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Abstract  

 In all domains of life, ribonucleic acid (RNA) maturation includes post-transcriptional chemical 
modifications of nucleosides. Many sulfur-containing nucleosides have been identified in transfer RNAs 
(tRNAs), such as the derivatives of 2-thiouridine (s2U), 4-thiouridine (s4U), 2-thiocytidine (s2C), 2-
methylthioadenosine (ms2A). These modifications are essential for accurate and efficient translation of 
the genetic code from messenger RNA (mRNA) for protein synthesis. This review summarizes the 
recent discoveries concerning the mechanistic and structural characterization of tRNA thiolation 
enzymes that catalyze the non-redox substitution of oxygen for sulfur in nucleosides. Two mechanisms 
have been described. One involves persulfide formation on catalytic cysteines, while the other uses a 
[4Fe-4S] cluster, chelated by three conserved cysteines only, as a sulfur carrier. 
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Introduction  
tRNAs are key players in genetic code decoding, a fundamental process in all living organisms. All 
tRNAs feature post-transcriptional chemical modifications [1] that stabilize their tertiary structure and 
fine-tune the decoding process [2,3]. Sulfur, an essential element in life, is present in several cofactors 
and tRNAs: at positions 8, 9 in the core, 32, 33, 34, 37 around the anticodon and 54 in the T-loop (Figure 
1A) [4,5]. The formation of 2-thiouridine (s2U), 4-thiouridine (s4U), 2-thiocytidine (s2C) and 2-
methylthioadenosine (ms2A) is catalyzed by specific enzymes called ThiI, TtcA, 
MnmA/Ctu1/Tuc1/Ncs6, MiaB and MtaB, TtuA [4,5] acting at positions 8, 32, 34, 37 and 54, 
respectively (Figure 1A). Because most thiI genes play no role in thiamine biosynthesis [6], ThiI is 
renamed here TtuI for tRNA thiouridine I. 
There are two main classes of tRNA thiolation reactions. The insertion of sulfur within an inert C-H 
bond is an [Fe-S]-dependent redox reaction catalyzed by the radical S-adenosyl-L-methionine (SAM) 
methylthiotransferases MiaB and MtaB. Because their structures remain unknown and their mechanisms 
have recently been reviewed [7,8], this class will not be discussed here. The non-redox substitution of 
oxygen for sulfur (Figure 1A), is catalyzed by ATP-dependent tRNA thiolases that share a 
pyrophosphatase (PPase) domain (Figure S1). We review here their crystal structures and catalytic 
mechanisms in light of research from the last two years showing that several of these enzymes are 
dependent on a [4Fe-4S] cluster (Table S1).  
 
Sulfur relay system 
Formation of persulfides on reactive cysteines 
The biosynthesis of sulfur-containing nucleosides involves several proteins that relay sulfur atoms 
originating from L-cysteine to tRNA [4,9,10]. In most cases, a pyridoxal-5Õ-phosphate-dependent 
cysteine desulfurase (IscS/Nsf1, YrvO, Nifz) first uses L-cysteine to form an enzyme-bound cysteine 
persulfide whose sulfur is next transferred to an acceptor protein [11-15]. This transfer is usually 
monitored by detecting, upon incubation with [35S]-L-cysteine, radioactive sulfur on the acceptor protein 
on a non-reducing SDS gel [16]. This labeling experiment monitors the formation of persulfides on 
reactive cysteines in vitro but does not demonstrate that the persulfide on the acceptor is an intermediate 
in nucleoside thiolation in vivo. Indeed, a persulfide adduct was formed on MmTtuI and MmNcs6 
[17,18] although these enzymes use a [Fe-S] cluster [19], not a mechanism based on persulfide chemistry  
(see below). In fact, persulfides are formed on cysteines that ligate an [Fe-S] cluster like persulfides and 
polysulfides are generated by IscS on the cysteines of protein scaffold IscU during [Fe-S] cluster 
biogenesis [20,21].  

Transporter proteins provide sulfur as a persulfide or thiocarboxylate for tRNA thiolation  
tRNA thiolation activity is routinely followed by monitoring [35S] incorporation into tRNA in the 
presence of [35S]-L-cysteine, cysteine desulfurase and acceptor proteins, but it is rarely quantified. While 
a cysteine desulfurase and the thiolation enzyme are sufficient for tRNA thiolation by TtuI proteins 
[13,16] or BsMnmA [15], the L-cysteine sulfur is often relayed to various carrier proteins before the 
final incorporation into tRNA, as shown for biosynthesis of s2U34 in Escherichia coli [22], eukaryotes 
[23,24] and archaea, and s2U54 in Thermus thermophilus [25-27, 28¥¥] (Figure S2).  
To identify the genes involved in s2U34-tRNA biosynthesis in E. coli, tRNA was extracted from gene-
deletion strains and analyzed for modified uridine. This led to the finding that, in addition to IscS and 
EcMnmA, TusA, a TusBCD complex and TusE are needed for s2U34-tRNA formation (Figure S2A). 
This TusABCDE sulfur pathway is mainly restricted to ! -proteobacteria [9].  
Other sulfur transfer relays generate a thiocarboxylate at the carboxy-terminal glycine of an ubiquitin-
like protein as the ultimate sulfur donor for s2U34 or s2U54-tRNA thiolation (Figure S2B) [29,30]. The 
best-studied sulfur transfer pathway is the TtuABCD pathway for U54-tRNA thiolation in T. 
thermophilus [25-27,28¥¥,31¥¥]. The ultimate step consists in TtTtuA transferring sulfur from TtTtuB-
COSH to tRNA [28¥¥,31¥¥] (see below).  
 
 
U8-tRNA 4-sulfurtransferase TtuI  (tRNA thiouridine I ).  
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s4U at position 8 in the loop connecting the acceptor and D-stems of bacterial and archaeal tRNAs 
(Figure 1A) mediates cellular responses to UV stress [32]. In E. coli and Bacillus subtilis, TtuI and the 
cysteine desulfurase IscS [33,34] or NifZ [13], respectively, are required for s4U8-tRNA thiolation. TtuI 
enzymes have three conserved domains (Figures S1 and 2A). Genomic analysis of the ttuI gene family 
identified two groups [9]: organisms like E. coli [35] that possess an additional C-terminal rhodanese-
like domain (RHD) and a larger family of organisms that includes Bacilli or Thermotoga maritima that 
do not.  
One of the first steps of the TtuI mechanism consists in the formation of an O-adenylated tRNA 
intermediate by adenylation by ATP (Figure 1B) [36]. Site-directed mutagenesis, labeling and chemical 
trapping experiments, together with mass spectrometry have shown that EcTtuI can accept sulfur from 
IscS as a persulfide on Cys456 on the RHD [35,37,38].  Mass spectrometry [38] and radiolabeling 
experiments [35,37] have also revealed the formation of a Cys344-Cys456 disulfide bond in EcTtuI. 
However, the exact mechanism of sulfur insertion into tRNA by EcTtuI is still unknown. Two possible 
scenarios involving two catalytic cysteines have been proposed (Figure 1B). Both mechanisms include a 
nucleophilic attack on the adenylated nucleoside, by either the Cys456 persulfide or hydrogen sulfide, and the 
formation of a Cys344-Cys456 disulfide bond [32]. Yet, Cys344 was found not to be absolutely required 
for catalysis [32], which casts doubts on these mechanisms. The hypothesis that EcTtuI could possess 
an [Fe-S] cluster has previously been dismissed because overexpression in the presence of IscS did not 
show spectroscopic signature of a cluster [32]. However, given that other residues than cysteine can 
ligate a [Fe-S] cluster [39] and in view of the expanding number of tRNA thiolation enzymes that are 
now being shown to use a [4Fe-4S] cluster (see below), anaerobic cluster reconstitution assays should 
be attempted before definitively ruling out the involvement of a cluster in the reaction. Obtaining the 
structure of EcTtuI would also be of great help to solve the catalytic mechanism. 
TtuI proteins that lack the RHD possess only one conserved cysteine, equivalent to Cys344 in EcTtuI 
(Figure S1), so that their catalytic mechanism is even more enigmatic. The structures of BaTtuI in 
complex with AMP [40], TmTtuI in complex with a minimal RNA substrate, in the absence and 
presence of ATP [41], and PH1313, a truncated TtuI-like protein [42] have been solved (Table S1, 
Figure 2A and B). In BaTtuI and TmTtuI, a similar homo-dimer is formed, mainly through the PPase 
domains (Figure 2B). The TmTtuI-RNA-ATP ternary complex (Figure 2C) represents an inactive initial 
state because flipping out of U8, needed to expose the target base for sulfur insertion, and adenylation 
were not observed [41]. The role of the two cysteines of TmTtuI (Figure 2C) was probed in vivo and in 
vitro, which showed that only Cys344 of TmTtuI has a catalytic role [41]. The active site loop carrying 
Cys344 is fully disordered in all TtuI structures in the absence of RNA and shows various conformations 
in the TmTtuI/RNA complex. In the closed conformation, Cys344 is buried, close to ATP, leaving space 
for U8 to flip (Figure 2D). In addition to anaerobic cluster reconstitution assays, several residues in the 
active site, besides Cys344, should be mutated to help to solve the mechanism. 
Outstandingly, an [Fe-S]-containing TtuI protein was recently uncovered in archaea [19]. The two 
cysteines of the CXXC motif in the PPase domain of MmTtuI (Figure S1) had previously been shown 
to be necessary for in vivo formation of s2U in Methanococcus maripaludis, and, together with a third 
conserved cysteine, to be the sites for persulfide formation in vitro [17]. In fact, these three cysteines 
chelate a [Fe-S] cluster [19]. Although spectroscopic data and activity tests indicated that anoxically 
purified MmTtuI contains a [3Fe-4S] cluster necessary for activity, we believe that the thiolation activity 
depends on a [4Fe-4S] cluster, like in all other enzymes of the TtcA/TtuA family (Figure S1) (see 
below). Indeed, we found that MmTtuI purified under strict anaerobic conditions contains the [4Fe-4S] 
form of the cluster, which was required for catalysis (He and Golinelli-Pimpaneau, unpublished). [3Fe-
4S]+ clusters are known to result from air degradation of [4Fe-4S]2+ clusters [43]. Therefore, some 
residual [4Fe-4S] cluster is likely present in the anoxically purified enzyme, which could account for its 
tRNA thiolation activity. The CXXC motif of MmTtuI is conserved in other TtuI proteins from several 
euryarchaeota and crenarchaeota [17], which therefore most probably operate with a [4Fe-4S] cluster.  
 
C32-tRNA 2-sulfurtransferase TtcA (tRNA-2-thiocytidine A) 
TtcA enzymes target cytidine at position 32 near the anticodon in tRNAs (Figure 1A). The [Fe-S]-
dependent TtcA/TtuA family was first identified following the characterization of E. coli and 
Salmonella thyphimurium strains deficient in s2C-modified tRNAs [44].  This class is characterized by 
a CXXC sequence motif in the central region (Figure S1). Analysis of tRNA from mutated strains 
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indicated that the two cysteines in this motif are required for s2C formation [42]. Site-directed 
mutagenesis then confirmed that these cysteines, together with a third conserved cysteine, bind a [4Fe-
4S] cluster in TtcA from E. coli, which is crucial for in vitro C32-tRNA thiolation [45]. A mechanism 
was proposed in which the sulfur atom from the persulfide of IscS-SSH is first transferred to the 
accessible coordination site of the [4Fe-4S] cluster. Then, the sulfur attached to the [Fe-S] cluster would 
act as a nucleophile to attack the adenylated target cytidine, releasing AMP and liberating s2C32-tRNA. 
No structure of a TtcA enzyme is known to date.  
 
Thiolation of U34 
Sulfuration of U34 at the wobble position of the anticodon in Glu-tRNA, Gln-tRNA and Lys-tRNA 
(Figure 1A) is conserved in all organisms and guarantees fidelity of protein translation [46]. Lack of 
s2U34-tRNA results in severe growth reduction [12,15,18,47-49]. Two distinct enzyme families of the 
MnmA-types and Ncs6-types catalyze s2U34-tRNA formation (Figure S1). MnmA-like proteins operate 
in bacteria [22,50,51] and mitochondria [52], and Ncs6-like proteins in archaea and the eukaryotic 
cytosol. Eukaryotic Ncs6-like enzymes work as a complex with an Ncs2/Ctu2 protein [47-49]  
 
U34-tRNA 2-sulfurtransferase MnmA (tRNA 2-methylaminomethylthiouridylase A) 
The crystal structure of EcMnmA has been determined in three states in complex with tRNA, 
representing the initial tRNA binding, pre-reaction and adenylated states (Figure 3A-D) [51]. In all 
structures, U34 is stabilized in a flipped-out conformation by an edge-to-face interaction with His128, 
conserved in tRNA thiolation enzymes modifying U at the C2 position (Figure S1). The structures show 
that conserved cysteines Cys102 and Cys199, which are required for in vitro thiolation of U34-tRNA, 
are located near the ATP binding site [51]. In addition, a sulfur transfer experiment using [35S]-Cys in 
the presence IscS, TusA, TusBCD and TusE showed increased [35S] labeling of the EcMnmA-C102S 
mutant and diminished labeling of the EcMnmA-C199S mutant compared to wild-type EcMnmA [51]. 
This suggested a mechanism similar to EcTtuI (Figure 2B), in which Cys199 accepts sulfur as a 
persulfide from the relay system, whereas Cys102 assists catalysis by forming a covalent linkage with 
Cys199. Asp99 was hypothesized as the acid/base catalyst that protonates/deprotonates the N3 atom of 
the target base but His128 is better positioned to play this role (Figure 3B). Asp99 is replaced by Cys99 
in a broad range of thermophilic bacteria, leading to the distinction between C-type MnmAs with a 
CXXC + C motif and D-type MnmAs with a DXXC + C motif [53¥]. Remarkably, C-type MnmA from 
T. thermophilus was recently shown to contain a [4Fe-4S] cluster that is essential for catalysis [53¥]. 
Thus C-type MnmA proteins share a catalytic mechanism similar to that of the TtcA/TtuA family 
(Figure 1C).  
 
U34-tRNA 2-sulfurtransferase Ctu1 (cytosolic 2-thiouridine 1) 
Enzymes targeting U34-tRNA in archaea and eukaryotic cytosols belong to the [Fe-S]-dependent TtuA 
subfamily [54]. This subfamily differs from the TtcA subfamily by the presence of two additional Zn 
finger domains at the N-termini and C-termini (Figure S1) [44]. Spectroscopic data of MmNcs6 and 
human Ctu1, purified under anoxic conditions, indicated that they contain a [3Fe-4S] cluster [19]. By 
contrast, we observed that MmNcs6, after anaerobic reconstitution of the cluster, contains a [4Fe-4S] 
cluster that is essential for U34-tRNA thiolation (Bimai, unpublished; PDB code 6SCY). The [4Fe-4S] 
is the active state, not the [3Fe-4S] cluster, in agreement with the fact that there is no known example 
of a [3Fe-4S] cluster being an active state in bioorganic chemistry and that [3Fe-4S] clusters are the first 
intermediates appearing upon air-degradation of [4Fe-4S] clusters [43]. The [4Fe-4S] cluster is 
coordinated by the three conserved cysteines characteristic of the TtcA/TtuA family (Figure 3C) and 
electron density on the fourth iron atom indicates the propensity of the [4Fe-4S] cluster to bind a small 
ligand.    
 
U54-tRNA 2-sulfurtransferase TtuA (tRNA-2-thiouridine A) 
s2U at position 54 in the T-loop of  tRNAs (Figure 1A) stabilizes its ternary structure in thermophilic 
bacteria and archaea for growth at high temperature [25]. Spectroscopic and biochemical analyses have 
shown that TtTtuA, PhTtuA and TtuA from T. maritima use a [4Fe-4S] cluster for U54-tRNA thiolation 
[28¥¥,55¥¥]. Thiolation did not occur in the absence of a sulfur source (Na2S [28¥¥,55¥¥] or TtTtuB-COSH 
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[28¥¥]), indicating that the sulfur atom incorporated into the nucleoside does not come from the cluster. 
The reaction was independent on the oxidation state of the cluster, indicating that this cofactor does not 
play a redox role in catalysis [28¥¥,55¥¥].  
Several crystal structures of PhTtuA and TtTtuA were obtained: without the cluster [56], with the cluster 
[28,55], with both the cluster and an ATP analog [28¥¥] or the AMP product [55¥¥] (Figures 4A and B). 
These structures revealed that the [4Fe-4S] cluster is coordinated by 3 cysteines only (Figures 4C and 
D, which are conserved in the whole TtcA/TtuA family (Figure S1), and that the cluster is located inside 
the catalytic pocket, near the ATP binding site.  The presence of extra electron density on the fourth iron 
atom of the cluster of PhTtuA, not bound to the protein, was attributed to a labile hydrosulfide ion 
(Figure 4C) [55¥¥].  
Finally, the structure of TtTtuA was determined in complex with TtTtuB (Figure 4E and F), which 
supplies the sulfur atom to TtTtuA as a thiocarboxylate on its terminal glycine (Figure S2B). In the 
structure of TtTtuA (with no cluster) in complex with a TtTtuB mutant containing cysteine instead of 
glycine at C-terminus, the two terminal residues of TtTtuB were disordered [28]. Upon TtTtuB binding, 
the loop containing Cys222, one of the [Fe-S] cluster ligands, was reorganized to cover the active site 
of TtTtuA and connect the cluster to the exterior through a positively charged channel corresponding to 
the tRNA binding site, thus indicating that TtuB and the tRNA can simultaneously access the TtuA 
active site. Moreover, the structure of [4Fe-4S]-TtTtuA in complex with non-mutated TtTtuB was 
recently obtained [31¥¥]. Remarkably, it shows how the C-terminus carboxylate of TtuB occupies the 
free coordination site of the [4Fe-4S] cluster (Figure 4F). The C-terminus carboxylate mimics the C-
terminus thiocarboxylate, suggesting that the cluster has a catalytic role and can bind the thiocarboxylate 
carried by TtuB and deliver its sulfur to the tRNA. This confirms a mechanism for [4Fe-4S]-dependent 
thiolases in which the [4Fe-4S] cluster acts as a Lewis acid to bind and activate the sulfur of the substrate, 
playing the role of sulfur carrier (Figure 1C). 
 
Conclusion  
 
Although a general mechanism for tRNA thiolation was initially proposed, in which a persulfide 
attached to a catalytic cysteine is the sulfur donor for tRNA thiolation [16,51,57], there is increasing 
evidence that a sulfur-containing species bound to a [4Fe-4S] cluster, ligated to three cysteines only, 
can be the sulfurating agent [28¥¥,31¥¥,55¥¥, Bimai, unpublished]. According to this finding, the tRNA 
thiolation enzymes for which a low in vitro activity has been detected and/or for which the catalytic 
residues remain undetermined, should have their mechanism revisited for the possibility that it involves 
a [4Fe-4S] cluster. Attempts to reconstitute a cluster under anaerobic conditions should be carried out 
to know if these enzymes can bind a [Fe-S] cluster. Indeed, the existence of [4Fe-4S] clusters has been 
overlooked in the past because usually only overexpressed proteins are examined, leaving open the 
possibility that the high level of expression swamps the capacity to generate iron-sulfur clusters. 
Moreover, enzyme production and activity tests are generally carried out under aerobic conditions in 
which the cluster is labile.  A small amount of [4Fe-4S] cluster could be present in the as-purified 
protein, producing active enzyme and leading to a misleading conclusion about the mechanism. 
In many organisms, thiolation of tRNA nucleosides involves a sulfur-relay system that carries sulfur, 
first removed from L-cysteine by a cysteine desulfurase, and finally used as a substrate by the tRNA 
thiolase. Persulfides or thio-carboxylates bound to the C-terminus of a protein carrier are thought to be 
the ultimate sulfur donor, allowing sulfur transfer in a nontoxic form. A direct transfer from various 
sulfur donors to the [4Fe-4S] cluster of some tRNA thiolation enzymes has been proposed. For TtcA, 
the persulfide on cysteine desulfurase may provide its terminal sulfur to the cluster, whereas the [4Fe-
4S]-TtTtuA/TtTtuB structure indicates that the thiocarboxylate on the C-terminal glycine of the sulfur 
carrier protein TtTtuB could attach to the non-ligated iron of the cluster before its desulfurization to give 
rise to a [4Fe-5S] intermediate [31¥¥]. In organisms living in high sulfide concentration, a hydrosulfide 
ion from the medium could directly bind the cluster. 
Only two crystal structures of tRNA thiolation enzymes have been determined in complex with RNA 
substrate [41,51] (Table S1). More structures of such complexes are needed to understand the specificity 
for tRNA and the catalytic mechanism. 
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Legend Figures 
Figure 1: Reactions catalyzed by tRNA thiolation enzymes and proposed mechanisms. 
A tRNA thiolation enzymes catalyzing sufur insertion in tRNAs. U34 of tRNAGln

UUG, tRNALys
UUU 

and tRNAGlu
UUC is universally thiolated at C2 position and hypermodified by different chemical groups 

at C5 position depending on the organism [1]. MiaB recognizes i6A (R=isopentenyl) and catalyzes the 
formation of ms2i6A (R2=H) and msms2i6A (R2=CH3-S-) while MtaB recognizes t6A (R=threonyl 
carbamoyl) and catalyzes the formation of ms2t6A and its cyclic form ms2ct6A. B Persulfide-based 
mechanism for U8 or U34 sulfuration proposed for EcTtuI [32] and EcMnmA [51], which involves two 
catalytic cysteines (CysA and CysB). CysA corresponds to Cys344 in EcTtuI and Cys199 in EcMnmA, 
while CysB correspond to Cys456 in EcTtuI and Cys102 in EcMnmA. C [4Fe-4S]-dependent thiolation 
mechanism, in which the [4Fe-4S] cluster functions as a sulfur-carrier. The mechanism is depicted for 
U34-tRNA thiolation. The cluster is bound by three cysteines only. The vacated iron site can bind a 
sulfur-containing ligand: a thiocarboxylate at the C-terminus of a sulfur-donor protein, a protein-bound 
persulfide or a hydrosulfide ion from the medium.   

 

Figure 2: Comparison of the crystal structures of U8-tRNA thiolases. A Superposition of the 
monomers of TtuI proteins. The monomers of BaTtuI (in blue) in complex with AMP (in blue sticks), 
and TmTtuI (in green) in complex with ATP and Mg2+ (red sticks and balls), were superimposed onto 
PH1313 (in grey) with rmsd of 2.5 • for 222 C"  atoms and 1.82 • for 180 C"  atoms, respectively. 
PH1313 has a truncated PPase domain and lacks several conserved residues, including some in the PP-
loop motif (Figure S1). Catalytic Cys344 belongs to loop 342-355 that is disordered in BaTtuI and 
deleted in PH1313. Cys344 of TmTuI is indicated in red sticks. B Superposition of the PPase domains 
of the BaTtuI and TmTtuI dimers (rmsd of 0.49 • for 44 C"  atoms). The mini-RNA in complex with 
TmTtuI is shown in orange. The superposition shows that the dimeric interface is formed even in the 
absence of RNA and that RNA binding results in a conformational change of the THUMP and NFLD 
domains relative to the PPase dimeric core. Insert. Zoom of the ATP binding site and the dimeric 
interface between two PPase domains. Superposition of one PH1313 monomer (in grey) with that of 
BaTtuI and TmTtuI shows that a displacement of the C-terminal helix of PH1313 (in pink) hinders 
formation of the same dimeric interface as BaTtuI and TmTtuI. C General view of the TmTtuI dimer in 
complex with mini-RNA and ATP.  In each subunit, the RNA acceptor-stem is bound by the NFLD and 
the THUMP domains, and the bulge is recognized by the NFLD. Building a TmTtuIÐtRNA model by 
superimposing the acceptor stems of tRNAPhe and the TtuI-bound truncated RNA results in severe 
clashes, indicating that full-length tRNA has to adopt a non-canonical conformation upon binding to 
TtuI. U8 (in blue sticks) is not flipped out and is located away from the ATP binding site (in blue sticks). 
D Zoom of the active site of TmTtuI showing the ATP binding site, including Cys344 and the interface 
of the PPases domain and the NFLD. 
 
 
Figure 3. Structures of U34-tRNA thiolases EcMnmA and MmNcs6. A. Superposition of the 
EcMmnA/tRNA complex in the adenylated state and SpMnmA (in grey) in complex with SAM (in blue 
sticks) and Mg2+ (grey sphere)(rmsd= 1.00 • for 1896 C"  atoms). U34, U35 and C36 of E. coli 
tRNAGlu

UUC are shown as magenta sticks and the adenylated group linked to U34 in orange. U34 is 
mainly recognized by the PPase domain. Catalytic Cys199 is carried by a Ôvariable segmentÕ that can 
adopt different folds. B Snapshots of the sequential chemical reactions during EcMnmA catalysis 
showing U34 recognition by EcMnmA. Top: initial tRNA binding state, middle: pre-reaction state, 
bottom: adenylated state. In the initial state, the U34 conformation is inactive with respect to adenylation 
and sulfuration because the O2 thiolation site and the N3 atom are hydrogen bonded to Gln151. In the 
pre-reaction state, a conformational change of the Ôvariable segmentÕ closes the active site, which 
moves U34 close to Cys102 and Cys199 and positions the O2 atom for adenylation by ATP. Cys102 
and Cys199 are linked by a disulfide bond in the initial and pre-reaction states. C Active site of MmNcs6 
seen in the same orientation as EcMnmA. The three cysteines that ligate the cluster in MmNcs6 (Cys142, 
Cys145, Cys233) are orientated similarly to Asp99, Asp102 and Cys199 in EcMnmA. His169 is oriented 
similarly to His128 in EcMnmA and could play the same role in catalysis. 
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Figure 4. Comparison of the structures of [4Fe-4S]-dependent U54 tRNA thiolases. A 
Superposition of the PhTtuA and TtTtuA dimers. The PPases domains of [Fe-S]-containing (holo)-
TtTtuA (monomers in blue and cyan) and holo-PhTtuA (monomers in green and palegreen were 
superposed (rmsd of 1.5 • for 44 atoms). AMP and AMPPNP bound to holo-PhTtuA and holo-TtTtuA, 
respectively, are shown as sticks. The cluster of TtTtuA is shown as spheres (S in yellow, Fe in orange), 
the Zn atoms of PhTtuA and TtTtuA as grey and black spheres, respectively. B Zoom of the active sites 
of holo-PhTtuA and holo-TtTtuA after superposition. C and D: Fobs-Fcalc maps omitting the clusters 
contoured at 2 # and 3 #, for holo-PhTtuA and holo-TtTtuA, respectively, showing that the cluster is 
bound by three cysteines only. An extra electron density on the fourth, non-protein bonded, iron atom 
of the cluster of PhTtuA, was attributed to a labile hydrosulfide ion, which could come from inorganic 
sulfide used for cluster reconstitution. E: General view of holo-TtTtuA in complex with TtTtuB (in red) 
and ATP (in sticks). The structure of holoTtTtuA alone has been superposed and shown in grey. F: 
Zoom of the active site showing that the C-terminal carboxylate group of TtTtuB binds to the fourth, 
non-protein bonded iron atom of the [4Fe-4S] cluster of holo-TtTtuA. 
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Supplementary Figures and Table 
 
Figure S1.  Amino acid sequence alignment of several tRNA thiolases that that have been 
characterized biochemically or structurally: TtuA from Pyrococcus horikoshii (PhTtuA), 
Thermotoga maritima (TmTtuA) and Thermus thermophilus (TtTtuA), TtcA from Escherichia coli 
(EcTtcA), Ncs6 from Haloferax volcanii Methanococcus maripaludis (MmNcs6), Saccharomyces 
cerevisiae (ScNcs6), Homo sapiens  (Ctu1), mitochondrial Mtu1/TrmU, TtuI from M. maripaludis 
(MmTtuI), PH1313, TtuI from Bacillus anthrasis (BaTtuI), B. subtilis (BsTtuI) and T. maritima 
(TmTtuI). The alignment was performed with Clustal Omega [1] and rendered with ESPript [2]. The 
secondary structures of PhTtuA and EcMnmA are drawn above and below the alignment, respectively. 
All enzymes possess an ATP-binding motif indicated as PP-loop. In addition to the common PPase 
domain (yellow bar), MnmA proteins possess a central domain (red bar) and C-terminal domain CTD 
(cyan bar); TtuI proteins have an NFLD (N-terminal ferredoxin-like domain) (green bar) and THUMP 
(pink bar) [3] additional domains. In addition, Ec-TtuI possesses a C-terminal rhodanese-like domain 
(RHD) (violet bar) [4].  
The MnmA- and Ncs6-types families share only 10-15% sequence identity, showing their 
evolutionary distance. U34-tRNA thiolases are called Ncs6 or NcsA in archaea [5,6], Ncs6p or Tuc1p 
in yeast [7-9], Ctu1 in nematodes [10], ATPBD3 in humans [11], Rol5 in plants [12,13].  
Two clusters of ttuI genes have been identified [14]: gamma-proteobacteria such as E. coli [15], and 
archaeal organisms from the Thermoproteales or Thermoplasmatales orders possess a C-terminal 
RHD; other proteobacteria, firmicutes such as Bacilli and most archaea do not contain the C-terminal 
extension [14].  
Enzymes from the TtcA/TtuA superfamily contain three conserved cysteines (indicated as blue dots) 
that chelate a [4Fe-4S] cluster. The TtuA and Ncs6 subfamilies also contain two zinc finger motifs at 
the N- and C-termini whose cysteine/histidine are highlighted by magenta dots. The catalytic cysteines 
of TtuI and MnmA proteins are shown as green, and orange dots, respectively.  
The sequence alignment shows the conservation of two regions outside the PPase-motif: motif 1 
comprising residues 138-162 surrounding the strictly conserved Gly154 (PhTtuA numbering) and 
motif 2 comprising residues 193-208 surrounding the strictly conserved Pro195. First, in motif 1, a 
histidine, present in all tRNA thiolases targeting the C2 position of uridines, is replaced by Asp/Glu in 
TtuI enzymes targeting the C4 position of U8. Located at this position, His128 in EcMnmA could act 
as an acid/base catalyst to deprotonate/protonate N3 of U34-tRNA and/or to stabilize the flipped-out 
conformation of U34 (Figure 3B). The equivalent residue Glu287 in TmTtuI is in close proximity to 
the ATP ribose in the TmTtuI/RNA/ATP complex (Figure 2D).  Hence, the conserved His/Asp/Glu 
residue in motif 1 could act as an acid/base catalyst and/or could be involved in the stabilization of the 
flipped-out conformation of the target base in all tRNA thiolation enzymes, with the conserved glycine 
enabling its flexibility. Second, the conserved K/R/FPL/F/V/I sequence in motif 2 could participate in 
the correct positioning of this His/Asp/Glu residue as Phe168 in EcMnmA makes van der Waals 
interactions to His128 together with Leu155 [16]. The equivalent residue is a conserved Arg/Lys in 
other tRNA thiolases. 
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Figure S2. Sulfur relay system for the biosynthesis of thionucleosides. In the first step, a cysteine 
desulfurase (in green) receives sulfur (in red) as a persulfide on a catalytic cysteine. In the last step, 
sulfur (in the form of a persulfide (A) or a thiocarboxylate (B) bound to a carrier protein) is used as a 
substrate by the tRNA thiolation enzyme (in blue). A The TusABCSD sulfur relay for U34-tRNA 
thiolation by EcMnmA. The transfer of [35S] from [35S]-IscS to TusA, but not to the TusA-C19S 
mutant, identified Cys19 as the sulfur acceptor on TusA. Cys78 of TusD and Cys108 of TusE were 
crucial for s2U34-tRNA formation in vivo, implying their involvement in persulfide relay [17].  It was 
proposed that the IscS/TusA complex [18] first stimulates IscS activity [19]. After the transfer of the 
persulfide sulfur of IscS to TusA, sulfur transfer from TusA to TusD is stimulated by the binding of 
TusE to the TusBCD complex [17]. After sulfur transfer from TusD to TusE, the interaction of TusE 
with the MnmA-tRNA complex leads to U34-tRNA thiolation.  Because EcMnmA was not labeled 
[19] or poorly labeled [16] in the [35S]-sulfur transfer experiment, it is not clear if the sulfur provided 
by TusE as a persulfide is accepted directly by EcMnmA or not. This uncertainty is represented as 
[MnmA-SH]. B The TtuABCSD sulfur relay for s2U54-tRNA thiolation by TtTtuA [20-24] (top) and 
its equivalent for s2U34-tRNA thiolation in eukaryotes (bottom). Top. The ttuA, ttuB and ttuC genes 
are organized as an operon in T. thermophilus but not the ttuD gene. It was proposed that, first, TtTtuD 
enhances the activity of cysteine desulfurase (IscS or SufS) and receives sulfur as a persulfide on the 
catalytic cysteine of one of its RHD [23]. The C-terminal glycine of the ubiquitin-like protein TtTtuB 
is activated by an ATPase named TtTtuC, resulting in the formation of acyl-adenylated TtTtuB-
COAMP [21].  The thiocarboxylation of this intermediate is likely performed by the persulfide bound 
on TtTtuC. Finally, TtuA is involved in the transfer of the sulfur atom from TtTtuB-COSH to the 
tRNA [24,25].  Bottom. In S. cerevisiae, s2U34-tRNA biosynthesis in the cytosol starts with cysteine 
desulfurase Nfs1 giving sulfur as a persulfide to a cysteine of the C-terminal RHD of Tum1 [9,26,27]. 
Once persulfurated, Tum1 likely transfers the sulfur to the RHD of the activating enzyme Uba4 (TtuC 
homologue). Uba4 adenylates the C-terminus of the ubiquitin-like protein Urm1 (TtuB homologue), 
and transfers sulfur onto Urm1 to generate a C-terminal thiocarboxylate. Recently, the details of the 
interaction between Uba4 and Urm1 has been revealed, involving the formation of a thioester between 
the C-terminal carboxylate of Urm1 and Cys225 of Uba4 [28]. Urm1 is then transferred to the RHD 
domain of Uba4 via a persulfide generated on Cys397 of Uba4. A subsequent reductive cleavage 
regenerates Uba4 and releases Urm1 thiocarboxylated at its C-terminus. This thiocarboxylate is finally 
utilized for 2-thiouridine formation mediated by the tRNA modifying enzyme.  
Sulfur carrier proteins involved in such a ubiquitination-related pathway have been identified in yeast 
[8,9,26,27,29], nematode [30], plant [31] and human [11,32], in the archaeum H. volcanii [6,33] and 
predicted in other archaeal organisms using comparative genomic analysis [14,34]. 
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Figure S3: Superposition of the structures of several RNA modification enzymes solved in complex 
with RNA. A Stereoview of the superposition of the PPase cores (shown as ribbons) of GkTilS, (in 
grey), TtTtuA (monomers in cyan and blue), MmNcsA (monomers in pink and magenta) and TmTtuI 
(in green and palegreen), EcMnmA (in yellow). RNAs bound to GkTilS, EcMnmA and TmTtuI are 
shown as tan cartoons. U8 of RNA from TmTtuI and the flipped C34 and U34 target bases of tRNA 
bound to GkTilS and EcMnmA are represented as sticks. All enzymes catalyzing the replacement of 
oxygen for sulfur in tRNA, as well as tRNA lysidine synthetase [35] use ATP to activate their target 
nucleoside. Hence, the ATP binding sites are well conserved (Figure S1) and the superposition of the 
TtuI/ATP, MnmA/ATP and TtuA/AMPPNP structures shows the same location of the cofactor, with 
the same H-bonding interactions to the PP-loop motif. However, the tRNA substrates are bound very 
differently, even for tRNA modifying enzymes targeting the same position such as tRNA lysidine 
synthetase from Geobacillus kaustophilus (GkTilS, PDB code 3A2K) that adds lysine to C34 in 
tRNAs [35] and EcMnmA that targets U34.  
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B Comparison of the electrostatic surfaces of GkTilS, PhTtuA, TmTtuI, MmNcs6 and EcMnmA 
calculated with PYMOL/APBS colored by the electrostatic potential from red (negative) to blue 
(positive). The proteins have been superposed on their PPase core (indicated as green ribbons) and are 
shown in the same orientation. ATP, as shown in the TmTtuI structure, is shown as sticks in all figures 
to highlight the ATP binding site. The [4Fe-4S] clusters in PhTtuA and MmNcsA are indicated as 
spheres. When present, tRNA is shown in cartoon representation with the target base drawn as sticks.  
This comparison highlights the great variety of charged surfaces used to bind the RNA substrate, 
indicating that unique tRNA binding modes are probably used by each enzyme.  
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Table S1: Structures of non-redox tRNA thiolation enzymes. 

PDB 
code 

Enzyme + ligands Position of 
modification 

organism abbreviation Resolution 
(•)  

reference 

4KR6 TtuI + mini-RNA U8 Thermotoga 
maritima 

TmTtuI 2.85 [36] 

4KR7 TtuI + mini-RNA + 
ATP 

U8 T. maritima Ç 3.42 [36] 

4KR9 TtuI + mini-RNA U8 T. maritima Ç  3.5 [36] 

2C5S TtuI + AMP nd Bacillus 
anthracis 

BsTtuI 2.5 [37] 

1VBK PH1313  nd Pyrococcus 
horikoshii 

PH1313 1.9 [38] 

2DER MnmA + tRNAGlu  

(initial binding state) 
U34 Escherichia coli EcMnmA 3.1 [16] 

2DET MnmA + tRNAGlu 

((pre-reaction state) 
U34 E. coli Ç  3.4 [16] 

2DEU MnmA + tRNAGlu 

(adenylated state) 
U34 E. coli Ç  3.4 [16] 

2HMA MnmA + SAM nd Streptococcus 
pneumoniae 

SpMnmA 2.41 Kim et al., 
unpublished 

6SCY [4Fe-4S]Ncs6 U34 Methanococcus 
maripaludis 

MmNcs6 2.8 Bimai et al., 
unpublished 

3VRH Apo-TtuA U54 Pyrococcus 
horikoshii 

PhTtuA 2.1 [39] 

5MKP [4Fe4S]TtuA U54 P. horikoshii Ç 2.5 [40] 

5MKQ [4Fe4S]TtuA  
(iron edge) 

U54 P. horikoshii Ç 2.9 [40] 

5MKO [2Fe-2S]TtuA + 
AMP 

U54 P. horikoshii Ç 2.65 [40] 

5B4E [4Fe-4S]TtuA  
+ AMPPNP 

U54 Thermus 
thermophilus 

TtTtuA 2.75 [24] 

5B4F [Fe-S]TtuA  U54 T. thermophilus Ç 2.7 [24] 

5GHA  TtuA-(G65S)TtuB 
complex 

U54 T. thermophilus Ç 2.5 [24] 

5ZTB [4Fe-4S]TtuA-TtuB 
complex + ATP 

U54 T. thermophilus Ç 2.2 [25] 

nd :not determined 
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