
HAL Id: hal-02943532
https://hal.science/hal-02943532

Submitted on 19 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MELODY EXTRACTION BY CONTOUR
CLASSIFICATION

Rachel M Bittner, Justin Salamon, Slim Essid, Juan P Bello

To cite this version:
Rachel M Bittner, Justin Salamon, Slim Essid, Juan P Bello. MELODY EXTRACTION BY CON-
TOUR CLASSIFICATION. International Conference on Music Information Retrieval (ISMIR), Sep
2015, Malaga, Spain. �hal-02943532�

https://hal.science/hal-02943532
https://hal.archives-ouvertes.fr

MELODY EXTRACTION BY CONTOUR CLASSIFICATION

Rachel M. Bittner1, Justin Salamon1,2, Slim Essid3, Juan P. Bello1

1Music and Audio Research Lab, New York University
2Center for Urban Science and Progress, New York University

3Télécom Paris-Tech
{rachel.bittner,justin.salamon,jpbello}@nyu.edu {slim.essid}@telecom-paristech.fr

ABSTRACT

Due to the scarcity of labeled data, most melody extrac-
tion algorithms do not rely on fully data-driven processing
blocks but rather on careful engineering. For example, the
Melodia melody extraction algorithm employs a pitch con-
tour selection stage that relies on a number of heuristics
for selecting the melodic output. In this paper we explore
the use of a discriminative model to perform purely data-
driven melodic contour selection. Specifically, a discrim-
inative binary classifier is trained to distinguish melodic
from non-melodic contours. This classifier is then used
to predict likelihoods for a track’s extracted contours, and
these scores are decoded to generate a single melody out-
put. The results are compared with the Melodia algorithm
and with a generative model used in a previous study. We
show that the discriminative model outperforms the gen-
erative model in terms of contour classification accuracy,
and the melody output from our proposed system performs
comparatively to Melodia. The results are complemented
with error analysis and avenues for future improvements.

1. INTRODUCTION

Melody extraction has a variety of applications in music
retrieval, classification, transcription and analysis [15]. A
precise definition of melody that takes into account all pos-
sible scenarios has proven elusive for the MIR commu-
nity. In this paper we consider two different definitions
of melody [1]: The f0 curve of the predominant melodic
line drawn from a single source (melody type 1), and the
f0 curve of the predominant melodic line drawn from mul-
tiple sources (melody type 2).

Some approaches to melody extraction are source
separation-based [4, 18], first isolating the melodic source
from the background and then tracking the pitch of the re-
sulting signal. The most common approaches are based
on the notion of salience [3, 7, 13, 14], and are variants of
the following steps (1) audio pre-processing, (2) salience

c© Rachel M. Bittner1, Justin Salamon1,2, Slim Essid3, Juan
P. Bello1.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Rachel M. Bittner1, Justin Salamon1,2,
Slim Essid3, Juan P. Bello1. “Melody Extraction by Contour Classifica-
tion”, 16th International Society for Music Information Retrieval Confer-
ence, 2015.

function computation, (3) f0 tracking, and (4) voicing de-
cisions. Steps (3) and (4) for these methods are each based
on a series of carefully chosen heuristic steps, and are lim-
ited to the data they were designed for. A recent trend in
Music Information Retrieval research is to combine do-
main knowledge with data driven methods [8], using do-
main informed feature representations as input to data-
driven models. To the best of our knowledge, only one
melody extraction approach [5] has been proposed to date
using a fully data driven method. However, the features
employed were poor for the task (magnitude Fourier co-
efficients), and used only limited temporal modeling via
HMM smoothing. Additionally, at the time, only a small
amount of data was available. The recent availability of an-
notated melody data allows for new exploration into data
driven methods for melody extraction.

In this paper, we present a system for melody extraction
which replaces the common series of heuristic steps with
a data-driven approach. We propose a method for scoring
extracted contours (short, continuous pitch sequences) us-
ing a discriminative classifier, and a Viterbi-based method
for decoding the output melody. We show that our method
performs competitavely with Melodia [14]. The imple-
mentation of the proposed method and the code used for
each experiment is available on Github 1 . The remainder
of this paper is organized as follows: in Section 2 we give
an overview of Melodia; Section 3 describes our proposed
method for melody extraction; in Section 4 we present ex-
periments evaluating the effectiveness of our method, in-
cluding a comparison with Melodia, and in Section 5 we
discuss the conclusions and avenues for future work.

2. MELODIA

Melodia [14], a salience-based melody extraction algo-
rithm, has proved to perform particularly well. The algo-
rithm is comprised of four processing blocks: sinusoid ex-
traction, salience function computation, contour creation
and characterization, and finally melody selection. In the
first block, spectral peaks are detected, and precise fre-
quencies of each component are estimated using their in-
stantaneous frequency. In the second stage a harmonic
summation-based salience function is computed. In the
third block, the peaks of the salience function are tracked
into continuous pitch contours using auditory streaming

1 www.github.com/rabitt/contour_classification

cues. Additionally, a number of features are computed for
each contour:
• Duration (seconds)
• Pitch mean and standard deviation (in cents)
• Salience mean, standard deviation, and sum
• Vibrato presence (binary), rate (Hz), extent (cents),

coverage (fraction of contour with vibrato)
The melody f0 trajectory is obtained in the fourth block

by filtering out non-melodic contours based on their fea-
tures in combination with an iterative estimation of the
global melodic trend. This step exploits the contour fea-
ture distributions to perform the filtering, but does so in a
heuristic fashion. For further details the reader is referred
to [14].

Recently, Melodia was evaluated on the MedleyDB [1]
dataset which contains considerably more variety in musi-
cal style than previous datasets. The results were shown to
be substantially lower than for the existing datasets. In par-
ticular, it was reported that Melodia’s performance on mu-
sic with vocal melodies was better than on music with in-
strumental melodies. This indicates that the heuristic steps
at the contour selection stage may be well tuned for singing
voice, but less so for instrumental melodies. Since these
heuristics are hard coded, the algorithm cannot be adjusted
for different kinds of data or different concepts of melody.
We will show that these steps can be replaced by a data
driven approach.

In [16], Salamon, Peeters, and Röbel proposed to re-
place the heuristic melodic selection block of Melodia with
a generative classification model. The contour features
were used to estimate two multivariate Gaussian distribu-
tions, one for melodic and another for non-melodic con-
tours. These distributions were used to define the “melodi-
ness” score, computed as the likelihood ratio of the two
distributions.

The final f0 sequence was obtained by taking the f0 of
the contour with the highest “melodiness” at each frame.
The authors showed that the generative model could pro-
duce similar (albeit not equally good) results in terms of
pitch accuracy, but the model lacked a voicing detection
step. This was addressed by combining the model with the
voicing detection filter of the original Melodia algorithm.

Finally, in [17] the authors combined Melodia’s contour
features with additional features to train a discriminative
model for classifying different musical genres. Their ex-
periments showed that the contour features carry discrim-
inative melodic information. This outcome, together with
that of [16] and the release of MedleyDB, gives compelling
motivation for the exploration of discriminative models
using pitch contour features for solving the problem of
melodic contours selection.

3. METHOD

The proposed system uses the pitch contours and contour
features generated by Melodia 2 . The method consists of
a contour labeling stage, a training stage where a classifier

2 These are taken from intermediate steps in the Vamp plugin’s imple-
mentation

is fit to discriminate melody from non-melody contours,
and a decoding stage which generates a final f0 sequence.
Melody output is computed using a trained classifier as
shown in Figure 1.

3.1 Contour Labeling

To generate contours for a musical audio signal, we use
the first three processing blocks of the Melodia algorithm
directly (see [14] for details). Each contour is represented
by a sequence of tuples (time, frequency, salience). As
described in Section 2, the third block also computes a set
of descriptive features for each contour, which we use to
train the model in Section 3.2.

During training, extracted contours are assigned binary
labels: 1 if the contour should be considered as a part of
the melody and 0 otherwise. The labels are chosen by
comparing the amount of overlap between each contour
and the ground truth annotation. Given an annotation a(t)
with 0 ≤ t ≤ T , a contour c(t) spanning the time interval
t1 ≤ t ≤ t2 is compared with a(t) over the time range
t1 ≤ t ≤ t2. The amount of overlap between these two
sequences is computed using “Overall Accuracy” [15], de-
fined as:

Accov =
1

L

L−1∑
i=0

viT [|ϕ̂i − ϕi|] + (1− vi)(1− v̂i) (1)

where L is the number of reference/estimate examples, vi
and v̂i are the (binary) voicings of the reference and esti-
mate respectively, ϕi and ϕ̂i are the f0 values in cents of
the reference and estimate respectively, and T is a thresh-
old function equal to 1 if the argument is less than 0.5,
and 0 otherwise. Given a minimum overlap threshold α, if
Accov > α the contour is labeled as melody. Note that if
α = 1, because of the strict inequality, all contours would
be labeled as non-melody. Despite containing extraneous
information, a contour with a small degree of overlap still
contains part of the melody. Labeling it as non-melody re-
moves any possibility of the melody-portion of the contour
ending up in the final extracted melody (i.e., lower recall).
On the other hand, labeling it as melody potentially results
in having non-melody information included in the melody
(i.e., lower precision). Thus, there is an inherent trade-off
between melody precision and recall based on the value of
the overlap threshold α.

3.2 Contour Classification

We normalize the features per track to remove variance
caused by track-level differences. The salience features are
each divided by the maximum salience value in the track
to remove differences based on overall track salience. The
duration feature is normalized so that across the track the
minimum value is 0 and the maximum value is 1. The fea-
ture “total salience” is additionally re-scaled to reflect the
normalized duration.

These features and the computed labels are used to train
a random forest classifier [2]. We use the random forest im-
plementation in scikit-learn [11] with 100 trees and

Discriminative
Classifier

Training
Data

Contour
Extraction

Viterbi
DecodingThreshold

Figure 1. Block diagram of the proposed system (left to right): pitch contours are extracted from an audio signal, a classifier
is used to score the contours and remove those below a threshold, the final f0 sequence is obtained using Viterbi decoding.

choose the maximum depth parameter by cross validating
over the training set. In our experiments, the classifier was
trained with roughly 11,000 examples for melody 1 and
roughly 15,000 for melody 2. Because our class distribu-
tions tend to be biased towards non-melody examples, the
classifier is trained with class weights inverse to the class
distributions. Once the classifier is trained, we use it to
predict the probability that a given contour is melody. In
the case of a random forest, the melody likelihood is com-
puted as the fraction of trees that classify a given example
as melody.

3.3 Melody Decoding

We create an output melody by first removing contours
whose likelihood falls below a threshold β and then de-
coding to generate a final melody. The thresholding step
is necessary because there may be regions of time where
only non-melody contours are present. Since decoding
only chooses the best path through available contours, hav-
ing regions with contours which are all non-melody would
result in false positives. Aside from the contour extraction,
the choice of this threshold is the single most important
step for determining the voicing of the output melody.

This raises the question: what is the best way to de-
termine the likelihood threshold β? A natural choice is
β = 0.5, as this is the threshold that has been opti-
mized by the machine for maximum classification accu-
racy. While this threshold gives us nearly perfect preci-
sion for the melody class, the recall is extremely low. We
instead choose the threshold that yields the highest class-
weighted F1 score on a validation set. The chosen value
of β in this manner is consistently much lower than 0.5
(typically β ≈ 0.1), resulting in higher recall at the cost
of lower precision. It is interesting to note that for our end
goal – selecting a single melody sequence – we do not nec-
essarily need perfect precision because false positives can
be removed during decoding.

After this filtering step, contours that do not overlap
with any other contour are immediately assigned to the
melody. The remaining contours have partial overlap with
at least one other contour, requiring the melody line to
be chosen from within the overlapping segments. Thus,
we divide these remaining contours into groups: contours
{C1[t], . . . , Cn[t]} each spanning some time interval are
assigned to the same group if the union of their intervals
forms a contiguous interval.

The path over time through each group of contours is
computed using Viterbi decoding [6]. Given a group of
n contours, our state space is the set of contour numbers

{1, 2, . . . , n}. We create a matrix Y of emission probabili-
ties using each contour’s likelihood score [p1, p2, . . . , pn]:

Yit =

{
pi if Ci is active at time t
0 otherwise (2)

The transition matrix A, defined to encourage continu-
ity in pitch space, is computed for each group as:

Aij =

∑n
k 6=j |log2(fi)− log2(fk)|

(n− 1)
∑n

k=1
|log2(fi)− log2(fk)|

(3)

where fi is the average frequency (in Hz) of contour i.
This transition matrix, simply put, assigns a high transi-
tion probability between contours whose (log) frequencies
are near one another, and a lower transition probability be-
tween contours which are far from one another in log fre-
quency. The prior distribution is set to be uniform. Given
the sequence of contour states S[t] computed by Viterbi,
for each time point t, the frequency CS[t][t] is assigned to
the melody.

4. EXPERIMENTS

For each of the following experiments we use the Med-
leyDB Dataset [1]. Of the 122 tracks in the dataset, we
use the 108 that include melody annotations. We create
train/test splits using an artist-conditional random parti-
tion (i.e., tracks from the same artist cannot be in both
the train and test set). The complete training set is fur-
ther split randomly into a training and validation. A given
train, validate, and test split contains roughly 78%, 7%,
and 15% respectively of the 108 tracks. We repeat each
experiment with five different randomized splits to get a
sense of the variance of the results when using different
data. In Figures 2, 3, and 4, vertical lines indicate the
standard deviation over the five splits. Recall that we con-
sider two definitions of melody (Section 1). Consequently,
when we report scores for melody type 1, the classifier was
trained using the melody 1 annotations, and likewise for
melody type 2. All evaluation metrics were computed us-
ing mir eval [12].

4.1 Experiment 1: Generative vs. Discriminative
Contour Classification

Before evaluating components of the proposed system, we
first examine the recall of Melodia’s contour extraction on
this dataset. That is, given all extracted contours, what is
the percentage of the reference melody that is covered by
the contours (in terms of pitch overlap)? We tested this by
selecting the “oracle” (i.e., best possible) f0 curve from the

0.0 0.2 0.4 0.6 0.8 1.0
Overlap Threshold α

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78
F1

 S
co
re

Melody 1

Random Forest
Melodiness

0.0 0.2 0.4 0.6 0.8 1.0
Overlap Threshold α

Melody 2

Random Forest
Melodiness

Figure 2. Maximum F1 score achieved per overlap thresh-
old α by the generative and discriminative models.

contours. The oracle output yielded an average Raw Pitch
Accuracy of 0.66 (σ = 0.22) for melody type 1, and 0.64
(σ = 0.20) for melody type 2. Thus, the best raw pitch
accuracy we (or Melodia) could hope to achieve on this
dataset is upper bounded by these numbers.

Acknowledging the existence of this glass ceiling, we
compare the generative model for scoring contours with
the proposed discriminative model. The features used for
the discriminative model are those described in Section 2,
while the generative model used only the continuous fea-
tures (i.e., none of the vibrato features) 3 . The features for
the multivariate Gaussian were transformed using the box-
cox transformation as in [16], where the transformation’s
parameter λ was estimated from the training set and ap-
plied to the testing set.

To evaluate the effectiveness of these two methods, we
compare the F1 scores achieved by selecting the optimal
likelihood threshold β. Figure 2 shows the best achieved
F1 scores on the validation set for the two models. We see
that the random forest classifier obtains a better F1 score
for all values of α. Interestingly, the F1 score achieved
by the multivariate Gaussian is less affected by α than the
Random Forest, which decreases as α increases. Note that
neither classifier achieves an F1 score above 75%. This
suggests that either the models are not complex enough or
that the classes are not completely discriminable using this
set of features. Since our feature set is relatively small, the
latter is likely, and the performance of both of these mod-
els would likely benefit from a larger feature set. However,
fitting a high dimensional multivariate Gaussian requires a
large amount of data. Thus, another advantage of using a
random forest classifier is that increasing the dimensional-
ity of the feature space does not necessarily require more
data.

One might argue that the difference in performance
of the two methods could be due to the fact that the vi-
brato features are not used in the multivariate Gaussian
model. However, a post-hoc analysis of the importance
of the vibrato features within the random forest classifier
(for melody 1 with α = 0.5) showed that they were by a

3 We initially included the vibrato features for the generative model,
but the results were extremely poor.

Melody Type OA RPA RCA

1 1.6 2.5 2.5
2 2.4 4.2 2.1

Table 1. Percentage point difference between Viterbi de-
coding and taking a simple maximum.

large margin the least important features in the set. In fact,
the presence of vibrato contributed to discriminating only
≈ 0.03% of the training samples. The most discriminative
features for the random forest were the salience standard
deviation, followed by pitch mean, followed by pitch stan-
dard deviation.

Overall, we see that the random forest consistently out-
performs the multivariate Gaussian, and has the additional
benefit of scalability to a much larger feature set.

4.2 Experiment 2: Decoding Method

Our second experiment examines the effect of our Viterbi
decoding strategy. First, we compare it with an approach
based on the one used in [16], where the f0 value at each
point in time was chosen by taking a simple maximum over
the “melodiness” score. For our comparison, we take the
maximum over the likelihoods produced by the classifier
after thresholding.

We found that Viterbi decoding consistently showed an
improvement in the melody evaluation metrics on each
track. For some particular tracks, Viterbi decoding im-
proved the output by up to 10 percentage points. Ta-
ble 1 shows the average percentage point increase per track
by using Viterbi over the simple maximum. The metrics
shown are the Overall Accuracy (OA), Raw Pitch Accu-
racy (RPA), and Raw Chroma Accuracy (RCA) [15]. We
see a particularly good improvement for melody 2, where
Viterbi decoding increases the average raw pitch accuracy
by more than 4 percentage points.

Figure 3 shows each melody evaluation metrics across
the different overlap thresholds α. The values plotted are
averages over each of the 5 experiments, where the error
bars indicate the standard deviation. Surprisingly, we see
very little difference in any of the metrics for both melody
types. We saw in Figure 2 that the F1 score decreased as
α increased, which implies that unlike what we might ex-
pect, the final melody output is not strongly affected by the
F1 score. Note, however, that the F1 score is computed on
a different set of labels for each value of α. The resilience
may be due to the fact that the labels that change as we
sweep α are the “noisier” labels, and thus the hardest to
classify, whereas the contours that are not affected by the
value of α (i.e., very high overlap or no overlap with the an-
notation) are easier to classify. We conjecture that for each
value of α the classifiers are probably performing equally
poorly on the noisy contour examples and equally well on
the clean examples.

All in all, the deviations in metrics are minor across val-
ues of α, and we conclude that the value of α does not have
a strong impact on the final melody accuracy. The values

0.0

0.2

0.4

0.6

0.8

1.0
Melody 1

Voicing Recall
Voicing False Alarm

0.0

0.2

0.4

0.6

0.8

1.0

Raw Pitch Accuracy
Raw Chroma Accuracy

0.0 0.2 0.4 0.6 0.8 1.0
Overlap Threshold α

0.0

0.2

0.4

0.6

0.8

1.0

Overall Accuracy

Melody 2

Voicing Recall
Voicing False Alarm

Raw Pitch Accuracy
Raw Chroma Accuracy

0.0 0.2 0.4 0.6 0.8 1.0
Overlap Threshold α

Overall Accuracy

Figure 3. Melody metrics for each overlap threshold α and
melody type.

of α that yield the highest scores on the validation set (by a
small margin) were α = 0.5 for melody 1 and α = 0.4 for
melody 2, and these values are used for our final system.

4.3 Experiment 3: Melodia vs. Proposed Method

As a final experiment, we compare the proposed method
with Melodia. This experiment essentially evaluates the
two different contour selection methods, since both meth-
ods begin with the same set of contours. Melodia’s param-
eter ν controls the voicing decision, and is the parameter
with the largest impact on the final output. The scores re-
ported for Melodia in this experiment use the value of ν
that achieved the best overall accuracy on the training set.
The final scores are reported for the test set.

The results for each algorithm are shown in Figure 4.
The proposed method performs quite competitively with
Melodia. In particular, Melodia only outperforms our sys-
tem in overall accuracy by 4 percentage points for melody
1 and 2 percentage points for melody 2. The primary met-
ric where the algorithms differ is in the voicing recall and
voicing false alarm rates. Our system has significantly bet-
ter recall than Melodia (33 percentage points higher for
melody 1, 9 for melody 2), but also a much higher false
alarm rate (34 percentage points higher for melody 1, 14
for melody 2) - in other words, our system assigns con-
tours to the melody much more often than Melodia does.

An interesting example to this point is shown in Fig-
ure 5. Both methods achieve the same overall accuracy
of ≈ 0.50, but their output is quite different. Our output
gets almost all of the voiced frames correct, but has spu-
rious mistakes outside of the annotation as well. In con-
trast, Melodia has nearly perfect precision, but misses large
segments. This example is characteristic of the difference
between the two algorithms – our approach over-predicts

melody, and Melodia under-predicts it. Notice that the pro-
posed method produces spurious frequency values, caused
by slight differences in contour start and end points within
contour groups. These values could be removed in a future
post processing stage.

64

128

256

512

1024

Fr
eq

ue
nc
y
(H
z)

100 110 120 130 140 150 160
Time (sec)

64

128

256

512

1024

Fr
eq

ue
nc
y
(H
z)

Melody 1 Annotation Proposed Method Melodia

Figure 5. Segment of melody output for “Clara Berry and
Wooldog: The Bad Guys”.

This difference is especially significant for tracks con-
taining instrumental melodies. Figure 6 shows a segment
from a track with a flute melody. Our approach works
quite well for this example, while Melodia misses most
of the melodic line. In Figure 4 we also report the over-
all accuracy for the portions of the data containing vocal
(OA-V) and instrumental melodies (OA-I). We see that for
instrumental melodies, our method matches Melodia’s per-
formance for melody 1 and slightly outperforms Melodia
for melody 2. Conversely, we see the opposite trend for
vocals, with Melodia outperforming our method for both
melody types. This trend can be largely attributed again to
the differences in voicing statistics – vocal melodies in this
dataset tend to have many more unvoiced frames than in-
strumental melodies, so our method’s high false alarm rate
hurts our performance for vocal tracks.

Despite the slight difference in metrics, the two algo-
rithms perform similarly, with inversely related pitfalls. It
is interesting to note that when the current approach com-
pletely fails, so does Melodia. This first and foremost oc-
curs when output from the contour extraction stage is poor,
which dooms both methods to failure.

128

256

512

1024

Fr
eq

ue
nc

y
(H

z)

10 12 14 16 18 20
Time (sec)

128

256

512

1024

Fr
eq

ue
nc

y
(H

z)

Melody 1 Annotation Proposed Method Melodia

Figure 6. Segment of melody output for “Phoenix: Lark
on the Strand/Drummond’s Castle”.

Overall, we see that the proposed method is quite good
at correctly choosing melody examples, but the high false

VR VFA RPA RCA OA OA-V OA-I
0.0

0.2

0.4

0.6

0.8

1.0
Melody 1

Proposed Method
Melodia

VR VFA RPA RCA OA OA-V OA-I

Melody 2

Proposed Method
Melodia

Figure 4. Final melody output scores for the proposed method and Melodia. The metrics are abbreviated on the x-axis
as: VR = Voicing Recall, VFA = Voicing False Alarm, RPA = Raw Pitch Accuracy, RCA = Raw Chroma Accuracy, OA =
Overall Accuracy, OA-V = Overall Accuracy – vocal tracks, and OA-I = Overall Accuracy – instrumental tracks.

alarm rates hurt its overall scores. This speaks to the clas-
sifier’s need for better discrimination between melody and
non melody examples. To do this, we need more/better
features, a more powerful classifier, or both. This ties back
to Ellis and Poliner’s observation in [5]: a large percentage
of contours are very easy to distinguish, and the remaining
contours are difficult for data driven and heuristic methods
alike. This is likely due to the lack of longer time scale fea-
tures describing the relationship between observations. We
as humans are able to distinguish melody from non-melody
in a song, but in ambiguous cases, we make our distinction
based on what we heard earlier in the song [10].

As a final illustration, Figure 7 shows the output of both
algorithms for melody 1 (top) and melody 2 (bottom) for
a segment containing a flute and a trumpet. The melody is
carried by the flute for most of the track, but in this segment
is carried by the trumpet. For melody 1, both methods track
the flute, matching the annotation, whereas for melody 2
both methods still track the flute whereas the trumpet line
is annotated. Without long-term context giving the algo-
rithm information about which lines have happened previ-
ously as background or melody, there is no way for either
of these methods to choose the “correct” line.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that replacing Melodia’s
heuristic decisions with a series of fully data driven de-
cisions can nearly match Melodia’s overall performance,
and there many open avenues for improving our results.
In particular, we have shown that a discriminative model
can outperform a generative model for labeling contours,
and we have provided a detailed evaluation of how each
step in the proposed approach influences the final results.
Compared to Melodia, we noted that the proposed method
has better melody recall, but a considerably worse voicing
false alarm rate. To improve the discrimination ability of
the classifier, future iterations of this method will first in-
corporate a wider set of features, including features that de-
scribe neighboring contours (octave duplicates, etc.), and
features that describe a contour’s relationship with the rest
of the track on a longer time scale, potentially including
timbre similarity. Additionally, since we are using a rel-

128

256

512

1024

2048

Fr
eq

ue
nc

y
(H

z)

48 50 52 54 56 58 60 62 64 66
Time (sec)

128

256

512

1024

2048

Fr
eq

ue
nc

y
(H

z)

Melody 1 Annotation Proposed Method Melodia

128

256

512

1024

2048

Fr
eq

ue
nc

y
(H

z)

48 50 52 54 56 58 60 62 64 66
Time (sec)

128

256

512

1024

2048

Fr
eq

ue
nc

y
(H

z)

Melody 2 Annotation Proposed Method Melodia

Figure 7. Outputs for melody 1 (top) and melody 2 (bot-
tom) for a segment of “Music Delta: Latin Jazz”.

atively small training set, we would like to explore aug-
menting our training data through sets of time and pitch
deformations.

With a slight adjustment to the evaluation metrics, our
method can be easily extended to be trained on and pre-
dict melody type 3 [1] annotations, which give all feasible
melody candidates at each time point, and is the most in-
clusive melody definition for MedleyDB. A limitation of
the current method is that it assigns a single likelihood to
each contour. Since the extracted contours virtually never
overlap completely with the annotation, it would be de-
sirable to be able to assign time-varying scores to each
contour. To do this, we plan to explore the use of Condi-
tional Random Fields [9] for assigning scores to contours
because of their ability to incorporate temporal informa-
tion. Finally, to raise the glass ceiling on performance,
future work will include revisiting the contour extraction
stage.

6. REFERENCES

[1] R. M. Bittner, J. Salamon, M. Tierney, M. Mauch,
C. Cannam, and J. P. Bello. MedleyDB: a Multitrack
Dataset for Annotation-Intensive MIR Research. In In-
ternational Society for Music Information Retrieval
Conference, July 2014.

[2] L. Breiman. Random forests. Machine Learning,
45(1):5–32, 2001.

[3] K. Dressler. An Auditory Streaming Approach for
Melody Extraction from Polyphonic Music. In Inter-
national Society for Music Information Retrieval Con-
ference, 2011.

[4] Jean-Louis Durrieu, Gaël Richard, Bertrand David,
and Cédric Févotte. Source/filter model for unsuper-
vised main melody extraction from polyphonic audio
signals. IEEE Trans. on Audio, Speech, and Language
Processing, 18(3):564–575, March 2010.

[5] D. P. W. Ellis and G. Poliner. Classification-Based
Melody Transcription. Machine Learning Journal,
65(2-3):439–456, December 2006.

[6] G. D. Forney Jr. The Viterbi algorithm. Proceedings of
the IEEE, 61(3):268–278, 1973.

[7] M. Goto. A Real-Time Music-Scene-Description Sys-
tem: Predominant-F0 Estimation for Detecting Melody
and Bass Lines in Real-World Audio Signals. Speech
Communication, 43(4):311–329, September 2004.

[8] E. Humphrey, J. P. Bello, and Y. Lecun. Feature Learn-
ing and Deep Architectures: New Directions for Mu-
sic Informatics. Journal of Intelligent Information Sys-
tems, 41(3):461–481, December 2013.

[9] John Lafferty, Andrew McCallum, and Fernando CN
Pereira. Conditional random fields: Probabilistic mod-
els for segmenting and labeling sequence data. In Pro-
ceedings of the Eighteenth International Conference on
Machine Learning, pages 282–289, 2001.

[10] Eugene Narmour. The Analysis and Cognition of
Melodic Complexity: The Implication-Realization
Model. University of Chicago Press, November 1992.

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, et al. Scikit-learn: Machine
learning in python. The Journal of Machine Learning
Research, 12:2825–2830, 2011.

[12] C. Raffel, B. McFee, E. Humphrey, J. Salamon, O. Ni-
eto, D. P. W. Ellis, and D. Liang. mir eval: A Trans-
parent Implementation of Common MIR Metrics. In
International Society for Music Information Retrieval
Conference, 2014.

[13] M. Ryynänen and A. Klapuri. Automatic Transcription
of Melody, Bass Line, and Chords in Polyphonic Mu-
sic. Computer Music Journal, 32(3):72–86, September
2008.

[14] J. Salamon and E. Gómez. Melody extraction from
polyphonic music signals using pitch contour charac-
teristics. IEEE Transactions on Audio, Speech, and
Language Processing, 20(6):1759–1770, Aug. 2012.

[15] J. Salamon, E. Gómez, D. P. W. Ellis, and G. Richard.
Melody Extraction From Polyphonic Music Signals:
Approaches, Applications, and Challenges. IEEE Sig-
nal Processing Magazine, 31(2):118–134, 2014.

[16] J. Salamon, G. Peeters, and A. Röbel. Statistical char-
acterisation of melodic pitch contours and its applica-
tion for melody extraction. In 13th Int. Soc. for Music
Info. Retrieval Conf., pages 187–192, Porto, Portugal,
Oct. 2012.

[17] J. Salamon, B. Rocha, and E. Gómez. Musical genre
classification using melody features extracted from
polyphonic music signals. In IEEE International Con-
ference on Acoustics, Speech and Signal Processing,
pages 81–84, Kyoto, Japan, Mar. 2012.

[18] H. Tachibana, T. Ono, and S. Sagayama. Melody
Line Estimation in Homophonic Music Audio Signals
Based on Temporal-Variability of Melodic Source. In
IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 425–428. IEEE, 2010.

