼ K
Z þ∞

−∞

dz
cosh2kz

¼ KIk; ð32Þ

where Ik can be computed as

Ik ¼
Z þ∞

−∞

dz
cosh2kðzÞ ¼

ffiffiffi
π

p
ΓðkÞ

Γðkþ 1=2Þ for k ≥
1

2
; ð33Þ

where the above expression holds in particular for integers4

and half integers k. Consider now the change of variable of
the form

ϕ½ψ � ¼
ffiffiffiffi
K

p Z
ψ

0

du
coshku

: ð34Þ

When ψ varies over the whole real line, the interval of

variation of ϕ is just given by � −
ffiffiffi
K

p
2
I k

2
;

ffiffiffi
K

p
2
I k

2
½ and because

cosh is a positive function, we see that the above defined
ϕ½ψ � is invertible into a ψ ½ϕ� on this interval. This change of
variable puts the Lagrangian (31) in the standard form (3)
with the specific potential

VðϕÞ≡K
2
cosh−2kðψ ½ϕ�Þ; ð35Þ

where, at this stage, V is defined for ϕ ∈ � −
ffiffiffi
K

p
2
I k

2
;

ffiffiffi
K

p
2
I k

2
½.

However, one can extend the domain of variation of ϕ to the
whole real line. Indeed, it is easy to see that dV=dϕ
vanishes at the ends of this interval (where ψ diverges)
hence it is always possible to make V periodic with a period
then given by

ffiffiffiffi
K

p
I k

2
just by “folding” the potential along

the end of the above defined interval. Another possibility to
obtain such an extension is to use an analytic extension
which form can be obtained explicitly at least for some
specific values of k. This is the case e.g., for k ¼ 2 which
corresponds to the canonical mexican hat model and yields
by the above procedure (34)–(35) the potential VðϕÞ of
Eq. (20) where the domain of variation of ϕ can be
extended to all the real ϕ. The values k ¼ 6 or k ¼ 10
also yield expressions for ψ ½ϕ� (however not very enlight-
ening) which in turn result in potentials having a similar
shape to the mexican hat one. Notice that these potentials
are not periodic. In turn, the values k ¼ 1 (corresponding to
the sine-Gordon model) and k ¼ 1=2 yield periodic poten-
tials by such an analytic extension. We show these
potentials on Figs. 1 and 2. The stability analysis of those
models (and their natural generalisation to the k-essence
framework) is presented later, in Sec. IV E. It would be
interesting to classify in a more detailed way the theories,
depending on the nature of the extensions considered here.

FIG. 1. Analytic extension of the potential VðϕÞ for k ¼ 2,
k ¼ 6 and k ¼ 10 respectively.

4Note that whenever k is a an integer, Ik can also be expressed
as 2 × 4k−1ððk − 1Þ!Þ2=ð2k − 1Þ!
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E. Stability and topology

The stability of the canonical domain walls can be
addressed in several ways. Before recalling in the next
subsection some standard results on perturbations of
canonical domain walls; we first discuss here their non-
perturbative stability appealing to some “topological”
arguments. We feel that this discussion is often obscured
in the literature by an intrication of topological and non-
topological arguments and we would like to clarify this
below as it matters for the discussion of the stability of
nonstandard domain walls to be introduced later.
We recall first that the bound (9) on the total energy also

holds for time dependent solutions as the kinetic energy
only adds a positive contribution to the right hand side of
(6). More specifically, we can write the conserved total
energy HðtÞ of any field configuration ϕðt; zÞ as

HðtÞ ¼
Z

dz

�
1

2
_ϕ2 þ 1

2
ðϕ0 �

ffiffiffiffiffiffi
2V

p
Þ2 ∓ ffiffiffiffiffiffi

2V
p

ϕ0
�

ð36Þ

where a dot means a time derivative. Separating the different
contributions, we haveHðtÞ ¼ HkinðtÞ þHgradðtÞ þH∞ðtÞ
where the terms appearing on the right hand side are given by

HkinðtÞ ¼
Z

1

2
_ϕ2dz ð37Þ

HgradðtÞ ¼
Z

1

2
ðϕ0 �

ffiffiffiffiffiffi
2V

p
Þ2dz ð38Þ

H∞ðtÞ ¼
Z

∓ ffiffiffiffiffiffi
2V

p
ϕ0dz ð39Þ

Obviously, Hkin and Hgrad are positive, so any field con-
figuration has a total energy larger thanH∞ which in turn is
only depending on the values of the field at z ¼ �∞ and is
just given byHdw for a canonical domainwall configuration.
A standard statement is that the canonical domain walls

are stable due to the topology of the vacuum manifold.
More specifically, the idea is here that a given vacuum of a

canonical theory (3) is obeying X ¼ 0 and ϕ ¼ ϕk
min for

some specific k and then is indexed (classically) by the field
value ϕk

min. In order to have a finite energy, a given domain
wall solution must lie in vacuum at z ¼ �∞, and the values
of the field at �∞ cannot change continuously while
conserving the finite energy of this solution. This is usually
related to the existence of a topological charge Q defined
from the current

Jμ ¼ Cϵμν∂νϕ ð40Þ

where C is a proper normalization constant, and ϵμν is the
fully antisymmetric Levi-Civita contravariant tensor. By
construction, this current is conserved irrespectively of the
field equations and for a generic field configuration ϕðt; zÞ
one has J0 ¼ Cϕ0, The topological (conserved) charge is
then defined as

Q ¼
Z þ∞

z¼−∞
dzJ0ðzÞ ¼ Cðϕðþ∞Þ − ϕð−∞ÞÞ: ð41Þ

The domain wall total energy is, as can be seen from (10),
related toQ. Note however that this argument on stability is
not so clear as it may seem and we would like to discuss it
below with some details.
First we note that there is some arbitrariness in the

definition of the topological charge. Indeed, the conserva-
tion of the current Jμ as it is defined above is just obviously
a trivial consequence of the antisymmetry of ϵ, so that one
could have replaced ϕ in the right-hand side of (40) by any
function of ϕ and obtained a different conserved current
and a different associated charge. Given the form of the
decomposition (36) an interesting choice of current J̃μ is
given

J̃μ ¼ C̃ϵμν∂ν

�Z
ϕ

ϕ0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðuÞ

p
du

�
ð42Þ

where C̃ and ϕ0 are some constants, implying that J̃0 ¼
C̃

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðϕÞp

ϕ0, so that the conserved charge is now

Q̃ ¼
Z þ∞

z¼−∞
dzJ̃0ðzÞ ¼∓ C̃H∞ ð43Þ

For a generic field configuration ϕðt; zÞ one has now a clear
identity between the topological charge Q̃ and H∞ while
this was not true using the topological charge Q, given that
in general H∞ does not depend only on the difference of
field values at z ¼ �∞. Note that the form of the charge Q̃
is associated with a superpotential WðϕÞ defined by
VðϕÞ ¼ 1

2
ðdWdϕÞ2 as observed by Bogomol’nyi [36] (see also

e.g., [5]).
Let us then consider the issue of the stability of a given

domain wall profile. To that end we consider a given field

FIG. 2. Analytic extension of the potential VðϕÞ for k ¼ 1 and
k ¼ 1=2, yielding a periodic profile.
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configuration ϕðt; zÞ which only differ at time t ¼ t0 from
some given domain wall profile ϕdwðzÞ in a bounded
region. Obviously, because: (i) the static (and eternal)
domain wall solution (given by ϕdwðt; zÞ ¼ ϕdwðzÞ ∀ t)
has vanishing contributions Hkin and Hgrad, (ii) the field
profile ϕðt0; zÞ and ϕdwðzÞ are assumed to differ only in a
bounded region and hence have the same energy contri-
bution H∞ which is conserved, and (iii) the contributions
Hkin and Hgrad are always positive, we see that the domain
wall is an absolute minimum of energy for field configu-
rations having the same conserved charge Q̃, and that no
localized perturbation of it can change the topological
charge Q̃. This shows that the wall configuration is stable,
but we stress that this argument is unrelated to the topology
of the vacuum manifold, but only relies on the form of the
energy (36).

F. Kinks perturbations

The perturbative stability of the kinks can be checked by
deriving the action for the second order perturbations
around them, which is also the starting point for the
quantization of these perturbations, using the kinks as
vacua. By Fourier decomposing a given such perturbation
φ as φ ¼ P

φkðzÞeiωkt one sees that each mode then obeys

ðZzzφ0
kÞ0 − ðZ00ω2

k þM2Þφk ¼ 0; ð44Þ

where Z00, Zzz and M2 are z- and model-dependent (i.e.,
depend on the wall profile). The above equation is in the
Strum-Liouville form5 and the modes obey an orthogon-
ality relation with the measure dzð−Z00Þ of the form (see
e.g., [37])

Z
dzð−Z00Þφkφk0 ¼ 0 for k ≠ k0: ð45Þ

One can show that a generic kink always possesses a zero
mode (i.e., a solution of the above (44) with ωk ¼ 0) φ0 ∝
ϕ0 associated with the translation of the defect along z. In
canonical cases discussed here with potentials (20) and
(26), this zero mode is the lowest lying mode of the
spectrum and belongs to a discrete part of the spectrum (in
the case of potential (20), there is another discrete mode)
and can be normalized with the above measure, and there is
a continuum above (see e.g., [2,3]). The conditions

−Z00Zzz > 0; ð46aÞ

0 < 2

Z
dzZ00X < þ∞; ð46bÞ

are fulfilled, indicating stable perturbations.6 Indeed, the
first condition makes sure that the perturbations are free
from tachyonic instabilities, while together with the last
condition it implies that the perturbations have positive
energy and obey an hyperbolic equation. The last condition
is also implying that the zero mode φ0 has a finite norm (as
one has φ2

0 ∝ ϕ02 ¼ −2X). For the canonical models above,
we find

Zzz ¼ −Z00 ¼ 1;

M2 ¼ 2ð3ϕ2 − 1Þ ≈ 6tanh2ðzÞ − 2; ð47Þ

for the mexican hat model (3)–(20) and

Zzz ¼ −Z00 ¼ 1;

M2 ¼ cosðϕÞ ≈ 2tanh2ðzÞ − 1; ð48Þ

for the sine-Gordon model (3)–(26). Once again the two
different models exhibit similar features. Both obey the
conditions (47). Note that we can have stable perturbations
even if the squared massM2ðzÞ is locally negative. Indeed,
this is what happens above around the origin z ¼ 0.

III. K-ESSENCE DOMAIN WALLS

A. Generic features

Starting from a model with a Lagrangian of the form (2),
and restricting ourselves to a 1þ 1 dimensional space, with
metric ημν ¼ diag½−1; 1�, we look for a kink solution ϕðzÞ
with stable quadratic perturbations. For such a static
configuration, the field equations have the first integral7

J ¼ 2XPX − P ≈ J 0; ð49Þ

where J 0 is a constant. This relation is the equivalent of the
canonical (4), up to a sign, and it is related to the field
equations of the scalar reading

E ¼ ϕ00ðPX þ 2XPXXÞ þ Pϕ − 2XPXϕ ≈ 0: ð50Þ

One has

J 0 ¼ −Eϕ0 ð51Þ

which is valid for an arbitrary number of dimensions D.
Note that in general (i.e., without assuming any special
field configuration, so in particular, without assuming that
ϕ only depends on one coordinate z as for the domain wall
case) a Lagrangian (2) has to obey some conditions in order

5Note that it can be put in a Schrödinger form by redefining
φ → ð−Z00ZzzÞ1=4φ and dz → ð−Z00=ZzzÞ1=2dz, see e.g., [37].

6At the price of having noncanonical perturbations, we could
possibly have allowed Zzz to vanish and still have stable
perturbations. We will not consider this possibility here.

7Where here and henceforth, we denote with a subscript the
derivation with respect to ϕ or X: e.g., PX ¼ ∂Pðϕ; XÞ=∂X.
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for the theory to be consistent for arbitrary field configu-
rations. These conditions read [9,38–42]

0 < PX ð52Þ

0 < 2XPXX þ PX: ð53Þ

The first condition above is necessary in order to have a
bounded from below Hamiltonian, while the two condi-
tions together lead to hyperbolic equations of motion. In
particular note that the second one enters as the coefficient
of the second derivative in the field in equation (50). We
will come back to these conditions later. A domain wall
being static, it energy density HðzÞ is simply given by the
on-shell value of its Lagrangian

HðzÞ ≈ −PðϕðzÞÞ ð54Þ

and in order to have a proper domain wall solution, we shall
demand that the energy conditions (11) and (12) hold. We
will also look for kinks solutions where J 0 vanishes, as is
the case for kinks of canonical models discussed in the
previous section.
The perturbations φðt; zÞ around a given background

configuration ϕðzÞ have a Lagrangian reading at quadratic
order

δð2ÞL ¼ −
1

2
½Zμν∂μφ∂νφþM2φ2�; ð55Þ

where the kinetic matrix is diagonal. Its nontrivial compo-
nents and the squared mass term are given by

Z00 ¼ −PX; Zzz ¼ J X ¼ 2XPXX þ PX and

M2 ¼ −Eϕ ¼ J ϕϕ − J ϕXϕ
00: ð56Þ

Following the same path as in the previous section, we
Fourier transform a perturbation as φðt; zÞ ¼ P

φkðzÞeiωkt

so that every Fourier mode obeys Eq. (44). As in the
canonical case, we can show that there is always a zero-
mode. Indeed, differentiating the equation of motion (50) of
the background field with respect to z yields

E0 ¼ ðJ Xϕ
00Þ0 þ ðJ ϕXϕ

00 − J ϕϕÞϕ0

¼ ðZzzϕ00Þ0 −M2ϕ0 ≈ 0; ð57Þ

so that the zero mode is given by φ0ðzÞ ∝ ϕ0ðzÞ. In order to
have stable perturbations (and hence a stable solution) we
shall demand that conditions (47) are fulfilled, as in the
canonical case. Note in particular that, as φ0ðzÞ ∝ ϕ0ðzÞ,
and as we will be looking for theories having the same
domain wall profiles as in the canonical theory (e.g., ϕ ∝
tanhðzÞ or ϕ ∝ arctan ez) this implies that the zero mode
has no node, and hence, following a standard argument, is
the lowest lying one. In addition, as we have Z00 ¼ −PX,

the condition (46b), together with the hypothesis that J 0

vanishes, implies via equation (49) that the total energy of
the wall obtained via (11) (and (54) is finite and positive.
This also shows that whenever J 0 vanishes, the norma-
lizability of the zero mode implied by condition (46b) is
just equivalent to having a wall with finite total energy. In
fact, as seen from the definitions (56), conditions (47) are
equivalent on the wall background to conditions (52)
and (53).
To summarize, in order to find a proper domain wall with

stable perturbations (and assuming J 0 ¼ 0, as we shall
now do), it is enough to ask that conditions (47) hold,
which in turn implies (11) and the normalizability of the
zero mode. We will also check that (12) holds. We recall
also that we will look for walls in theories with no
potentials, i.e., in theories where the Lagrangian Pðϕ; XÞ
vanishes identically at X ¼ 0.

B. Stability conditions

Let us apply the conditions (47) to a general potential-
free Pðϕ; XÞ case. We will assume that the function P can
be power expanded into

ffiffiffiffiffiffiffi
−X

p
as in

Pðϕ; XÞ ¼
X
n≥2

αnðϕÞð−2XÞn=2; ð58Þ

where we have set α0 to zero in order to avoid having a
potential as well as set α1 to zero as such a term would not
contribute to the field equations when the profile depends
only on one spatial direction z. Hereafter, we will denote
the background (i.e., the domain wall) value of jϕ0j as f so
that one has X ≈ −f2=2 and f is positive. We will further
consider that f is either a constant or a nontrivial function
of ϕ, fðϕÞ (which is always the case at least implicity if
ϕðzÞ is locally nonconstant). Note further that as we
consider here spatial profiles, X is negative, hence the
chosen minus sign inside the powers appearing on the right-
hand side of (58). In a more general situation, should we
want to keep fractional powers in (58), we would rather
introduce an absolute value of X for terms with odd n in this
expansion.

1. No domain-walls for PðXÞ theories
Let us first investigate the simplest PðXÞ case (i.e., we

assume that Pϕ ¼ 0). In this case, the on-shell conservation
equation (49) can easily be integrated to yield (a non-
vanishing J 0 would just add below a trivial constant on the
right-hand side)

PðXÞ ¼ P0

ffiffiffiffiffiffiffiffiffi
−2X

p
≈ P0jϕ0j: ð59Þ

Such a theory does not fall in the class (58), as it just has a
nonvanishing α1, it does not yield domain walls of the kind
we are after here and hence will not be further considered.
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2. Separable theories

We then focus on “separable” theories, i.e., consider

Pðϕ; XÞ ¼ αðϕÞ
X
n≥2

βnð−2XÞn=2; ð60Þ

where fβngn≥2 is a collection of constant coefficients. In
this case, one has simply

J ¼ αðϕÞ
X
n≥2

βnðn − 1Þð−2XÞn=2

¼ αðϕÞ
X
n≥2

βnðn − 1Þfn ≈ 0 ð61Þ

where the last equality holds for the sought for domain
wall, as we assumed J 0 ¼ 0. Hence, leaving aside the case
of a vanishing α which would make the theory trivial,
we must have f a constant f0, root of the polynomial
equation (61). In this case, the energy density is given by
H ¼ −αðϕÞP βnfn0, so we have to impose that α is regular
everywhere (or at least in the domain of variation of ϕ for
the domain wall profile). The kinetic matrix of the domain
wall perturbations is given by

Z00 ¼ αðϕÞ
X
n≥2

nβnfn−20 and

Zzz ¼ −αðϕÞ
X
n≥2

nðn − 1Þβnfn−20 ; ð62Þ

thus the conditions (46a) and (46b) become respectively

0 <

�X
n≥2

nβnfn0

��X
m≥2

mðm − 1Þβmfm0
�

ð63aÞ

0 < −
�X

n≥2
nβnfn0

�Z
αðϕðzÞÞ dz < þ∞: ð63bÞ

Note that the case of separable theories (60) in fact also
covers canonical domain walls discussed in the previous
section, as the corresponding canonical Lagrangians can be
put in the separable form using the variable ψ [Eqs. (23)
and (30)]. Using this variable, and not (we stress) ϕ, one
finds indeed that the canonical domain walls are repre-
sented by f ¼ jψ 0j a constant equal to f0 ¼ 1. However,
obviously, theories which are separable in ϕ variable cannot
support domain wall profiles of the type ϕ ¼ tanhðzÞ, as the
corresponding f is not constant. This would not be true, if
one would relax the no-potential hypothesis. E.g., the
following separable theory

Pðϕ;XÞ¼P0

eλ
ffiffiffiffiffiffiffi
−2X

p
−λð1−ϕ2Þ

1−λð1−ϕ2Þ ; ðλ;P0Þ∈�0;1½×R−⋆ ; ð64Þ

which behaves as in the X → 0 limit as

Pðϕ; 0Þ ¼ P0e−λð1−ϕ
2Þ

1 − λð1 − ϕ2Þ ; ð65Þ

admits a stable domain wall with a ϕ ¼ tanhðzÞ profile
(with in this case a nonvanishing J 0 ¼ −P0).

3. Nonseparable theories

Let us now focus on themore general case of nonseparable
theories in the class (58) and define n0 ≥ 2 as the smallest
integer n for which αn is nonvanishing. We can extract αn0
from the first integral J 0 ¼

Pðn − 1Þαnfn ¼ 0. We find

αn0 ¼−
X
n>n0

n−1

n0−1
αnfn−n0 and H¼

X
n>n0

n−n0
n0−1

αnfn; ð66Þ

where again, we imply here that f can be locally expressed as
a function of ϕ. So the energy constraint (12) is satisfied as
long as f and αnðϕÞ do not blow up on the relevant range of
variation forϕ. The kineticmatrix of theperturbations around
the wall profile are given by

Z00 ¼
X
n>n0

αn
n0 − n
n0 − 1

fn−2 and

Zzz ¼
X
n>n0

ðn0 − nÞðn − 1Þαnfn−2: ð67Þ

So the conditions (46a) and (46b) become respectively

0 <

�
−
X
n>n0

n − n0
n0 − 1

αnfn
��X

m>n0

ðm − n0Þðm − 1Þαmfm
�
;

ð68aÞ

0 <
Z �X

n>n0

n − n0
n0 − 1

αnfn
�
dz < þ∞: ð68bÞ

In addition, one has of course to check that condition (12)
holds. To proceed further, we will be looking in the next
section for theories admitting walls with identical profiles to
the one of the canonical mexican hat theory and further show
how this can be generalized.

IV. MIMICKING CANONICAL DOMAIN
WALL PROFILES

A. Static profiles

We look for Lagrangians that can accommodate an
hyperbolic tangent domain-wall, ϕ ¼ tanhðzÞ identical to
the one of the mexican-hat model (21). The interest of such
configuration is three-folded. First, it will make our wall
easy to compare with the usual ones, second the zero-mode
φ0 ∝ ϕ0 ¼ cosh−2ðzÞ is also the fundamental mode, as it
bears no node; and third, the background value ofX is easily
expressed in terms of ϕ. Indeed, f ¼ jϕ0j obeys the func-
tional relation for the domain wall profile (background)
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fðzÞ ≈ 1 − ϕ2ðzÞ; ð69Þ

which can be used to simplifying the calculations. With this
inmind,we can further assume thatwe can power expand the
function αn as

αn ¼
X
p∈Z

βn;p
2ðn − 1Þ ð1 − ϕ2Þp ¼

X
p∈Z

βn;p
2ðn − 1Þ f

p ð70Þ

where βn;p are some constants (and the factor 2ðn − 1Þ is
introduced to simplify formulas below). Note that this
expansion is even in z (and ϕ) as fðzÞ is. We could have
added an odd part as well, however, this would drop out of
the crucial normalization condition (68b) and we will not
consider this possibility in this work, as we do not look for
exhaustivity here. The first step if to check the existence of a
domain wall solution in the equation of motion, or rather
here using the first integral (49) with J 0 ¼ 0. Let us first
further simplify the setting by considering the case where
only 3 coefficients βn;p do not vanish above, i.e., consider a
LagrangianP of the form (wewill later come back to a more
general form)

Pðϕ; XÞ ¼ X þ βn;p
2ðn − 1Þ ð1 − ϕ2Þpð−2XÞn=2

þ βm;q

2ðm − 1Þ ð1 − ϕ2Þqð−2XÞm=2; ð71Þ

where we have set in addition α2 ¼ −1=2, so that we also
have n0 ¼ 2. In order to get a finite energy, we must have
nþ p > 0 andmþ p > 0 so that the integrals

R
fnþpdz andR

fmþpdz converge in Eq. (66). Note that we have in
particular [see Eq. (33)]

Z þ∞

−∞
fkðzÞdz ¼ Ik: ð72Þ

Next, Eq. (66) imposes

βn;p ¼ f2−n−p − βm;qfmþq−n−p: ð73Þ

Assuming a nonvanishing βn;p, we get hence that (as f is not
a constant here)

p ¼ 2 − n and q ¼ 2 −m ð74Þ

together with the relation

βn;2−n ¼ 1 − βm;2−m; ð75Þ

so that we are left with a family of theories parametrized by
one parameter κ ≡ βm;2−m, with Lagrangians

Pn;mðϕ; XÞ ¼ X þ 1 − κ

2ðn − 1Þ
ð−2XÞn=2
ð1 − ϕ2Þn−2

þ κ

2ðm − 1Þ
ð−2XÞm=2

ð1 − ϕ2Þm−2 : ð76Þ

The conditions (73) ensures that the energy of the solution is
finite. Indeed the energy density is found via (66) to be

HðzÞ ¼ 1

2

�
n − 2

n − 1
þ ðm − nÞκ
ðn − 1Þðm − 1Þ

�
cosh−4ðzÞ ð77Þ

which integrates into a total energy

H ¼ 2

3

�
n − 2

n − 1
þ ðm − nÞκ
ðn − 1Þðm − 1Þ

�
: ð78Þ

Hence we get a strictly positive energy (density) provided
that

n −m
n − 2

κ < m − 1: ð79Þ

Let us finally check the constraints (47)–(69). The coef-
ficients of the kinetic matrix are found via Eq. (67) to be
independent of z and given by

Z00 ¼ −
1

2

�
n − 2

n − 1
þ ðm − nÞκ
ðn − 1Þðm − 1Þ

�
¼ −

3

4
H; ð80Þ

Zzz ¼ 2 − nþ ðn −mÞκ
2

: ð81Þ

As expected we see that the positivity and finiteness of the
energy is equivalent to the fulfillment of condition (46b), so
we just need to check that the other condition (46a) is
satisfied. As Z00 is strictly negative, this just amount to
check that Zzz is strictly positive, which is implying that

1 <
n −m
n − 2

κ: ð82Þ

Hence, at this point, we have shown that the family of
Lagrangians (76) does accommodate a hyperbolic tangent
configuration ϕ ¼ � tanhðzÞ with stable perturbations as
long as n andm are two distinct integers and together with κ
verify the bounds

n > 2; m > 2; 1 <
n −m
n − 2

κ < m − 1: ð83Þ

Note in particular, that these bounds cannot be satisfied if
κ ¼ 0, hence we need at least two nontrivial terms of the
form ð1 − ϕ2Þ2−nð−2XÞn=2 in the Lagrangian Pðϕ; XÞ.
However, more terms are allowed and we could have
considered a larger family with Lagrangians of the form
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P ¼
X
n≥2

κnð1 − ϕ2Þ2−nð−2XÞn=2 ð84Þ

where κn are more than three nonvanishing properly chosen
constants. We will later derive the conditions the κn must
obey. We see here in particular that the mexican potential
appear in the explicit form of the functions αnðϕÞ. In fact the
family (84) can even be generalized to

P¼
X
n≥2

κnðϕÞ
�
ð−2XÞn=2− n−1

n0−1
ð1−ϕ2Þðn−n0Þð−2XÞn0=2

�
;

ð85Þ
where n0 is an integer strictly greater than 1 (in principle,
κn0ðϕÞ can vanish) and fκnðϕÞg is a collection of functions
obeying

0 <

�X
n≠n0

n0 − n
n0 − 1

κnðϕÞ
ð1 − ϕ2Þ2−n

�

×

�X
m≠n0

ðm − n0Þðm − 1Þ κmðϕÞ
ð1 − ϕ2Þ2−m

�
ð86Þ

0<
Z �X

n≠n0

n−n0
n0−1

ð1−ϕðzÞ2ÞnκnðϕðzÞÞ
�
dz<þ∞ ð87Þ

In order to recover (84), it suffices to take n0 ¼ 2 and
κnðϕÞ ¼ ð1 − ϕ2Þ2−nκn, and the condition on the collection
of constants fκng discussed below is automatically satisfied
provided the above conditions hold. If the family (84) is
quite simple, it is not the only one to exhibit such features,
and another one, inspired by the DBI action, is presented in
Appendix A.
In the rest of this section, we will mostly focus on the on

the family (76) and features of its domain wall solution
before discussing its perturbations in the next section.

B. Changing variables

In order to compare our walls to the canonical ones, and
better understand their existence, it is instructive to first use
the variable ψ presented in a previous section in Eq. (13)
where V is taken to be the mexican hat potential (20).
Namely we set ψ ¼ tanh−1 ϕ so that the wall solution reads
ψ ≈ z and the Lagrangian (76) reads now

Pn;mðψ ; XψÞ ¼
1

cosh4ψ

�
Xψ þ 1 − κ

2ðn − 1Þ ð−2XψÞn=2

þ κ

2ðm − 1Þ ð−2Xψ Þm=2

�
: ð88Þ

Comparing this form with (23) we see that the above family
of theories and the canonical scalar with a mexican hat
potential belong to the same family of theories with
Lagrangians of the form

L ¼
�X

n∈N
κnð−2XψÞn=2

�
cosh−4ψ ; ð89Þ

where κn are constants, and in order to avoid issues with
fractional powers of negative expressions, we can restrict
the discussion to even integers n. Note also that the more
general form (84), once rewritten using the ψ variable,
reads also as in the above (89). One difference between our
theories (84) an the canonical one (23) is of course the
presence in (23) of a pure potential encoded in a non-
vanishing κ0 above. A generic theory (89) falls in the class
of separable theories discussed in the previous section and
the expression of the first integral J reads then as in (61)

J ¼
�X

n∈N
κnðn − 1Þð−2Xψ Þn=2

�
cosh−4ψ : ð90Þ

Hence we see that we can get a domain wall solution
ψ ¼ λz (leaving for the time being the possibility that λ
differs from �1) provided that J 0 vanishes and that λ is
a root of the polynomial (using that −2Xψ ≈ λ2) λ ↦P

k∈N κkðk − 1Þjλjk hence verifiesX
k∈N

κkðk − 1Þjλjk ¼ 0: ð91Þ

This holds true with λ ¼ �1 both for the canonical theory
(3)–(20) which has κ0 ¼ κ2 ¼ −1=2 (and the other κk
vanish), and for the family (88) which has

κ2 ¼ −
1

2
ð92Þ

κn ¼
1 − κ

2ðn − 1Þ ð93Þ

κm ¼ κ

2ðm − 1Þ ð94Þ

One worrisome aspect of the family of theories (76) (or
(88) is of course the fact that their Lagrangian appear
singular at ϕ ¼ �1, i.e., at the minima of the mexican hat
potential (20) which are reached at spatial infinity by the
domain wall solution ϕ ≈� tanhðzÞ. Note first that, as will
be shown later, the quadratic Lagrangian for the perturba-
tions around this solution is nowhere singular (including at
z ¼ �∞) allowing a well-defined perturbation theory
around the “vacuum” represented by the domain wall.
We also note that, once written with the ψ variable, both the
canonical model (3)–(20) and the models of the family (76)
appear singular at ψ ¼ �∞ which correspond to the
minima ϕ ¼ �1. However, going back to the ϕ variable
for the canonical mexican hat model, one gets rid of this
singularity. We now show that, similarly, a change of
variable can be made in the models (76) [or (88)] in order

CÉDRIC DEFFAYET and FRANÇOIS LARROUTUROU PHYS. REV. D 103, 036010 (2021)

036010-10



to make the Lagrangian everywhere nonsingular and in
fact to extend elegantly the models “beyond” ψ ¼ �∞
(or ϕ ¼ �1). To see this, it is convenient to define the
variable ξp by

dξp ≡ dϕ

ð1 − ϕ2Þ1−2
p

for p − 2 ∈ N: ð95Þ

This can be explicitly integrated to yield

ξpðϕÞ ¼ 2F1

�
1

2
; 1 −

2

p
;
3

2
;ϕ2

�
ϕ; ð96Þ

where 2F1ða; b; c;uÞ is the Gauss hypergeometric function
(which is well defined on the unit interval for its fourth
argument u, and whenever c > aþ b, see e.g., [43]). Some
special values of p however lead to more nice-looking
forms:

ξ2 ¼ ϕ; ξ4 ¼ arcsinðϕÞ;

ξ8 ¼ 2F

�
arcsinðϕÞ

2
;

ffiffiffi
2

p �
; ξ∞ ¼ tanh−1ϕ ð97Þ

where F is the elliptic integral of the first kind.8 Note that
ξ∞ just equals the variable ψ defined in Eq. (22). The
minima ϕ ¼ �1 of the mexican hat potential are mapped
respectively to the following values ξ�p given by

ξ�p ≡ ξpðϕ ¼ �1Þ ¼ �
ffiffiffi
π

p
Γð2pÞ

2Γð1
2
þ 2

pÞ
ð98Þ

where we recall that Γð0Þ ¼ ∞ and Γð1=2Þ ¼ ffiffiffi
π

p
. As a

consequence one sees in particular that for 2 < p < ∞ the
minima of the mexican hat potential are sent to finite values
of the ξp variable. We also have ξpð0Þ ¼ 0, and one can
check that the mapping (96) is (monotonic and hence) one
to one between ϕ ∈ ½−1; 1� and ξ ∈ ½ξ−p; ξþp �. In addition,
noticing that dξb=dϕ diverges in ϕ ¼ �1, one see that the
inverse mapping ϕ ¼ ϕðξpÞ can be naturally extended (for
finite p > 2) to a periodic everywhere smooth, nonsingular
function defined on entire real line and of period 4ξþp . In
general, this inverse mapping, even though it exists, does
not correspond to simple functions, however, this is not true
for p ¼ 4 and p ¼ 8, for which we have

ϕ ¼ sinðξ4Þ and

ϕ ¼ sin ð2amðξ8=2ÞÞÞ ¼ 2snðξ8=2Þ cnðξ8=2Þ; ð99Þ

where am is the so-called amplitude of the elliptic integral
F, and sn and cn are the so-called sine-amplitude and
cosine-amplitude, and we allow now ξp to vary over the
entire real line. Obviously the period of the first function
above is 2π ¼ 2

ffiffiffi
π

p
Γð1=2Þ=Γð1Þ, while the period of the

second function is 2
ffiffiffi
π

p
Γð1=4Þ=Γð3=4Þ ∼ 10.5. Of course

this is not the only possibility to extend the inverse function
beyond the points ξ�p , however, choosing this way offers an
elegant extension of the family of models (which strictly
speaking differ from the ones (76) where the function
ð1 − ϕ2Þ2 is not periodic). It would be interesting to
investigate if this “periodic” extension would allow us to
find solutions with a nontrivial time dependence interpolat-
ing between nonadjacent minima similarly to what is
known to exist in the sine-Gordon model.
The interest of the change of variable (96) appears

considering a Lagrangian of the form (76) and choosing
p ¼ m. Noting then ξ ¼ ξm, as well as defining Xξ as in (1)
replacing there ϕ by ξ, we get that P now reads

P ¼ κð−2XξÞm=2

2ðm − 1Þ þ 1 − κ

2ðn − 1Þ ð1 − ϕ2Þ2ð1−n
mÞð−2XξÞn=2

þ ð1 − ϕ2Þ2ð1−2
mÞXξ: ð100Þ

where ϕ is now considered as a function of ξ (i.e., ϕ ¼ ϕðξÞ
which we can—but do not have to—consider as periodic
in ξ). In this form the Lagrangian is no longer singular at the
finite values ϕ ¼ �1 (corresponding to ξ�), even though
the purely “kinetic” term of ξ has the nonstandard form
∝ ð−XξÞm=2. For the family (100), if one notes wðξÞ ¼
1 − ϕ2ðξÞ, the first integral J is found to be (while
equations (49)–(51) hold, mutatis mutandis)

J ¼w2ð1−2
mÞXξþ

1−κ

2
w2ð1−n

mÞð−2XξÞn2þ
κ

2
ð−2XξÞm2 : ð101Þ

Explicitly, we find the field equation operator E given by

E ¼
�
w2ð1−2

mÞ −
nð1− κÞ

2
w2ð1−n

mÞðξ0Þn−2 −mκ

2
ðξ0Þm−2

�
ξ00

− 2

�
m− 2

m
w2ð1−3

mÞðξ0Þ2 − ðm− nÞð1− κÞ
m

w2ð1−nþ1
m Þðξ0Þn

�
× ϕðξÞ;

ð102Þ

which in particular, as we have 2 < n < m, implying
m ≥ nþ 1 > 3, is nowhere singular. The domain wall
profile, solution of the above, is obviously given by

ξðzÞ ¼ 2F1

�
1

2
; 1 −

2

m
;
3

2
; tanh2ðzÞ

�
tanhðzÞ: ð103Þ

8Note that we use here the definition of [43], i.e., Fðφ; kÞ ¼R φ
0

dαffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−k2 sin α

p , which differs from the definition used e.g., in
Mathematica [44].
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Those profiles are shown in Fig. 3 for the cases m ¼ 2 (the
usual tanh), m ¼ 6 and m ¼ 8.

C. Energy, Bogomol’nyi and
topological considerations

Before writing out in the next section the explicit theory
of perturbations around our kinks, we would like here to
study their energy making the link with Bogomol’nyi’s and
Derrick’s arguments. To that hand we first consider the
theory written in the ψ variable, and start with the general
form (89) which encompasses the canonical mexican hat
model (allowing for a nonvanishing κ0). The total energy
density Hðt; zÞ of a given (arbitrary) field configuration is
easily found to be

Hðt; zÞ ¼ −
�X

n∈N
κ2nðψ 02 − _ψ2Þn þ 2nκ2n _ψ2ðψ 02 − _ψ2Þn−1

�

× cosh−4ψ ð104Þ

where to simplify the discussion we assume here and
henceforth that only κk with even k are nonzero. In the case
of the canonical mexican hat model (recall that we just have
then κ0 ¼ κ2 ¼ −1=2) we find an energy densityHðt; zÞ ¼
ð1þ ψ 02 þ _ψ2Þ=ð2cosh4ψÞ. Using then the notation

x ¼ ψ 0 ð105Þ

y ¼ _ψ ð106Þ

We see that the Bogomol’nyi trick and decomposition
(37)–(39) amounts here to just write the polynomial in
x and y appearing in the numerator of H¼ð1þx2þy2Þ=
ð2cosh4ψÞ as

1þ x2 þ y2 ¼ y2 þ ðx� 1Þ2 ∓ 2x; ð107Þ

where the first term on the right-hand side yields the kinetic
energy (after the proper division by 2 cosh4 ψ), the second
one vanishes for the wall profile x ¼∓ 1 and the last one

give the equivalent of the topological charge (39), i.e., it
gives choosing here the lowest sign (as would be appro-
priate for the kink, as opposed to the antikink which would
correspond to the solution x ¼ −1 and the choice of the
upper signs)

Z þ∞

−∞

ψ 0

cosh4ψ
dz ¼

Z
ψðþ∞Þ

ψð−∞Þ

du
cosh4u

ð108Þ

¼
�
tanhu −

1

3
tanh3u

�
u¼ψðþ∞Þ

u¼ψð−∞Þ
ð109Þ

¼
�
u −

1

3
u

�
u¼ϕðþ∞Þ

u¼ϕð−∞Þ
ð110Þ

¼
Z

ϕðþ∞Þ

ϕð−∞Þ
ð1 − u2Þdu ð111Þ

where the last form indeed matches the expression (39)
with the mexican hat potential (20). For the domain wall
profile we find the above expression yield 4=3 [see
Eq. (33)]. We now show that a decomposition similar to
(107) exists in general for our theories. Indeed, considering
(104) we see that the polynomial equivalent to (107) reads
in full generality

Π0ðx; yÞ ¼ −2
�X

n∈N
κ2nðx2 − y2Þn þ 2nκ2ny2ðx2 − y2Þn−1

�

ð112Þ

so that the Hamiltonian density is just Π0ðx; yÞ=2 cosh4 ψ ,
while, in order to have a domain wall with profile ψ ¼ �z,
the coefficient κn must obey [see Eq. (91)]

Σκ;0 ¼ 2Σκ;1 ð113Þ

where the Σκ;k are defined by

Σκ;k ¼
X
n∈N

κ2nnk; ð114Þ

where we imply in particular that Σκ;0 ¼
P

n∈N κ2n (using
the convention that 00 ¼ 1). At this stage, considering the
form of Π0, we can notice that the Hamiltonian cannot be
bounded below if the largest integer n for which κ2n does
not vanish, call it nmax, is even. In contrast, if nmax is odd
we see that at large x and y the dominant terms in Π0ðx; yÞ
read ð−2κ2nmax

Þðx2 þ ð2nmax − 1Þy2Þðx2 − y2Þnmax−1Þ which
shows that the Hamiltonian is bounded below for negative
κ2nmax

(and finite ψ ). In fact it can further be shown (see
below) that it is possible to find, for specific odd nmax and
κ2n, an everywhere positive Hamiltonian [the Hamiltonian
vanishing only at (x ¼ 0, y ¼ 0)]. Let us now expand Π0

FIG. 3. Behavior of the domain wall profile ξðzÞ (103)
normalized to its value at infinity for different values of m.
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around x ¼ �1 and y ¼ 0 corresponding to the domain
wall solution. We find after some simple manipulations

Π0ðx;yÞ¼ð4Σκ;1−2Σκ;0Þ∓4xΣκ;1þΠððx∓1Þ;y2Þ; ð115Þ

where Πða; bÞ is a polynomial in a and b which vanishes in
(a ¼ 0, b ¼ 0) and in addition start only at order a2 and b
expanding around this point. We see that the first term on
the right hand side of (115) vanishes by virtue of (113).
Hence we can write the total energy of any field configu-
ration in a theory of the family (89) which has a domain
wall solution as

HðtÞ ¼ Hkin;gradðtÞ þH∞ðtÞ; ð116Þ
where the two contributions on the right-hand side read,
using (113)

Hkin;gradðtÞ ¼
Z

Πððψ 0 ∓ 1Þ; _ψ2Þ
2cosh4ψ

dz ð117Þ

H∞ðtÞ ¼ ∓Σκ;0

Z
ψ 0

cosh4ψ
dz ð118Þ

where one sees that the last term is a topological conserved
charge just identical (up to a constant factor) to the one of
the canonical model (108) [see also (39)]. In the variable ψ
it is associated with the current

J̃μψ ¼ C̃ϵμν∂ν

�Z
ψ

ψ0

du
cosh4u

�
: ð119Þ

The above decomposition (116) generalizes the one of
Bogomol’nyi in our context, and one can check that with
the choice of nonvanishing κ2n given by κ0 ¼ κ2 ¼ −1=2
we find back exactly the form (36). It also allows to check
for the stability of the wall configuration within a class of
field configuration sharing the same conserved chargeH∞.
To that end we can look at the behavior of the contribution
Hkin;gradðtÞ by expanding Π around (0,0). Specifically,
taking into account the constraint (113) we find the
following expansion of Π0:

Π0ðx; yÞ ¼ ∓2xΣκ;0 − ðx ∓ 1Þ2ð4Σκ;2 − Σκ;0Þ
− y2Σκ;0 þ � � � ð120Þ

where the leftover terms are at least cubic in (x ∓ 1) and y.
This shows that the domain wall solution represent a local
minimum of the energy in the class of all field configu-
ration having the same topological charge provided that the
quantities Σκ;0 and Σκ;2 (defined above) verify

4Σκ;2 < Σκ;0 < 0 ð121Þ

For the domain wall one has Π ¼ 0 (i.e., Πð�1; 0Þ ¼ 0)
which means that the energy is only containing a nonzero

topological contributionH∞. Note however that in contrast
to the canonical mexican hat domain wall, the domain wall
“without a potential” (i.e., whenever κ0 vanishes) can not be
global minimum of the energy within the class of configu-
ration with the same topological charge. Indeed, from the
above discussion we see that Π ¼ Π0 � 2xΣκ;0, but Π0

vanishes in (x ¼ 0, y ¼ 0) where the dominant terms as x
and y approach zero are quadratic in x and y. This means
thatΠ has to change sign across (x ¼ 0, y ¼ 0) and must be
somewhere negative, preventing the local minimum of Π at
x ¼ �1, y ¼ 0 (whereΠ vanishes) to be a global minimum.
An interesting question is of course that of the existence of
such a global minimum and of its possible meaning for field
configurations. This is in fact a difficult question, as the
total energy (say in fields configurations with fixed
topological charges H∞) does not only depends on x
and y through Π but also on the value of the field ψ via
the denominator cosh−4 ψ. Hence, even if in some cases a
global minimum of Π can be found (e.g., for some models
in the class to be discussed below where the Hamiltonian is
bounded below), the discussion above shows that Π is
strictly negative there, and it is not enough to conclude for
what concerns the energy after the taking into account of
the coshψ−4 factor (in contrast, the local minimum of Π
found for the wall configuration is a local minimum of the
energy because Π vanishes there). We hope to be able to
investigate these issues, which are of course also related to
the nonperturbative decay of our walls, in a future work.
Conditions (121) are the ones κn should obey in order to

get a stable wall configuration. Setting κ2, κn and κm as in
Eqs. (92), (93) and (94) for some specific even n andm, we
can check that above conditions (121) are equivalent to
conditions (83) for the set of models (88). To discuss a more
explicit case, let us consider the simple model in the class
(76) with there n ¼ 4 andm ¼ 6. Explicitly the Lagrangian
of this model reads in the ψ variable

1

cosh4ψ

�
Xψ þ 1 − κ

6
ð−2Xψ Þ2 þ

κ

10
ð−2XψÞ3

�
; ð122Þ

hence we have κ2 ¼ −1=2, κ4 ¼ ð1 − κÞ=6, κ6 ¼ κ=10, so
that Σκ;0 ¼ −ð5þ κÞ=15 and 4Σκ;2 − Σκ;0 ¼ 1þ κ, hence
the constraint (121) is satisfied provided that

−5 < κ < −1: ð123Þ

This range corresponds also to the allowed range for κ
given in Eq. (83). Moreover, in the line of the discussion
following Eq. (113) one can show that restricting further κ
to be larger than −ð17þ 3

ffiffiffiffiffi
21

p Þ=10 ∼ −3.07 we get an
everywhere positive Hamiltonian Hðt; zÞ. As further
expected, we find in that case that Π vanishes at
x ¼ �1, y ¼ 0 which is a local minimum of Π, but Π is
negative somewhere on the y ¼ 0 line in the ðx; yÞ plane
and hence x ¼ �1, y ¼ 0 is not a global minimum of Π.
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This is shown in Fig. 4 for different values of κ, while
figure 5 shows the shape of the polynomial Π along the
x ¼ 1 line.
It is also interesting to see how the usual scaling

argument due to Derrick [45] applies here. To that end,
consider a rescaling of the domain wall solution ψ0ðzÞ ¼
�z as in ψω ¼ ψ0ðωzÞ. The total energy of the rescaled
field configuration ψω is easily obtained as

Hω ¼ −
4

3

X
n∈N

ωn−1κn: ð124Þ

Restricting ourselves here to the case of even n we obtain
easily the first and second derivatives of Hω evaluated at
ω ¼ 1 as

dHω

dω

				
ω¼1

¼ −
4

3
ð2Σκ;1 − Σκ;0Þ;

d2Hω

dω2

				
ω¼1

¼ −
4

3
ð4Σκ;2 − 6Σκ;1 þ 3Σκ;0Þ: ð125Þ

The first derivative above vanishes by virtue of the relation
(113), thus confirming that the domain wall is indeed a
solution. The second derivative is positive if the condition

(121) holds, thus Derrick’s usual scaling no-go argument is
evaded and the domain wall is stable against dilatations.

D. Static and moving walls

In the canonical mexican hat model (3)–(20), Eq. (91)
has only the roots λ ¼ �1. However, considering the more
general models (76) (or (88), it is possible that Eq. (91),
which now reads

λ2 þ ðκ − 1Þjλjn − κjλjm ¼ 0; ð126Þ

has some other roots λ different from �1. This would yield
a domain wall solution of profile

ϕλðzÞ ¼ � tanh ðλzÞ: ð127Þ

Note however, that λ ¼ �1 is always a solution of
Eq. (126), so that the standard domain wall profile coexists
always with the profile (127). E.g., the Lagrangian (122)
admits, beyond the “canonical” wall ϕ ¼ tanhð�zÞ another
wall solution of the kind (127) with λ ¼ �1=

ffiffiffiffiffiffi
−κ

p
.

However, while properties of the solution (127) (with
λ ≠ �1) are given in Appendix B, it is also shown there
that both solutions cannot be stable simultaneously: the
solution (127) can be made stable at the price of violating
the bounds (83) on κ which are in turn necessary for
the stability of the solution with the canonical profile.
However, having more than three terms in the Lagrangian
(76) [or (88)] leads to the possibility to have more roots to
the Eq. (91) and hence possibly more than one stable wall
solution, this will be investigated elsewhere.
Another possibility to extend the solutions discussed

above is to let the walls move. In particular, using the ψ
variable and considering for simplicity the models (88), it is
easy to see that the part of the field equations that do not
contain any second derivatives, is in full generality propor-
tional (and as consequence of Lorentz invariance) to

Xψ þ 1 − κ

2
ð−2XψÞn=2 þ

κ

2
ð−2Xψ Þm=2 ð128Þ

which for a static wall is in turn proportional to the
expression of the first integral J . This means that any
static wall profile (127) extends (including the “canonical”
case λ ¼ �1) to a moving solution of the form

ϕmðt; xÞ ¼ � tanh

�
λ

z� βtffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p �
; ð129Þ

where β < 1 is the dimensionless speed, and where one
has −2Xψ ¼ ψ 02 − _ψ2 ≈ λ2.

E. Sine-Gordon like and other walls

The above discussion and construction can easily be
extended to other kind of kink profiles such as the one of

FIG. 5. Behavior of Πðx − 1; y2Þ on the x ¼ 1 line, for the
model (88) with ðn;mÞ ¼ ð4; 6Þ and different values of κ.

FIG. 4. Behavior of Πðx − 1; y2Þ on the y ¼ 0 line, for the
model (88) with ðn;mÞ ¼ ð4; 6Þ and different values of κ.
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sine-Gordon or more generally the family of models (31).
Indeed, consider Lagrangians of the form

L ¼
�X

n∈N
κnð−2XψÞn=2

�
cosh−2kψ : ð130Þ

As the discussion of Secs. IV B and IV C applies whatever
the ψ-dependent factor in front of the Lagrangian, its
conclusions hold also for the family (130). In particular,
ψ ¼ λz is a solution as long as λ obeys (91) and moreover,
the solution with λ ¼ �1 is stable provided conditions
(113) and (121) hold. Turning back to the original ϕ
variable, the corresponding Lagrangians are simply given
by (84), where the powers of ð1 − ϕ2Þ are replaced by
powers of jϕ0j, considered and expressed in terms of ϕ, and
it is easy to get the corresponding domain wall profiles for
the ϕ variable. In particular, for k ¼ 1, we get stable domain
wall profiles identical to the one of sine-Gordon model
reading as in eq. (27) with the Lagrangians

P ¼
X
n≥2

κ2n sinðϕ=2 − pπÞ2−2nð−2XÞn p ∈ Z: ð131Þ

One feature of the sine-Gordon model is its integrability
leading in particular to nontrivial solutions such as breath-
ers or kink-antikink (see e.g., [4]). It would be interesting to
investigate if some remnant of such solutions still exist in
the kind of models considered here.

V. WALL PERTURBATIONS

We focus here on properties of perturbations around
the domain wall solutions discuss in the previous section.
To be specific, we will concentrate on the set of theories
(76)–(88)–(100).

A. Quadratic perturbations

We write a generic field configuration as ϕðt; zÞ ¼
ϕðzÞ þ φðt; zÞ, where ϕðzÞ ¼ � tanh z and the domain wall
perturbations φðt; zÞ, once Fourier transformed with respect
to time, obey Eq. (44). We give in the Table I below the
relevant coefficients Z00, Zzz, and M2 appearing in this
equation, we also indicated there the value of the energy
density HðzÞ of the domain wall solution. These functions
are given both for the generic Pn;m Lagrangians of Eq. (76),
for the specific choice ðn;mÞ ¼ ð4; 6Þ corresponding to

the Lagrangian P4;6, and for the canonical mexican hat
model (3)–(20) whose Lagrangian is denoted by Pcan. The
quantities relevant for this last model are henceforth
indicated with an index “ can”. We first note that the
perturbations of our “domain walls without a potential”
discussed here have an action very similar to the ones of
the canonical mexican hat wall. In particular, the kinetic
matrix is constant, thus the perturbations are well defined
everywhere in space. More precisely, we see that, as
M2 ¼ ZzzM2

can and Zzz is constant, a perturbation of
our wall obeys the same equation as a perturbation of the
canonical wall

ðZzz
canφ

0
kÞ0 − ðZ00

canω̃
2
k þM2

canÞφk ¼ 0; ð132Þ

where the frequency of each mode is multiplied by an
universal factor obtained below

ω̃2
k ¼

ðn − 2Þðm − 1Þ þ ðm − nÞκ
ð2 − nþ ðn −mÞκÞðn − 1Þðm − 1Þω

2
k: ð133Þ

In order to find stable perturbations, we recall that we have
to demand that conditions (47) are obeyed, which amounts
to just demand that Z00 is negative and Zzz positive.
In turn, this gives the bounds on κ given in Eq. (83).
We can further note that our models allows to find walls

which have exactly the same profile and energy density as
the canonical walls by tuning to 1 the coefficient in front of
cosh−4ðzÞ inHðzÞ choosing κ ¼ nðm − 1Þ=ðm − nÞ. These
walls are thus perfect “Doppelgänger” walls to use the
terminology of [30] (or “twinlike defects” see also [46,47]).
However, for such walls, the bounds (83) are violated so in
our cases these perfect Doppelgänger walls are not stable.
However, choosing

κ ¼ nðm − 1Þðn − 2Þ
ðn −mÞð2 − nþmðn − 1ÞÞ ; ð134Þ

which satisfies the bounds (83), we get ω̃2
k ¼ ω2

k and so the
theory has exactly the same spectrum as the canonical one.
This correspond explicitly to the family of Lagrangians

TABLE I. Comparison of the energy density and the perturbative quantities for the generic Pn;m Lagrangians of Eq. (76), for the
specific choice ðn;mÞ ¼ ð4; 6Þ corresponding to the Lagrangian P4;6, and for the canonical mexican hat model.

Pn;m P4;6 Pcan

HðzÞ 1
2

�
n−2
n−1 þ ðm−nÞκ

ðn−1Þðm−1Þ
�
cosh−4ðzÞ 5þκ

15
cosh−4ðzÞ cosh−4ðzÞ

Z00ðzÞ − 1
2

�
n−2
n−1 þ ðm−nÞκ

ðn−1Þðm−1Þ
�

− 5þκ
15

−1

ZzzðzÞ 2−nþðn−mÞκ
2

−ð1þ κÞ 1

M2ðzÞ ð2 − nþ ðn −mÞκÞð3ϕ2ðzÞ − 1Þ −2ð1þ κÞð3ϕ2ðzÞ − 1Þ 2ð3ϕ2ðzÞ − 1Þ
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Pðϕ; XÞ ¼ X þ 1

2ðm − nÞð2 − nþmðn − 1Þ

×

�
mðm − 2Þð−2XÞn=2

ð1 − ϕ2Þn−2 −
nðn − 2Þð−2XÞm=2

ð1 − ϕ2Þm−2

�
;

ð135Þ

which have stable domain walls with profile identical to the
one of the canonical mexican hat, and an energy density,
and kinetic matrix just rescaled by a (physically irrelevant)
common factor given by

ðn− 2Þðm− 2Þ
2ð2− nþmðn− 1ÞÞ ¼ 1−

mn
2ðmn− ðmþ nÞ þ 2Þ : ð136Þ

In this class of models, that we will call here and henceforth
a mimicker, the simplest ones are possibly obtained by
choosing ðn;mÞ ¼ ð4; 6Þ and κ ¼ −5=4 yielding the simple
Lagrangian

Pðϕ; XÞ ¼ X þ 3X2

2ð1 − ϕ2Þ2 þ
X3

ð1 − ϕ2Þ4 ; ð137Þ

which has a domain wall solution ϕ ¼ � tanhðzÞ, a
Hamiltonian everywhere positive as seen in the previous
section, and energy density and kinetic matrix just rescaled
by a global factor 1=4 with respect to the canonical ones.
Note that for this particular model, we can compute

PXð1 − ϕ2Þ4 ¼
�
ð1 − ϕ2Þ2 þ 3

2
X

�
2

þ 3

4
X2 ð138Þ

ð2XPXX þ PXÞð1 − ϕ2Þ4 ¼
�
ð1 − ϕ2Þ2 þ 9

2
X

�
2

−
21

4
X2

ð139Þ

so that we see that condition (52) is always fulfilled in
agreementwith having an everywhere positiveHamiltonian,
while condition (53) can be violated somewhere in the field
space. However, the later condition is verified on the wall
background and in its vicinity in agreement with the found
local stability.

B. Cubic perturbations and strong coupling

As we saw in the previous section, the walls considered
here are local minima of the energy in the class of field
configuration with fixed boundary conditions at z ¼ �∞.
This contrasts with canonical domain walls which are
global minima. As a consequence, one should be able to
distinguish the two looking at higher order perturbations as
we now show. Up to surface terms, for a generic theory of
the kind (2), the third-order perturbed Lagrangian reads

δð3ÞL ¼ −
1

3!
½Yμνρ∂μφ∂νφ∂ρφ − 3Yμνφ∂μφ∂νφþ Yφ3�;

ð140Þ

where the different coefficients appearing above are
given by

Yμνρ ¼ PXXX∂μϕ∂νϕ∂ρϕ − 3PXXη
μν∂ρϕ; ð141aÞ

Yμν ¼ PXXϕ∂μϕ∂νϕ − PXϕη
μν; ð141bÞ

Y ¼ −Pϕϕϕ − ∂μðPXϕϕ∂μϕÞ: ð141cÞ

For the canonical model (3)–(20), only Y ¼ Vϕϕϕ ¼ 12ϕ is
non-vanishing. For the Pn;m models (76), as well as their
subset mimickers (135), one finds non-vanishing Yμνρ and
Yμν for the background given by the wall of canonical
profile ϕ ¼ � tanhðzÞ, in particular some relevant coeffi-
cients are gathered in the following Table II. One can notice
that for all Pn;m models, Y00 ¼ −2ϕ=3Y00z and
Yzz ¼ −2ϕYzzz. Moreover, for the mimickers, all contri-
butions containing time derivatives of the perturbations
vanish at cubic order. However, the cubic interactions are
found diverging at large z, for which, for the domain wall
profile, 1=ð1 − ϕ2Þ as well as ϕ=ð1 − ϕ2Þ diverge. Hence
the perturbation theory in the ϕ variable diverges at large z
off the wall. Note however, that as we have shown that the
wall is a local minimum of the energy in the class of field
configurations with fixed boundary conditions, one expects
that there is a range of localized perturbations of the wall
which are absolutely stable. To end, we also notice that one
cannot mimic our models with a Pðϕ; XÞ of the form
fðXÞ − VðϕÞ as Yμν would be vanishing. Note also that the

TABLE II. Some relevant coefficients of the cubic vertices for the generic Pn;m Lagrangians of Eq. (76), for the subset of mimicker
models, and for the specific choice ðn;mÞ ¼ ð4; 6Þ.

Generic Pn;m Mimicker Pn;m Mimicker P4;6

Y00z − 3
2
ðnðn−2Þðκ−1Þn−1 − mðm−2Þκ

m−1 Þ 1
1−ϕ2

0 0

Yzzz nðn−2Þðκ−1Þ−mðm−2Þκ
2

1
1−ϕ2

mnðn−2Þðm−2Þ
2ð2−nþmðn−1ÞÞ

1
1−ϕ2

6
1−ϕ2

Y00 ðnðn−2Þðκ−1Þn−1 − mðm−2Þκ
m−1 Þ ϕ

1−ϕ2
0 0

Yzz −ðnðn − 2Þðκ − 1Þ −mðm − 2ÞκÞ ϕ
1−ϕ2 − mnðn−2Þðm−2Þ

ð2−nþmðn−1ÞÞ
ϕ

1−ϕ2 − 12ϕ
1−ϕ2
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generic properties of the perturbations found in this section
using the ϕ variable: sound quadratic perturbations, off-the-
wall strong coupling at cubic order, persists e.g., if one
trades the ϕ variable to ξ (once the quadratic perturbations
properly normalized).

VI. CONCLUSION

In this work we have studied domain walls in some
k-essence theories. We have shown in particular that
domain walls can be supported by non-canonical kinetic
terms only, without the help of a potential. If pure PðXÞ
theories cannot accommodate these unidimensional soli-
tons, the class of Lagrangians (76) is an example of
potential-free theories that can, and we have obtained an
even larger set of theories sharing the same property.
Moreover, we showed that theories can be found having
domain wall profiles just identical to the ones of canonical
field theories such as a canonical scalar field with a
mexican hat potential or sine-Gordon theories. We have
also showed that our walls are local minima of the energy in
the set of field configurations with some fixed topological
charge, however, in contrast with the usual case, they are
not global minima. We also studied the quadratic pertur-
bations of these walls, showing in particular that these
perturbations can be stable and even identical to the
perturbations of the domain walls of canonical models.
Canonical walls can however be distinguished from
the one discovered here looking at cubic vertices of the
perturbations, which in our case become strong off the wall
surface.
This work raises various questions beyond the ones

already mentioned in the main text above. First, as it is
clear that our walls are only stable when subjected to small
enough and localized perturbations (hence “perturbatively
stable”), it would be interesting to study their classical or
quantumdecay.One could also imagine constructing similar
objects in amore general setup such asHorndeski theories or
studying the possibility to get solitons with different
topologies (such as strings or monopoles) and higher
dimensions along the line considered here. On a more
phenomenological account, it is known that k-essence can
have interesting application in the early Universe, e.g.,
during inflation (see e.g., [9,14,15,41,48,49]), an interesting
question would hence to look there at the possibility of the
formation and decay of the kind of domain walls considered
here in the early times, and a related question would be to
study the effects of turning on gravity.
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APPENDIX A: DBI-INSPIRED MODEL

In this appendix, we construct another potential-free
theory admitting stable hyperbolic tangent solutions,
inspired by the DBI Lagrangian cðϕÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2X=cðϕÞp
.

Let us consider the theory

Pðϕ; XÞ ¼ P0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2X

cðϕÞ þ αnðϕÞð−2XÞn=2
s

; ðA1Þ

with a constant P0 and an integer n > 2. Then

J ¼ −P0

�
1 −

n − 2

2
αnð−2XÞn=2

�

×

�
1þ 2X

c
þ αnð−2XÞn=2

�
−1=2

≈ 0 ðA2Þ

is solved by αnðϕÞ ¼ 2
n−2 ð1 − ϕ2Þ−n and the energy density

reads

HðzÞ ¼ −P0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

n − 2
−
ð1 − ϕ2Þ2
cðϕÞ

s
; ðA3Þ

which is defined as long as ð1 − ϕ2Þ2=cðϕÞ < n=ðn − 2Þ.
The coefficients of the kinetic matrix are given by

Z00 ¼ P0

ð1 − ϕ2Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

n − 2
−
ð1 − ϕ2Þ2
cðϕÞ

s
;

Zzz ¼ −
nP0

ð1 − ϕ2Þ2
�

n
n − 2

−
ð1 − ϕ2Þ2
cðϕÞ

�−1=2
; ðA4Þ

so that the condition (46a) is automatically satisfied and the
condition (46b) is again equivalent to the finiteness of the
total energy. In order to fulfill it, it is easy to see that P0 has
to be negative, and that we have to choose carefully cðϕÞ.
For example, the Lagrangian

P¼P0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2n

n− 2

ϕ2ð2−ϕ2Þ
ð1−ϕ2Þ2 Xþ 2

n− 2

ð−2XÞn=2
ð1−ϕ2Þn

s
ðA5Þ

with P0 a strictly negative constant, and n an integer strictly
greater than 2, admits stable domain wall configurations.

APPENDIX B: λ ≠ 1 BRANCH

In this appendix, we investigate the λ ≠ 1 branch that
was discovered in (126). Let us recall that, in addition to the
usual ϕc ¼ � tanh z solution, the model (76) also accom-
modates different solutions, given by

ϕλðzÞ ¼ � tanh ðλzÞ; where

λ2 þ ðκ − 1Þjλjn − κjλjm ¼ 0: ðB1Þ
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For example, in the simplest ðn;mÞ ¼ ð4; 6Þ case, this other
solutions is given by λ4;6 ¼ 1=

ffiffiffiffiffiffi
−κ

p
.

When λ ≠ 1, we can express κ in terms of λ as κ ¼
ðjλjn − λ2Þ=ðjλjn − jλjmÞ i.e., viewing this condition as a
tuning on the Lagrangian to accommodate a given λ. In this
view, the configurations λ ¼ 1 and λ ≠ 1 are simultane-
ously stable iff the κ that accommodates the stable λ ≠ 1
solution lies within the bounds (83).
The energy, kinetic matrix and effective mass are then

given by

H ¼ AHcan; Z00 ¼ −λ−2A;

Zzz ¼ λ−2B and M2 ¼ BM2
can; ðB2Þ

where

A¼ 1

2

�
m−2

m−1
jλjmþ2−

n−2

n−1
jλjnþ2þ n−m

ðn−1Þðm−1Þjλj
nþm

�

×
1

jλjm− jλjn ; ðB3aÞ

B ¼ −
1

2

ðm − 2Þjλjmþ2 − ðn − 2Þjλjnþ2 þ ðn −mÞjλjnþm

jλjm − jλjn :

ðB3bÞ

Let us note that, as in the λ ¼ 1 case, the spectrum of
the perturbations is simply shifted with respect to the
canonical one

ω̃2
k ¼

A
B
ω2
k: ðB4Þ

In order to have a stable configuration, we have to impose
that A and B are simultaneously positive. B is positive for
jλj > 1, whatever the values of n and m. A stays positive
for jλj lying within 0 and some value, say λ̄, greater than 1

(indeed Aðλ ¼ 1Þ ¼ ðn−2Þðm−2Þ
2ðn−1Þðm−1Þ > 0). Thus there exists

always a range �1; λ̄½ in which the configuration ϕλ is stable.
However the two configurations with λ ¼ 1 and λ ≠ 1

cannot be simultaneously stable. In fact n−m
n−2 κ − 1 stays

negative for jλj > 1,9 and thus the lower bound of the
condition (83) is violated when the λ ≠ 1 configuration is
stable. For example in the ðn;mÞ ¼ ð4; 6Þ case, the λ ¼ 1

configuration is stable for −5 < κ < −1 and the λ ¼
1=

ffiffiffiffiffiffi
−κ

p
one, is stable for −1 < κ < −1=5.
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