N
N

N

HAL

open science

Be Scalable and Rescue My Slices During
Reconfiguration

Adrien Gausseran, Frédéric Giroire, Brigitte Jaumard, Joanna Moulierac

» To cite this version:

Adrien Gausseran, Frédéric Giroire, Brigitte Jaumard, Joanna Moulierac. Be Scalable and Rescue My
Slices During Reconfiguration. ICC 2020 - IEEE International Conference on Communications, Jun

2020, Dublin, Ireland. pp.1-6, 10.1109/ICC40277.2020.9148871 . hal-02945405

HAL Id: hal-02945405
https://hal.science/hal-02945405

Submitted on 22 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02945405
https://hal.archives-ouvertes.fr

Be Scalable and Rescue My Slices During
Reconfiguration

A. Gausseran®, F. Giroire*, B. Jaumard T, J. Moulierac *
* Université Cote d’Azur, I3S, CNRS, Inria, University of Nice Sophia Antipolis, France
T Concordia University, Canada

Abstract—Modern 5G networks promise more bandwidth, less
delay, and more flexibility for an ever increasing number of users
and applications, with Software Defined Networking, Network
Function Virtualization, and Network Slicing as key enablers.
Within that context, efficiently provisioning network and cloud
resources of a wide variety of applications with dynamic users’
demands is a real challenge. In this work, we consider the
problem of network slice reconfiguration. Reconfiguring from
time to time network slices allows to reduce the network
operational costs and to increase the number of slices that can be
managed within the network. However, it impacts users’ Quality
of Service during the reconfiguration step. To solve this issue,
we study solutions implementing a make-before-break scheme.
We propose new models and scalable algorithms (relying on
column generation techniques) that solve large data instances
in few seconds.

I. INTRODUCTION

The Network Function Virtualization (NFV) paradigm is
a major technology of 5G networks. Over the past decade,
it has been widely deployed and a large number of studies
investigated its use and benefits. Its core principle is to break
the dependence on dedicated hardware like traditional expen-
sive middleboxes by allowing network functions (e.g., firewall,
load balancing, Virtual Private Network (VPN) gateways, con-
tent filtering) to be virtualized and implemented in software,
and executed on generic servers. Virtual Network Functions
(VNFs) can be instantiated and scaled on demand without
the need to install new equipment, increasing flexibility with
user demands [1]. In parallel, we also saw the emergence of
Software-Defined Networking (SDN) that simplifies network
monitoring and management. By decoupling the control plane
from the data plane and abstracting network intelligence into
a central controller, SDN allows a global vision and control
of the network [2]. Combination of SDN and NFV leads
to dynamic, programmable and flexible networks in which
the network infrastructure and resources are shared between
network services.

The 5G technology is envisioned to allow a multi-service
network supporting a wide range of communication scenarios
with a diverse set of performance and service requirements.
The concept of network slicing has been proposed to address
these diversified service requirements. A network slice is an
end-to-end logical network provisioned with a set of isolated

This work has been supported by the French government through the UCA
JEDI (ANR-15-IDEX-01) and EUR DS4H (ANR-17-EURE-004) Investments
in the Future projects, and by Inria associated team EfDyNet.

virtual resources on a shared physical infrastructure [3], [4].
Moreover, slicing allows an efficient usage of resources, as
VNFs can be instantiated and released on demand by slices.
Besides, slices can be deployed whenever there is a service
request, reducing the network operator costs [4]. With all
these key features, Network slicing will thus be a fundamental
feature of 5G networks [3].

Dynamic resource allocation is one of the key challenges
of network slicing. In a dynamic scenario, the network state
changes continuously due to the arrival and departure of flows.
As the granting of new flows is done without impacting the
ongoing ones, we may end up with a fragmented provisioning,
and thus with an inefficient resource usage. Therefore, network
operators must adjust network configurations in response to
changing network conditions to fully exploit the benefits of
the SDN and NFV paradigms, and to minimize the operational
cost (e.g., software licenses, energy consumption, and Service
Level Agreement (SLA) violations).

We here consider the problem of both rerouting traffic flows
and improving the mapping of network functions onto nodes in
the presence of dynamic traffic, with the objective of bringing
the network back to a close to optimal operating state, in
terms of resource usage. Rerouting demands and migrating
VNFs take several steps. Usually, network carriers/operators
cannot afford traffic interruption, due to their SLAs, as it
may have a non-negligible impact on the Quality of Service
(QoS) experienced by the users. Their strategy is then to
perform the reconfiguration by using a two—phase approach.
First, a new route is established while keeping the initial one
enabled (i.e., two redundant data streams are both active in
parallel). Then, the transmission moves on the new route and
the resources used by the initial one are released. This strategy
is often referred to as make-before-break. In this work, to the
best of our knowledge, we are the first to propose scalable
models to reconfigure network slices while implementing such
mechanisms to avoid QoS degradation.

Our contributions in this paper are as follows:

e We propose two scalable models, rescue—-ILP and
rescue-LP, with rescue standing for “REconfigura-
tion of network Slices with ColUmn gEneration without
interruption”. Both are based on a decomposition model
and are solved using column generation. Our algorithms
reconfigure a given set of network slices from an initial
routing and placement of network functions to another
solution that improves the usage of the network resources

(both in terms of links and VNFs). Our solutions scale on
large networks as we succeeded in solving data instances
with 65 nodes and 108 links, and a hundred of network
slices in few seconds, a lot faster than with a classic
compact Integer Linear Program (ILP) formulation such
as slow—-rescue.

o« We show that our solutions allow the decrease of the
network cost without degrading the QoS (as the network
slices are not interrupted thanks to the make-before-break
approach) in moderate running times. Moreover, we can
manage more network slices when the network is con-
gested compared to solutions without any reconfiguration.

II. RELATED WORK

In the last years, a large corpus of works has studied the
deployment and management of network services, see [5]
and [6] for surveys. In particular, the problem of jointly routing
demands and provisioning their needed VNFs has attracted
a lot of attention. A large number of efficient algorithms
and optimization models have been proposed in order to
minimize setup cost [7], [8] or take into account the chaining
constraints [9], [10]. Most of these works have only considered
scenarios in which, when a service is deployed, its route and
used virtual resources are not changed during its lifetime.
However, even with an optimal service deployment, this may
lead to a sub-optimal use of network resources after some
time, when some services have left.

Inspired by the classic defragmentation mechanism in opti-
cal networks [11], it has been proposed to carry out reconfig-
urations of network and virtual resources regularly in order to
bring the network closer to an optimal state of operation. The
goals can be diverse: optimizing network usage, granting more
requests, modifying the capacities of flows already allocated
on the network or even to overcome network failures.

The readjustment of Service Function Chains (SFCs) has
been studied in [12]. The authors formulate an ILP and a
column generation model in order to jointly optimize the
deployment of the SFCs of new users and the readjustment of
the SFCs already provisioned in the network while considering
the trade-off between resource consumption and operational
overhead. [13] studies the trade-off between the reconfigura-
tion of SFCs and the optimality of the reconfigured routing
and placement solution.

Gao and Rouskas [14] considered the reconfiguration of
virtual networks. They proposed online algorithms to minimize
the maximum utilization of substrate nodes and links while
bounding the number of virtual nodes that have to be migrated.

Recently, the problem has been studied for network slices.
[15] proposes a hybrid slice reconfiguration mechanism. The
goal of the authors is to optimize the profit of a network
slice provider, i.e., the total utility gained by serving slices
minus the resource consumption and reconfiguration cost.
The reconfiguration overhead of a slice includes two aspects:
service interruption and reconfiguration resource cost.

Similarly, all works on reconfigurations of virtual resources
(virtual networks, slices or service function chains) include

a cost expressing the degradation of the client’s QoS. On
the contrary, our goal is to avoid this QoS degradation by
proposing a make-before-break mechanism, in which the new
route is reserved and the new virtual resources are installed
before the slice is reconfigured. A similar mechanism has
been proposed in [16]. However, we are the first to propose a
scalable decomposition model based on column generation.

III. PROBLEM STATEMENT AND NOTATIONS

We consider the network as a directed capacitated graph
G = (V, E) where V represents the node set and F the link
set. C,, is the resource node capacity (e.g., CPU, memory, and
disk) of node u € V. Cy is the bandwidth link capacity and
Ty is the link delay of link ¢ € E. t € {1,T} is the number
of steps used for the reconfiguration. Ay is the number of
bandwidth units required by function f € F.

A slice can be modeled by a set of demands following for
example [17], [18]. Each demand d € D is modeled with a
quintuplet: v, the source, vy the destination, ¢4 the ordered
sequence of network functions that need to be performed,
where f; is the [— th function of the chain of cq. BW, the
required units of bandwidth, and ~4 the delay requirement.

In a dynamic scenario with no information on future
traffic, each demand is routed individually while minimizing
the network operational cost defined by the weighted sum
of link bandwidth and VNF usage costs (licenses, energy
consumption, etc). As requests come and leave over time,
allocations that are locally optimal at a given instant can
bring the network in a global sub-optimal state. Our goal
is to reconfigure the network to improve resource usage and
therefore the operational costs. In doing this, we use the make-
before-break mechanism to avoid network service disruption
due to traffic rerouting.

1) Example: Figure 1 illustrates an example for the recon-
figuration of a request using a make-before-break process. Two
requests, B to C and F' to E are routed during step (b). Four
VNFs have been installed in B, C, E and F' to satisfy the
needs of these requests. To avoid the usage cost of new VNFs,
the route from A to F' with minimum cost is a long 5-hops
route (step (c)). When requests from B to C' and from F' to
E leave, the request is routed on a non-optimal path (step
(d)) which uses more resources than necessary. We compute
one optimal 3-hop path and reroute the request on it (step
(f)) with an intermediate make-before-break step (step (e)) in
which both routes co-exist. In this example, the reconfiguration
can be done with only one step of reconfiguration, but we will
consider in the following up to 3 steps of reconfiguration.

IV. OPTIMIZATION MODELS

As we will see in Section V, although effective, the compact
ILP model slow-rescue (the complete description may be
found in [19]) does not scale on large networks or with many
slices. We therefore propose an alternative using column gen-
eration: rescue-ILP and rescue-LP (for REconfiguration
of network Slices with ColUmn gEneration with ILP or LP

pricing).

(d) The first two requests (e) Reconfiguration

(f) Optimal routing for

leave phase the third request

Fig. 1: An example of the reconfiguration of a request using a make-before-
break approach with one step.

A. Description of our CG-based algorithms: rescue—ILP
and rescue-LP

Column generation (CG) is a model allowing to solve an

optimization model without explicitly introducing all vari-
ables, see Figure 2 for an explanation. It thus often allows to
solve larger instances of the problem than a compact model,
in particular, with an exponential number of variables. In
our model, the master problem (MP) seeks a possible global
reconfiguration for all slices with a path-formulation. In the
restricted master problem (RMP), only a subset of potential
paths is used for each slice. At the initialization, the set of
paths is the one used before reconfiguration. Each pricing
problem (PP) then generates a new path for a request, together
with the placement of the VNFs. During a reconfiguration,
slices are migrated from one path to another. Note that, as
the execution of each pricing problem is independent of the
others, their solutions can be obtained in parallel.
Layered graph. Our models are based on the concept of a
layered graph presented in [19]. In order to model the chaining
constraint of a demand, we associate to each demand d a
layered graph G¥(d) with |cg4| layers where |cq| denotes the
number of VNFs in the chain of the demand. Each layer is a
duplicate of the original graph and the capacities of both nodes
and links are shared among layers. A path on the layered graph
starts at layer 0 and ends at layer ¢4 and corresponds to an
assignment of both a path and the locations where functions
are being run (the links between layers).

1) Master Problem of rescue—-ILP and rescue-LP:
Variables:

e ot € [0,1] is the amount of flow of demand d on path p
at time step t.

e ydt € [0,1] is the maximum amount of flow of demand d
on path p between time step ¢t — 1 and t.

e 07 is the number of times the link ¢ appears on path p.

) Gf:u = 1 if node u is used as a VNF on path p on layer .

We assume an initial configuration is provided with fixed
values for gog’o. The optimization model is written as follows.

Objective: minimize the amount of network resources con-
sumed during the last reconfiguration time step 7', which is
the sum of the bandwidth used (BW) added to the sum of the
costs of the deployed VNFs multiplied by a factor 5.

min Z Z Z BWq wﬁ,T 65 + B Z Z Cu,f Zu,f (D

deD peP4 L€E uEVW feF

Constraints:
One path constraint. For d € D, time step ¢ € {0, ..., T}.

doept=1 2)

pEP,
Path usage over two consecutive time periods. For d € D,
p e P, te {]., ,T}

oot < ydt and ot <yt 3)

Make Before Break - Node capacity constraints. The capacity
of anode u in V is shared between each layer and cannot ex-
ceed C), considering the resources used over two consecutive
time periods. For u € VY™, ¢t € {1,...,T}.

leal—1

S S AL ce @

deD pePy =0
Make Before Break - Link capacity constraints. The capacity
of alink ¢ € F is shared between each layer and cannot exceed

Cy considering the resources used over two consecutive time
periods. For £ € E, t € {1,...,T},

Z Z BWy yg’t (55 < Cy. %)

deD pePy

Function activation. To know which functions are activated on
which nodes in the final routing. For u € V, f € F, d € D,
i€40,...,]cql — 1},

yot or, <z, fea- (6)

2) ILP Pricing Problem of rescue-ILP: The pricing
problem searches for a possible placement for the slice. Since a
reconfiguration can be done in several steps, a pricing problem
is launched for each demand, at each time step.

Parameters:

e ;i are the dual values of the master’s constraints. The
number written in upperscript is the reference of the master’s
constraints.

Variables:

o oy ; €[0,1] is the amount of flow on link ¢ in layer i.

o o, ; € [0,1] is the amount of flow on node w in layer 1.

Objective: minimize the amount of network resources con-
sumed for the demand d at time .

lcal lcal—1
2 3D SOTCRNTHRED) DIV DT
LEE i=0 ueV¥ i=0

—Hg B Y D cus sus iguy D)

uCVWF fe

Set of pricing problems PP

Dual
values

Initial
Paths

Master
Problem

A

PP+ PP2 PP«

Found
variables
with negative
costs ?

Transform the
Master to ILP and
solve it

End

Fig. 2: CG is a decomposition method dividing an optimization model into two parts: a master problem and a (set of) pricing problem(s) (PP). The restricted
master problem (RMP) solves a fractional relaxation of the problem with a restricted set of columns. Then the PPs compute the best columns to be added,
based on prices given by the dual variables of the RMP. The RMP and PP are then iteratively solved until no more columns can improve the solution of the
RMP. Last, the original problem is solved with the integrality constraint using the columns of the RMP.

where ugji F=

Constraints:
Flow conservation constraints for the demand d. For u €
VVNF.

0 when ¢ # T, see constraints (6).

1if u=wv,
Z o — Z Protauo =93 ®)
Lewt (u) Lew (u) else
—1if u =y
Z Pelcal — Z Plleal — Quleal-1 = 0 else
Lewt (u) Lew (u)
)
Z Yei — Z Peit+ Oy i1 — Qg1 =0
Lewt (u) lew (u)
0 <i<|eq (10)

Delay constraints. The sum of the link delays of the flow must
not exceed the delay requirement of demand d.

ledl

> niTe<a
=0

(1)

Function activation. To know which functions are activated on
which nodes. For u € VYN, f € F, layer i € {0, ..., |cq| — 1}

12)

Oqu' S z"hf:d

Location constraints. A node may be enabled to run only a
subset of the virtual network functions. For u € VVYNF ¢ ¢
{0, ..., |ca| =1}, if the (i+1)™ function of ¢4 cannot be installed
on u, we have

Qg4 — 0.

s

13)

3) LP Pricing Problem of rescue-LP: The difference
between rescue-ILP and rescue-LP comes from the
pricing problem, which is integer for rescue-ILP and
fractional for rescue-LP. Indeed, the execution time of
the CG algorithm is divided into the resolutions of: (1) the
multiple PPs, (2) the multiple relaxations of the RMP, and
(3) the ILP of the MP. In our experiments, the time spent in
(1) represents more than 90% of the whole execution time.
To reduce this computational time, we propose rescue—LP
that solves a relaxation of the pricing problem with fractional
flows. The Master Problem of rescue-LP is the same as
previously described. In the vast majority of cases, even with
no constraint to force integral flows, the PP outputs an integral
path that can be directly integrated into the RMP. If the LP

1.0
T osf
N
g o6
‘6 <
< 04
LQ
T 03}
=

0

0 5 10 15 20 24
Daily time (h)

Fig. 3: Period approximation of traffic variation

Slice Types VNF chain Latency BW (Mbps)
Video Streaming ~ NAT-FW-TM-VOC-IDPS High 256

Web Service NAT-FW-TM-WOC-IDPS Medium 100

VoIP NAT-FW-TM-FW-NAT Low 64

Online Gaming NAT-FW-VOC-WOC-IDPS Very low 50

TABLE I: Characteristics of network slices

gives a fractional flow, we use the ILP PP of rescue-ILP
to get an integral path.

V. NUMERICAL RESULTS
A. Data sets

We conduct simulations on three real-world topologies from
SNDIib [20] of different sizes: pdh (11 nodes, 34 links), tal
(24 nodes, 55 links), and ta2 (65 nodes, 108 links).

We consider four different types of slices corresponding to
four services: Video Streaming, Web Service, VoIP, and online
gaming. The characteristics of each service are reported in
Table I and are taken from [21]. They differ in terms of VNF
chains, bandwidth usage, and latency requirement. Each slice
has to implement a chain of 5 VNFs and requires a specific
amount of bandwidth. The latency requirements are expressed
in terms of maximum stretch, i.e., the ratio between the path
delay compared to the shortest path between the source and
destination. Simulations have been conducted on an Intel Xeon
E3-1271 v3 with 32GB of RAM.

Our goal was to study the impact of reconfiguration for
different network usages. Indeed, when the traffic is low or
medium, all slices can be served and reconfigurations improve
the network usage (links and VNFs). However, when the traffic
is high and if some links are congested, reconfiguration also
helps to prevent denying slices. To model the typical daily
variation of traffic in an ISP network, we used the traffic
distribution from a trace of the Orange network (Fig. 3). We
adapted the churn rate of slices during time in order to obtain

a similar level of traffic. Each level of traffic corresponds to
a different average number of slices: from 30 for D1, 68 for
D2, 105 for D3, 158 for D4 to 180 for D5 for pdh.

We evaluate and compare 5 different algorithms:

e« no-reconf places and removes the slices without re-
configuring the network,

e slice-wreck reconfigures regularly the network, but
with interruptions. This algorithm gives a bound of the
best we can reach with the make-before-break approach,

e slow-rescue: our compact ILP that reconfigures slices
without interruptions,

e rescue-ILP: our CG based algorithm with ILP pricing,

e rescue-LP: our CG based algorithm with LP pricing.

B. Efficiency of our algorithms with different traffic matrices

In this section, we consider the pdh and tal networks
for five different levels of traffic during the day, as shown in
Fig. 3. All the slices of the traffic matrix are placed and routed,
and one reconfiguration with two steps is achieved to reroute
the slices in order to improve the network usage. First all the
slices of D1 are placed one by one, and all reconfigured at
once. Then, the same process is repeated for D2 until D5.

1) Execution times: We report the execution times
of a reconfiguration in two steps for slow-rescue,
rescue-ILP, and rescue-LP in Figure 4. Each value is an
average over 10 experiments. We set a time limit of one hour.
For pdh, slow-rescue finds the optimal solution only for
the period D1. For all the other ones, it reaches the time limit.
However, it succeeded to find a feasible solution (which was
already efficient) for all the time periods, as can be seen in
Fig 5. For the larger network tal, the compact ILP was not
able to find any feasible solution, even for D1 with few slices.
On the contrary, the execution times of the column generation
models are a low (below 120 s for both networks for any time
period). Moreover, the models scale well as their execution
times increase in a linear way. rescue—-LP needs from 2s to
around 45 s, while the execution times of rescue-ILP are
between 10s and 120s. Thus, as expected, rescue—LP is a
lot faster than rescue—-ILP.

2) Gains in network cost: We now compare in Figure 5
the improvement in terms of network cost obtained after
a reconfiguration for each time period for pdh and tal.
For pdh, we observe that the results of rescue—-ILP and
rescue—LP are very close to the ones of slow-rescue:
the difference is about 5% for DI and less than 1% for the
other periods. It shows that the column generation models
achieve very good results, while being a lot faster than the
ILP model.

For both networks, we see that rescue—-ILP and
rescue—LP achieve comparable results. As rescue-LP
is faster, we use it as our preferred solution in the fol-
lowing. Last, we compare the results of our models with
slice—-wreck, which does not use the make-before-break
mechanism. slice-wreck can achieve a better network
improvement but at the cost of breaking slices and, thus,
of a degraded QoS for users. We report its results as an

HEl rescue-LP
E== slice-wreck

EEE slow-rescue
I rescue-ILP

103 103
o))
o 102 o 102
E £
& 10! & 10!
0° 100

D1 D2 D3 D4 D5
Time Period

D1 D2 D3 D4 D5
Time Period

Fig. 4: Execution times for pdh (left) and for tal (right).

S S
5540 E40
@) @)
9 o
© 20 © 20
2 2
8, S,
g o g o0

D1 D2 D3 D4 D5
Time Period

D1 D2 D3 D4 D5
Time Period

Fig. 5: Gains in network cost for pdh (left) and for tal (right).

'S
o
'S
o
-
o

1N}
=}
[N}
=3

Improved Obj (%)
N
153

Improved Obj (%)
Improved Obj (%)

=)
=)

0
D1 D2 D3 D4 D5
Time Period

D1 D2 D3 D4 D5
Time Period

D1 D2 D3 D4 D5
Time Period

Fig. 6: Improvement due to the reconfiguration for different model time limits:
10s (left), 60 s (middle) and 600s (right) on pdh.

upper bound on what our algorithms can achieve. We see
that rescue—ILP and rescue-LP results are within few
percent of the ones of slice-wreck, showing their effi-
ciency. The difference is higher for heavy load periods (D4 and
D5). Indeed, when the traffic is high, some links are almost
saturated, it is harder to ensure that the bandwidth for both
the current path and the path targeted by the reconfiguration
can be reserved during the process.

3) Time limits for the reconfiguration: The reconfiguration
of the network has to be done dynamically in real time. In
this context, the time to compute the reconfiguration is an
important element towards the adoption of such solutions.
We thus compare the results of the algorithms for pdh for
different maximum execution times: 10, 60 and 600 seconds,
see Figure 6. The first observation is that slow-rescue
only gives a solution for DI, even with 600s of execution.
Secondly, rescue-ILP takes at least 60s to reach its best
value for any time period while rescue-LP reaches it in
10s for all periods (except for D5 where it needs 60 seconds
to reach it). It confirms that rescue—-LP is the most scalable
method while reaching similar performance as rescue-ILP.
It thus is the best solution to use in practice.

C. Gains over Time

In the following, we are considering a scenario where
reconfiguration is regularly performed, and where traffic is
dynamic (requests arrive and leave during time). We now study
the gains provided by the reconfiguration during time. To this

no-reconf = —— rescue-LP

- 2
g =]
S °
3 50000 El
5 .g 50000
S 25000 @
3 3
2 2,
o) 0 5 0
0 6 12 18 24 0 6 12 18 24
Time (h) Time (h)
Fig. 7: Network cost for tal (left) and for ta2 (right).
2 2
m m
= 2 10000
= =
3 10000 E;
[=h =
g £ 5000
2 =]
2 2
= 0 = 0
= 0 6 12 18 24 = 0 6 12 18 24

Time (h) Time (h)

Fig. 8: Throughput for tal (left) and for ta2 (right).

end, we compare the results of rescue—-LP with the ones
of no-reconf which does not reconfigure the slices. We
consider in this section two networks: the medium and large,
tal and ta2. In our scenario, the network has periods of
high congestion during which some slices may be rejected. We
thus study the two metrics: the network operational cost and
the throughput of the accepted slices. rescue—LP performs
reconfigurations every 15 minutes. We choose this value as it
seems a reasonable one for a network operator which does not
want to change its routes too frequently.

1) Network Cost: In Figure 7 we study the network
operational cost over time. The network cost follows the
traffic variation depicted in Figure 3: the more traffic, the
more network operational cost. Our solution is more reactive
to traffic variations thanks to the reconfigurations that are
regularly performed. Throughout the entire execution and for
both networks, rescue-LP reduces significantly the network
operational costs: 21% of reduction on tal and 18% on ta2
compared to no—reconf case. This reduction is particularly
interesting when the network is loaded (between 10am and
6pm). This implies that the network is better managed and the
resources are used more efficiently.

2) Throughput: The objective of our solution is to reduce
operational costs. However, we should not reduce these costs
at the price of rejecting slices. Therefore, we present the global
throughput of the network in Figure 8. This throughput is
defined as the sum of the requested bandwidth of the accepted
slices. As we can see on both networks, tal and ta2, during
the first 5 hours of execution there is almost no congestion
because the traffic decreases. Therefore, no—reconf and
rescue-LP accept the same number of slices, and therefore
get roughly the same throughput. The next 3 hours, traffic
increases and rescue-LP improves the throughput until
almost 10% on ta2 when the network is the most saturated
(traffic period D5). For a period of 24 hours, rescue-LP
allows an average throughput improvement of 4% on tal
and 7% on ta?2. Therefore, as a conclusion on these two last
figures, rescue—LP reduces network operational costs while
at the same time improving the network throughput. These
gains are reached without impacting users’ Quality of service.

VI. CONCLUSION

In this work, we provide solutions, rescue—-ILP and
rescue-LP, to reconfigure a set of requests using a make-
before-break approach. Our algorithms, based on column gen-
eration, reroute the requests to an optimal or close to optimal
solution without impacting the rerouted requests. rescue—-LP
is the solution to be chosen in practice as we observed during
simulations that it scales better with the network and the
number of slices. Reconfiguring regularly the network with
rescue-LP allows a slight increase in throughput when the
network is congested as well as a significant reduction in
operating costs of around 20%.

REFERENCES

[1] M. Chiosi et al., “Network functions virtualisation (NFV) network
operator perspectives on industry progress,” in SDN and OpenFlow
World Congress, 2013.

[2] H. Kim and N. Feamster, “Improving network management with soft-
ware defined networking,” IEEE Communications Magazine, 2013.

[3] P. Rost ef al., “Network slicing to enable scalability and flexibility in
5G mobile networks,” IEEE Communications magazine, 2017.

[4] D. Bega, M. Gramaglia, A. Banchs, V. Sciancalepore, K. Samdanis, and
X. Costa-Perez, “Optimising 5G infrastructure markets: The business of
network slicing,” in JEEE INFOCOM, 2017.

[5]1 J. G. Herrera and J. F. Botero, ‘“Resource allocation in NFV: A
comprehensive survey,” IEEE TNSM, 2016.

[6] R. Mijumbi et al., “Network function virtualization: State-of-the-art and
research challenges,” IEEE Communications Surveys & Tutorials, 2016.

[71 T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai, “Deploying chains
of virtual network functions: On the relation between link and server
usage,” IEEE/ACM Transactions on Networking (TON), 2018.

[8] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in JEEE INFOCOM, 2015.

[9]1 N. Huin, B. Jaumard, and F. Giroire, “Optimal network service chain

provisioning,” IEEE/ACM Transactions on Networking, 2018.

A. Tomassilli, F. Giroire, N. Huin, and S. Pérennes, “Provably efficient

algorithms for placement of service function chains with ordering

constraints,” in JEEE INFOCOM, 2018.

R. Wang and B. Mukherjee, “Provisioning in elastic optical networks

with non-disruptive defragmentation,” IEEE Journal of Lightwave Tech-

nology, 2013.

J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu, “On dynamic service function

chain deployment and readjustment,” JEEE TNSM, 2017.

K. A. Noghani, A. J. Kassler, and J. Taheri, “On the cost-optimality

trade-off for service function chain reconfiguration,” in IEEE Interna-

tional Conference on Cloud Networking (CloudNet), 2019.

L. Gao and G. N. Rouskas, “Virtual network reconfiguration with load

balancing and migration cost considerations,” in [EEE INFOCOM, 2018.

G. Wang, G. Feng, T. Q. Quek, S. Qin, R. Wen, and W. Tan, “Reconfig-

uration in network slicing-optimizing the profit and performance,” IEEE

TNSM, 2019.

A. Gausseran, A. Tomassilli, F. Giroire, and J. Moulierac, “Don’t

Interrupt Me When You Reconfigure my SFCs,” in IEEE International

Conference on Cloud Networking (CloudNet), 2019.

M. Leconte, G. Paschos, P. Mertikopoulos, and U. Kozat, “A resource

allocation framework for network slicing,” in JEEE INFOCOM, 2018.

M. Pozza, A. Patel, A. Rao, H. Flinck, and S. Tarkoma, “Composing

5G network slices by co-locating VNFs in pslices,” in IFIP Networking

Conference, 2019.

A. Gausseran, F. Giroire, B. Jaumard, and J. Moulierac, “Don’t break

network slices during reconfiguration,” Inria, Tech. Rep., 2019.

S. Orlowski, R. Wessily, M. Piéro, and A. Tomaszewski, “SNDIib 1.0-

survivable network design library,” Wiley Networks, 2010.

M. Savi, M. Tornatore, and G. Verticale, “Impact of processing costs on

service chain placement in network functions virtualization,” in /IEEE

Conference NFV-SDN, 2015.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]
[20]

[21]

