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Abstract— We propose a novel learning based algorithm to gener-
ate efficient and physically plausible sampling patterns in MRI. This
method has a few advantages compared to recent learning based ap-
proaches: i) it works off-the-grid and ii) allows to handle arbitrary
physical constraints. These two features allow for much more ver-
satility in the sampling patterns that can take advantage of all the
degrees of freedom offered by an MRI scanner. The method consists
in a high dimensional optimization of a cost function defined implic-
itly by an algorithm. We propose various numerical tools to address
this numerical challenge.

1 Introduction
The design of efficient sampling patterns in MRI is a critical issue
with a long history [3] and a renewed interest in recent years with
the advent of compressed sensing and deep learning.

State-of-the-art The most recent trends can be separated in two
families

Compressed sensing theory: In a recent set of works, the the-
ory of compressed sensing was improved to more closely fit
the practical issues of MRI [6, 1, 5, 4]. In a nutshell, these
works suggest that good sampling schemes should have a
variable density: the low frequencies should be sampled
more densely than the high frequencies (though this has little
to do with the quantity of energy present in the signal) and
the samples should cover the space locally uniformly. This
led a few authors to generate sampling schemes by mini-
mizing the distance bewteen a measure µ belonging to a set
of admissible measures and a continuous target probability
density function π:

inf
µ∈A

dist(µ, π), (1)

where dist is a distance that metrizes the weak conver-
gence, such as a discrepancy [10, 7] or the Wasserstein dis-
tance [16] and A is a set of admissible probability measures
such as the set of discrete measures supported on M points
MM = {µ = 1

m

∑M
m=1 δxm , xm ∈ Rd} or more exotic

sets of contraints that more closely describe the physical
constraints of a scanner. This approach led to remarkable
practical results [15] that are currently evaluated for clinical
routine.

Learning: Motivated by the recent breakthroughs of learning
and deep learning, many authors recently tried to learn either
the reconstructor [12], the sampling pattern [9, 19], or both
[13]. In [9], the authors propose a greedy algorithm that gen-
erates a sampling pattern by iteratively selecting a discrete
horizontal line that maximizes the SNR of the reconstructed
image. A similar principle is proposed in [13], but there, the
reconstructor is learnt simultaneously. In [19], the authors
adopt a similar approach, but replace the greedy algorithm
by a bi-level programming approach that controls the num-
ber of sampling points using an `1 penalization. Overall, all
those works suffer from the same limitations:

• The sampling points are required to live on a Cartesian
grid, which is suboptimal.

• The methods cannot incorporate advanced constraints
on the sampling trajectory and therefore focus on
“rigid” constraints such as imposing to sample hori-
zontal lines.

• The methods are computationally intensive, which
may be not be so critical since the sampling schemes
are generated offline.

To the best of our knowledge, the only paper that addresses
the above criticisms is the just posted [20], where the au-
thors simultaneously optimize a reconstructor and a sam-
pling scheme by performing a local optimization of a well
initialized trajectory.

Our contribution In this paper, we propose to blend both ap-
proaches by using a data-driven distance in (1) rather than more
principled approaches. This allows us to avoid all the above-
mentioned flaws. This also leads us to implement a set of ad-
vanced numerical routines to address the computational chal-
lenges raised by the proposed cost function.

2 The proposed approach

2.1 Preliminaries
We assume that both a set of training images x = (x1, . . . , xK) ∈
CN×K and a differentiable image quality metric η : RN×RN →
R+ are available. In this work, we will simply consider the
squared `2 distance η(x̂, x) = 1

2‖x̂ − x‖22. In what follows,
we let ξ ∈ (Rd)M denote a set of locations in the k-space (or
Fourier domain), y ∈ CM denote a set of k-space measurements
and R : CM × (Rd)M → CN denote a fixed reconstructor, i.e.
for a sampling scheme ξ ∈ (Rd)M and a measurement vector
y ∈ CM , we let x̂ = R(ξ, y) denote the reconstructed image. We
let A(ξ) ∈ CM×N denote the forward Fourier transform defined
for all 1 ≤ m ≤M and x ∈ CN

[A(ξ)x]m =

N∑
n=1

xn exp(−i〈pn, ξm〉), (2)

where pn ∈ {−N/2, . . . , N/2 − 1}d are the positions of grid
points in the image space. For a regularization parameter λ > 0,
we consider a Tikhonov reconstructor:

R1(ξ, y) = argmin
x∈CN

1

2
‖A(ξ)x− y‖22 +

λ

2
‖x‖22, (3)

and a nonlinear compressed sensing type reconstructor

R2(ξ, y) = Ψz?, z? = argmin
z∈CP

1

2
‖A(ξ)Ψz − y‖22 + λ‖z‖1,

(4)
where Ψ ∈ CN×P is a redundant wavelet transform.



2.2 The principle
The goal here is to replace the distance in (1) by a data-driven
cost function. A natural choice reads:

min
ξ∈Ξ

F (ξ) := E

(∑
x∈x

η(R(ξ, A(ξ)x+ b), x)

)
, (P)

where b ∼ N (0, σ2IN ) and Ξ ⊆ (Rd)M describes the physical
constraints. In words, the term A(ξ)x + b represents noisy data
acquisition that we want to reconstruct as well as possible, in av-
erage, using the reconstructor R. The expectation is taken w.r.t.
the noise realizations.

Differentiating the reconstructors Solving (P) is a real com-
putational challenge. It is high dimensional, the cost function
does not have a simple analytic formula and its regularity prop-
erties are unclear. Since the cost function is defined through an-
other minimization problem, (P) can be interpreted as a bi-level
optimization problem. Various approaches are available to solve
it [2]. Here we will follow the approach suggested in [18]. In-
stead of solving the lower-level minimization problems (3) or (4)
exactly, we assume that they are solved approximately using iter-
ative algorithms such as a conjugate gradient method or a prox-
imal gradient descent. The main idea is then to differentiate the
algorithm using dedicated libraries such as PyTorch instead of the
minimizer itself.

Implementing and differentiating the NUFT The fast imple-
mentation of the linear mapping A(ξ) is the backbone of our
approach. It corresponds to the non uniform Fourier transform
(NUFT). Various efficient approximate implementations have
been devised over the past [8, 11, 14] and Python toolboxes begin
to emerge [17]. Our experience using them however led to unsta-
ble results due to significant numerical errors. In this work, we
therefore opted for a direct (naive) implementation of the NUFT
on massively parallel architectures, following the numerical ex-
periments conducted in KeOps. The main observation is that for a
GPU with 1TFlop, applying the NUFT to small 128×128 images
(which is typical in this field) just requires a fraction of second,
which is compatible with large scale computations. We therefore
implemented a homemade NUFT within PyTorch, allowing for
automatic differentiation.

Optimizing the cost function The previous details allow to au-
tomatically compute the derivative of F w.r.t. ξ when replac-
ing the expectation by an empirical average. This in turn allows
to use any off-the-shelf optimization solver. In this preliminary
work, we simply set Ξ = (Rd)M (i.e. no constraints between
samples), and b = 0 (no noise in the measurements) and used
a limited memory BFGS algorithm. More advanced stochastic
gradient approaches are expected to be used later.

3 Results
Here we report preliminary results with this approach. Two
64 × 64 images are studied and we compare 3 patterns sub-
sampled at a factor 3.3. Our approach is abbreviated OSP (opti-
mal sampling pattern), we also use a low-frequency pattern (LF)
and a variable density sampler with a uniform density (VDS).
The images are reconstructed both with the linear (3) and non-
linear reconstructors (4). Without surprise, LF is good at recon-
structing global shape of images and removing noise but the VDS
performs better to reconstruct details (with the disadvantage of

(a) (b) (c) (d)

Figure 1: Original images (1a) square and (1b) phantom. Different k-space sam-
pling pattern: (1d)VDS and (1c) LF random sampling.

(a) PSNR= 53.3dB (b) PSNR= 43.8dB (c) PSNR= 53.0dB (d)

Figure 2: Reconstructed images with Tikhonov reconstructor (3) for LF (2a), VDS
(2b), OSP (2c) given in (2d).

(a) PSNR= 56.5dB (b) PSNR= 45.0dB (c) PSNR= 62.2dB (d)

Figure 3: Reconstructed images with nonlinear reconstructor (4) for LF (3a), VDS
(3b), OSP (3c) given in (3d).

(a) PSNR= 43.3dB (b) PSNR= 40.0dB (c) PSNR= 47.3dB (d)

Figure 4: Reconstructed images with Tikhonov reconstructor (3) for LF (4a), VDS
(4b), OSP (4c) given in (4d).

(a) PSNR= 44.3dB (b) PSNR= 44.5dB (c) PSNR= 51.8dB (d)

Figure 5: Reconstructed images with nonlinear reconstructor (4) for LF (5a), VDS
(5b), OSP (5c) given in (5d).

generating noise). Our OSP combines both advantages. Our ap-
proach shows that choosing an optimized k-space improves the
peak noise-to-signal ratio (PSNR) between 2dB and 10dB for
these test-cases in comparison to variable density sampling or
standard low-frequency sampling. In the future, we plan to fo-
cus on learning a reconstructor, adding physical constraints to the
set Ξ and introducing the noise b.
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[16] Lebrat, Léo and de Gournay, Frédéric and Kahn, Jonas
and Weiss, Pierre. Optimal transport approximation of 2-
dimensional measures. SIAM Journal on Imaging Sciences,
12(2):762–787, 2019.

[17] Jyh-Miin Lin. Python non-uniform fast fourier transform
(pynufft): An accelerated non-cartesian mri package on
a heterogeneous platform (cpu/gpu). Journal of Imaging,
4(3):51, 2018.
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