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Abstract

We describe how variable precision floating-point arithmetic can
be used to compute inner products in the iterative solver GMRES. We
show how the precision of the inner products carried out in the algo-
rithm can be reduced as the iterations proceed, without affecting the
convergence rate or final accuracy achieved by the iterates. Our anal-
ysis explicitly takes into account the resulting loss of orthogonality in
the Arnoldi vectors. We also show how inexact matrix-vector products
can be incorporated into this setting.
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1 Introduction

As highlighted in a recent SIAM News article [17], there is growing interest in the
use of variable precision floating-point arithmetic in numerical algorithms. (Other
recent references include [4, 14, 15, 16, 18, 19] to cite only a few.) In this paper, we
describe how variable precision arithmetic can be exploited in the iterative solver
GMRES [27]. We show that the precision of some floating-point operations carried
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INEXACT GMRES 2

out in the algorithm can be reduced as the iterations proceed, without affecting the
convergence rate or final accuracy achieved by the iterates.

There is already a literature on the use of inexact matrix-vector products in
GMRES and other Krylov subspace methods; see, e.g., [28, 7, 3, 11, 29, 12] and
the references therein. This work is not a simple extension of such results. To
illustrate, suppose that all arithmetic operations are performed exactly, except the
matrix-vector products. Then one obtains an inexact Arnoldi relation

AVk + Ek = Vk+1Hk, V Tk Vk = I. (1)

On the other hand, if only inner products are performed inexactly, the Arnoldi
relation continues to hold but the orthogonality of the Arnoldi vectors is lost:

AVk = Vk+1Hk, V Tk Vk = I − Fk. (2)

Thus, to understand the convergence behaviour and maximum attainable accu-
racy of GMRES implemented with inexact inner products, it is absolutely nec-
essary to understand the resulting loss of orthogonality in the Arnoldi vectors.
We adapt techniques used in the rounding-error analysis of the Modified Gram-
Schmidt (MGS) algorithm (see [1, 2] or [20] for a more recent survey) and of the
MGS-GMRES algorithm (see [6, 13, 22]).

We focus on inexact inner products and matrix-vector products (as opposed
to the other saxpy operations involved in the algorithm) because these are the
two most time-consuming operations in parallel computations. The rest of the
paper is organized as follows. We start with a brief discussion of GMRES in non-
standard inner products in Section 2. Next, in Section 3, we analyze GMRES with
inexact inner products. We then show how inexact matrix-vector products can be
incorporated into this setting in Section 4. Some numerical examples are presented
in Sections 5 and 6.

2 GMRES in weighted inner products

Shown below is the Arnoldi algorithm, with 〈y, z〉 = yT z denoting the standard
Euclidean inner product.

After k steps of the algorithm are performed in exact arithmetic, the output is
Vk+1 = [v1, . . . , vk+1] ∈ Rn×(k+1) and upper-Hessenberg Hk ∈ R(k+1)×k such that

v1 =
b

β
, AVk = Vk+1Hk, V Tk Vk = Ik.

The columns of Vk form an orthonormal basis for the Krylov subspace

Kk(A, b) = span
{
b, Ab,A2b, . . . , Ak−1b

}
.

In GMRES, we restrict xk to this subspace: xk = Vkyk, where yk ∈ Rk is the
solution of

min
y
‖b−AVky‖2 = min

y
‖Vk+1(βe1 −Hky)‖2 = min

y
‖βe1 −Hky‖2.
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Algorithm 1 Arnoldi algorithm

Require: A ∈ Rn×n, b ∈ Rn

1: β =
√
〈b, b〉

2: v1 = b/β
3: for j = 1, 2, . . . do
4: wj = Avj
5: for i = 1, . . . , j do
6: hij = 〈vi, wj〉
7: wj = wj − hijvi
8: end for
9: hj+1,j =

√
〈wj , wj〉

10: vj+1 = wj/hj+1,j

11: end for

It follows that

xk = Vkyk = Vk(HT
k Hk)−1HT

k (βe1) = VkH
†
k(βe1),

rk = b−Axk = Vk+1(βe1 −Hkyk) = Vk+1(I −HkH
†
k)βe1.

(3)

Any given symmetric positive definite matrix W defines a weighted inner prod-
uct 〈y, z〉W = yTWz and associated norm ‖z‖W =

√
〈z, z〉W . Suppose we use

this inner product instead of the standard Euclidean inner product in the Arnoldi
algorithm. We use tildes to denote the resulting quantities in the algorithm. After
k steps, the result is Ṽk+1 = [ṽ1, . . . , ṽk+1] and upper-Hessenberg H̃k ∈ R(k+1)×k

such that

ṽ1 =
b

‖b‖W
=
b

β̃
, AṼk = Ṽk+1H̃k, Ṽ Tk WṼk = Ik.

The columns of Ṽk form a W -orthonormal basis for Kk(A, b). Let x̃k = Ṽkỹk, where
ỹk ∈ Rk is the solution of

min
y
‖b−AṼky‖W = min

y
‖Ṽk+1(β̃e1 − H̃ky)‖W = min

y
‖β̃e1 − H̃ky‖2,

so that
x̃k = ṼkH̃

†
k(β̃e1), r̃k = b−Ax̃k = Ṽk+1(I − H̃kH̃

†
k)β̃e1.

We denote the above algorithm W -GMRES.
Let xk and x̃k denote the iterates computed by standard GMRES and W -

GMRES, respectively, with corresponding residual vectors rk and r̃k. It is well
known that

1 ≤ ‖r̃k‖2
‖rk‖2

≤
√
κ2(W ). (4)
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See e.g. [26] for a proof. Thus, if κ2(W ) is small, the Euclidean norm of the residual
vector in W -GMRES converges at essentially the same rate as in standard GMRES.
A similar result [8, Theorem 4] holds for the residual computed in the quasi-minimal
residual method [10, 9].

3 GMRES with inexact inner products

3.1 Preliminary results

Suppose the inner products in the Arnoldi algorithm are computed inexactly, i.e.,
line 6 in Algorithm 1 is replaced by

hij = vTi wj + ηij , (5)

with |ηij | bounded by some tolerance. Our main contribution is to show precisely
how large each ηij can be without affecting the convergence of GMRES. Throughout
we assume that all arithmetic operations in GMRES are performed exactly, except
for the above inner products.

It is straightforward to show that despite the inexact inner products in (5), the
relation AVk = Vk+1Hk continues to hold. On the other hand, the orthogonality of
the Arnoldi vectors is lost. We have

[b, AVk] = Vk+1[βe1, Hk], V Tk+1Vk+1 = Ik+1 + Fk. (6)

The relation between each ηij and the overall loss of orthogonality Fk is very difficult
to understand. To simplify the analysis we suppose that each vj is normalized
exactly. (This is not an uncommon assumption; see, e.g., [1] and [21].) Under this
simplification, we have

Fk = Ūk + ŪTk , Ūk =

[
0k×1 Uk
01×1 01×k

]
, Uk =

v
T
1 v2 . . . vT1 vk+1

. . .
...

vTk vk+1

 , (7)

i.e., Uk ∈ Rk×k contains the strictly upper-triangular part of Fk. Define

Nk =

η11 . . . η1k
. . .

...
ηkk

 , Rk =

h21 . . . h2k
. . .

...
hk+1,k

 . (8)

Note that Rk must be invertible if hj+1,j 6= 0 for j = 1, . . . , k, in other words, if
GMRES has not terminated by step k. (We assume that GMRES does not break-
down by step k.) Following Björck’s seminal rounding error analysis of MGS [1], it
can be shown that

Nk = −[0, Uk]Hk = −UkRk. (9)

For completeness, a proof of (9) is provided in the appendix.
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Additionally, in order to understand how ‖Fk‖2 increases as the residual norm
decreases, we will need the following rather technical lemma. The relationship (10)
is well know (see for example [28, Lemma 5.1]) while (12) is essentially a special
case of [23, Theorem 4.1]. We defer the proof to the appendix.

Lemma 1. Let yj and tj be the least squares solution and residual vector of

min
y
‖βe1 −Hjy‖2,

for j = 1, . . . , k. Then

|eTj yk| ≤
‖tj−1‖2
σmin(Hk)

. (10)

In addition, given ε > 0, let Dk be any nonsingular matrix such that

‖Dk‖2 ≤
σmin(Hk)ε‖b‖2√

2‖tk‖2
. (11)

Then
‖tk‖2(

ε2‖b‖22 + 2‖Dkyk‖22
)1/2 ≤ σmin

([
ε−1e1, HkD

−1
k

])
≤ ‖tk‖2
ε‖b‖2

. (12)

Finally, although the columns of Vk+1 in (6) are not orthonormal in the standard
Euclidean inner product, we will use the fact that there exists an inner product in
which they are orthonormal. The proof of the following lemma is given in the
appendix.

Lemma 2. Consider a given matrix Q ∈ Rn×k of rank k such that

QTQ = Ik − F. (13)

If ‖F‖2 ≤ δ for some δ ∈ (0, 1), then there exists a matrix M such that In +M is
symmetric positive definite and

QT (In +M)Q = Ik. (14)

In other words, the columns of Q are exactly orthonormal in an inner product
defined by In +M . Furthermore,

κ2(In +M) ≤ 1 + δ

1− δ
. (15)

Note that κ2(In+M) remains small even for values of δ close to 1. For example,
suppose ‖Ik−QTQ‖2 = δ = 1/2, indicating an extremely severe loss of orthogonality.
Then κ2(In + M) ≤ 3, so Q still has exactly orthonormal columns in an inner
product defined by a very well-conditioned matrix.
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Remark 1. Paige and his coauthors [2, 21, 25] have developed an alternative mea-
sure of loss of orthogonality. Given Q ∈ Rn×k with normalized columns, the mea-
sure is ‖S‖2, where S = (I + U)−1U and U is the strictly upper-triangular part
of QTQ. Additionally, orthogonality can be recovered by augmentation: the matrix
P =

[
S

Q(I−S)
]

has orthonormal columns. This measure was used in the ground-
breaking rounding error analysis of the MGS-GMRES algorithm [22]. In the present
paper, under the condition ‖F‖2 ≤ δ < 1, we use the measure ‖F‖2 and recover or-
thogonality in the (I +M) inner product. However, Paige’s approach is likely to be
the most appropriate for analyzing the Lanczos and conjugate gradient algorithms,
in which orthogonality is quickly lost and ‖F‖2 > 1 long before convergence.

3.2 A strategy for bounding the ηij

We now show how to bound the error ηij in (5) to ensure that the convergence of
the GMRES is not affected by the inexact inner products.

The following theorem shows how the convergence of GMRES with inexact
inner products relates to that of exact GMRES. The idea is similar to [22, Section
5], in which the quantity ‖EkR−1k ‖F must be bounded, where Rk is the matrix
in (8) and Ek is a matrix containing rounding errors.

Theorem 1. Let x
(e)
k denote the k-th iterate of standard GMRES, performed ex-

actly, with residual vector r
(e)
k . Now suppose that the Arnoldi algorithm is run with

inexact inner products as in (5), so that (6)–(9) hold, and let xk and rk denote
the resulting GMRES iterate and residual vector. Let yk and tk be the least squares
solution and residual vector of

min
y
‖βe1 −Hky‖2.

If for all steps j = 1, . . . , k of GMRES all inner products are performed inexactly
as in (5) with tolerances bounded by

|ηij | ≤ ηj ≡
φjεσmin(Hk)√

2

‖b‖2
‖tj−1‖2

(16)

for any ε ∈ (0, 1) and any positive numbers φj such that
∑k
j=1 φ

2
j ≤ 1, then at step

k either

1 ≤ ‖rk‖2
‖r(e)k ‖2

≤
√

3, (17)

or
‖tk‖2
‖b‖2

≤ 6kε, (18)

implying that GMRES has converged to a relative residual of 6kε.
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Proof. If (16) holds, then in (8)

|Nk| ≤


η1 η2 . . . ηk

η2 . . . ηk
. . .

...
ηk

 = EkDk,

where Ek is an upper-triangular matrix containing only ones in its upper-triangular
part, so that ‖Ek‖2 ≤ k, and Dk = diag(η1, . . . , ηk). Then,

‖NkR−1k ‖2 ≤ ‖NkD
−1
k ‖2‖DkR

−1
k ‖2

≤ ‖Ek‖2‖DkR
−1
k ‖2 ≤ k‖(RkD

−1
k )−1‖2.

(19)

Let hTk denote the first row of Hk, so that Hk =
[
hT
k

Rk

]
. For any ε > 0 we have

σmin(RkD
−1
k ) = min

‖u‖2=‖v‖2=1
uTRkD

−1
k v

= min
‖u‖2=‖v‖2=1

[0, uT ]

[
ε−1 hTkD

−1
k

0 RkD
−1
k

] [
0
v

]
≥ min
‖u‖2=‖v‖2=1

uT
[
ε−1 hTkD

−1
k

0 RkD
−1
k

]
v

= σmin

([
ε−1e1, HkD

−1
k

])
.

Therefore,

‖(RkD−1k )−1‖2 =
1

σmin(RkD
−1
k )
≤ 1

σmin

([
ε−1e1, HkD

−1
k

]) .
Notice that if the ηj are chosen as in (16), Dk automatically satisfies (11). Using
the lower bound in (12), then (10) and (16), we obtain

‖(RkD−1k )−1‖2 ≤
(
ε2‖b‖22 + 2‖Dkyk‖22

)1/2
‖tk‖2

=

(
ε2‖b‖22 + 2

∑k
j=1 η

2
j (eTj yk)2

)1/2
‖tk‖2

≤
(
ε2‖b‖22 +

∑k
j=1 φ

2
jε

2‖b‖22
)1/2

‖tk‖2
=

√
2ε‖b‖2
‖tk‖2

.

Therefore, in (19),

‖NkR−1k ‖2 ≤
√

2kε‖b‖2
‖tk‖2

≤ 6kε‖b‖2
‖tk‖2

1

4
.

If (18) does not hold, then ‖NkR
−1
k ‖2 ≤ 1/4. From (7) and (9), we have
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‖Fk‖2 ≤ 2‖Uk‖2 = 2‖NkR−1k ‖2, (20)

with the matrix Fk defined in (6). Thus, ‖Fk‖2 ≤ 1
2 < 1 and we can apply

Lemma 2 with Q = Vk+1 and δ = 1
2 . There is a symmetric positive definite

matrix W = In +M such that

[b, AVk] = Vk+1[βe1, Hk], V Tk+1WVk+1 = Ik+1, κ2(W ) ≤ 1 + δ

1− δ
= 3.

The Arnoldi algorithm implemented with inexact inner products has computed
an W -orthonormal basis for the Krylov subspace Kk(A, b). The iterate xk is the
same as the iterate that would have been obtained by running W -GMRES exactly,
and (4) implies (17).

Therefore, if the |ηij | are bounded by tolerances ηj chosen as in (16), either (17)
holds, or (18) holds.

Theorem 1 can be interpreted as follows. If at all steps j = 1, 2, . . . of GM-
RES the inner products are computed inaccurately with tolerances ηj in (16), then
convergence at the same rate as exact GMRES is achieved until a relative residual
of essentially kε is reached. Notice that ηj is inversely proportional to the residual
norm. This allows the inner products to be computed more and more inaccurately
as as the iterations proceed.

3.3 Practical considerations

If no more than Kmax iterations are to be performed, we can let φj = K
−1/2
max

(although more elaborate choices for φj could be considered; see for example [12]).
Then the factor φj/

√
2 in (16) can be absorbed along with the k in (18).

One important difficulty with (16) is that σmin(Hk) is required to pick ηj at the
start of step j, but Hk is not available until the final step k. A similar problem oc-
curs in GMRES with inexact matrix-vector products; see [28, 7] and the comments
in Section 4. In our experience, is often possible to replace σmin(Hk) in (16) by 1,
without significantly affecting the convergence of GMRES. This leads to following:

Aggressive threshhold : ηj = ε
‖b‖2
‖tj−1‖2

, j = 1, 2, . . . . (21)

In exact arithmetic, σmin(Hk) is bounded below by σmin(A). If the smallest singular
value of A is known, one can estimate σmin(Hk) ≈ σmin(A) in (16), leading to the
following:

Conservative threshhold : ηj = ε σmin(A)
‖b‖2
‖tj−1‖2

, j = 1, 2, . . . . (22)

This prevents potential early stagnation of the residual norm, but is often unnec-
essarily stringent. (It goes without saying that if the conservative threshold is less
than u‖A‖2, where u is the machine precision, then the criterion is vacuous: ac-
cording to this criterion no inexact inner products can be carried out at iteration j.)
Numerical examples are given in Sections 5 and 6.
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4 Incorporating inexact matrix-vector products

As mentioned in the introduction, there is already a literature on the use of inexact
matrix-vector products in GMRES. These results are obtained by assuming that
the Arnoldi vectors are orthonormal and analyzing the inexact Arnoldi relation

AVk + Ek = Vk+1Hk, V Tk Vk = I.

In practice, however, the computed Arnoldi vectors are very far from being or-
thonormal, even when all computations are performed in double precision arith-
metic; see for example [6, 13, 22].

The purpose of this section is to show that the framework used in [28] and [7]
to analyze inexact matrix-vector products in GMRES is still valid when the orthog-
onality of the Arnoldi vectors is lost, i.e., under the inexact Arnoldi relation

AVk + Ek = Vk+1Hk, V Tk Vk = I − Fk. (23)

We assume that the errors ηij in computing the inner products is sufficiently small
that ‖Fk‖2 ≤ δ < 1, as per Section 3. Then from Lemma 2 there exists a symmetric
positive definite matrix W = In + M ∈ Rn×n such that V Tk+1WVk+1 = Ik+1, and
with singular values bounded as in (35).

4.1 Bounding the residual gap

As in previous sections, we use xk = Vkyk to denote the computed GMRES iterate,
with rk = b − Axk for the actual residual vector and tk = β1e1 − Hkyk for the
residual vector updated in the GMRES iterations. From

‖rk‖2 ≤ ‖rk − Vk+1tk‖2 + ‖Vk+1tk‖2,

if
max { ‖rk − Vk+1tk‖2, ‖Vk+1tk‖2 } ≤

ε

2
‖b‖2 (24)

then
‖rk‖2 ≤ ε‖b‖2. (25)

From the fact that the columns of W
1/2Vk+1 are orthonormal as well as (35), we

obtain

‖Vk+1tk‖2 ≤ ‖W−
1/2‖2‖W

1/2Vk+1tk‖2 = ‖W‖−1/2
2 ‖tk‖2 ≤

√
1 + δ‖tk‖2.

In GMRES, ‖tk‖2 → 0 with increasing k, which implies that ‖Vk+1tk‖2 → 0 as
well. Therefore, we focus on bounding the residual gap ‖rk − Vk+1tk‖2 in order to
satisfy (24) and (25).

Suppose the matrix-vector products in the Arnoldi algorithm are computed
inexactly, i.e., line 4 in Algorithm 1 is replaced by

wj = (A+ Ej)vj , (26)
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where ‖Ej‖2 ≤ εj for some given tolerance εj . Then in (23),

Ek =
[
E1v1, E2v2, . . . , Ekvk

]
. (27)

The following proposition bounds the residual gap at step k in terms of the toler-
ances εj , for j = 1, . . . , k. This is a direct corollary of results in [28] and [7].

Proposition 1. Suppose that the inexact Arnoldi relation (23) holds, where Ek
is given in (27) with ‖Ej‖2 ≤ εj for j = 1, . . . , k. Then the resulting residual gap
satisfies

‖rk − Vk+1tk‖2 ≤ ‖H†k‖2
k∑
j=1

εj‖tj−1‖2. (28)

4.2 A strategy for picking the εj

Proposition 1 suggests the following strategy for picking the tolerances εj that
bound the level of inexactness ‖Ej‖2 in the matrix-vector products in (26). Similarly

to Theorem 1, let φj be any positive numbers such that
∑k
j=1 φj = 1. If for all

steps j = 1, . . . , k,

εj ≤
φjεσmin(Hk)

2

‖b‖2
‖tj−1‖2

, (29)

then from (28) the residual gap in (24) satisfies

‖rk − Vk+1tk‖2 ≤
ε

2
‖b‖2.

Interestingly, this result is independent of the accuracy of the inner products. Sim-
ilarly to (16), the criterion for picking εj at step j involves Hk that is only available
at the final step k. A large number of numerical experiments [7, 3] indicate that
σmin(Hk) can often be replaced by 1. Absorbing the factor φj/2 into ε in (29) and re-
placing σmin(Hk) by 1 or by σmin(A) leads, respectively, to the same aggressive and
conservative thresholds for εj as we obtained for ηj in (21) and in (22). This sug-
gests that matrix-vector products and inner products in GMRES can be computed
with the same level of inexactness. We illustrate this with numerical examples in
the next section.

5 Numerical examples with emulated accuracy

We illustrate our results with a few numerical examples. We run GMRES with
different matrices A and right-hand sides b, and compute the inner products and
matrix-vector products inexactly as in (5) and (26), as described in Algorithm 2
below.

Note that the inner product hj+1,j in line 17 of Algorithm 2 is also computed
inexactly. In Section 3, to simplify the analysis, we supposed that each vj+1 was
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normalized exactly. However, our numerical experiments indicate that hj+1,j can
be computed with the same level of inexactness as the other inner products at step
j.

We pick ηij randomly, uniformly distributed between −ηj and ηj , and pick Ej
to be a matrix of independent standard normal random variables, scaled to have
norm εj . Thus we have

|ηij | ≤ ηj , ‖Ej‖2 ≤ εj ,

for chosen tolerances ηj and εj . Throughout this first set of experiments, we use
the same level of inexactness for inner products and matrix-vector products, i.e.,
ηj = εj .

In the associated figures, the solid curve is the relative residual ‖b−Axk‖2/‖b‖2.
For reference, the dashed curve is the relative residual if GMRES is run in double
precision. The crossed curve corresponds to the loss of orthogonality ‖Fk‖2 in (6).
The dotted curve is the chosen tolerance ηj .

5.1 Relationship between ηij and loss of orthogonality

Our first example illustrates the relationship between the errors ηij in the inner
products and the loss of orthogonality in the GMRES algorithm.

In this example, A is the 100 × 100 Grcar matrix of order 5. This is a highly
non-normal Toeplitz matrix. The right hand side is b = A[sin(1), . . . , sin(100)]T .
Results are shown in Figure 1.

Example 1(a) Example 1(b)

Figure 1: GMRES in variable precision: Grcar matrix.
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Algorithm 2 A variable precision GMRES

Require: A ∈ Rn×n, b ∈ Rn, ε > 0, Kmax ∈ N, Conservative ∈ {0, 1}
1: if Conservative then
2: Compute or estimate σmin(A)
3: end if
4: β =

√
bT b

5: v1 = b/β
6: for j = 1, 2, . . . ,Kmax do
7: if Conservative then
8: Compute ηj and εj according to the bound (22)
9: else

10: Compute ηj and εj according to the bound (21)
11: end if
12: Compute wj = (A+ Ej)vj with ‖Ej‖2 ≤ εj
13: for i = 1, . . . , j do
14: Compute hij = vTi wj + ηi,j with |ηi,j | ≤ ηj
15: wj = wj − hijvi
16: end for
17: Compute hj+1,j =

√
wT
j wj + ηj+1,j with |ηj+1,j | ≤ ηj

18: if hj+1,j = 0 then
19: Goto 27
20: end if
21: vj+1 = wj/hj+1,j

22: Compute yj and ‖tj‖2, the solution and residual of miny∈Rj ‖βe1 −
Hjy‖2.

23: if ‖tj‖2 < ε then
24: Goto 27
25: end if
26: end for
27: Set xj = Vjyj
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In Example 1(a),

ηj = εj =


10−8‖A‖2, for 20 ≤ j ≤ 30,

10−4‖A‖2, for 40 ≤ j ≤ 50,

2−52‖A‖2, otherwise.

The large increase in the inexactness of the inner products at iterations 20 and 40
immediately leads to a large increase in ‖Fk‖2. This clearly illustrates the connec-
tion between the inexactness of the inner products and the loss of orthogonality in
the Arnoldi vectors. As proven in Theorem 1, until ‖Fk‖2 ≈ 1, the residual norm
is the same as it would have been had all computations been performed in double
precision. Due to its large increases at iterations 20 and 40, ‖Fk‖2 approaches 1,
and the residual norm starts to stagnate, long before the relative residual norm
reaches the double precision machine precision.

In Example 1(b), the tolerances are chosen according to the aggressive crite-
rion (21) with ε = 2−52‖A‖2. With this choice, ‖Fk‖2 does not reach 1, and the
residual norm does not stagnate until convergence.

5.2 Conservative vs aggressive thresholds

In our second example, A is the matrix 494 bus from the SuiteSparse matrix col-
lection [5]. This is a 494 × 494 matrix with condition number κ2(A) ≈ 106. The
right hand side is once again b = A[sin(1), . . . , sin(100)]T .

Example 2(a) Example 2(b)

Figure 2: GMRES in variable precision: 494 bus matrix

Results are shown in Figure 2. In Example 2(a), tolerances are chosen according
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to the aggressive threshhold (21) with ε = 2−52‖A‖2. In this more ill-conditioned
problem, the residual norm starts to stagnate before full convergence to double
precision. In Example 2(b), the tolerances are chosen according to the conservative
threshhold (22) with ε = 2−52‖A‖2, and there is no more such stagnation. Because
of these lower tolerances, the inner products and matrix-vector products have to be
performed in double precision until about iteration 200. This example illustrates
the tradeoff between the level of inexactness and the maximum attainable accu-
racy. The more ill-conditioned the matrix A is, the less opportunity there is for
performing floating-point operations inexactly in GMRES.

6 Numerical experiments using variable floating-
point arithmetic

In this section, we run variable floating-point arithmetic in order to assess the
performances of the approach in the context of half, simple and double precisions.
These experiments are done with the Julia1 language which allows to switch on
demand between different floating-point types (Float16, Float32 and Float64). We
compute the inner products and matrix-vector products in lower floating-point
precision u(low) once either the aggressive threshold in (21) or the conservative
threshold in (22) has increased above u(low)‖A‖2.

Compared to the previous experiments, we must now take into account the
magnitudes of both the vectors and matrix perturbations in order to select the
precision of the computation. When no floating-point overflow arise, the perturba-
tion of the matrix is simply computed from the difference between the norm of the
matrix stored in Float64 and its conversion to Float16 and Float32. Regarding the
inner products, we estimate their magnitude based on the sum of the exponents of
the two vectors involved (plus 1 for the product of the mantissa). This explains the
oscillating behavior of the accuracies observed in Figures 3 and 4: even if the pre-
cision has not changed, the estimated amplitude of the value of the inner products
induces changes in the associated perturbations (21) and (22).

We focus only on the 494 bus matrix using both the conservative and agressive
thresholds. The tolerances are chosen equal to ε = 10−6‖A‖ and ε = 10−12‖A‖ in
order to illustrate the potential of the algorithm when moderate and high accuracies
are required. In Figure 3, when a moderate decrease of the internally-recurred
residual is required, we note that the conservative threshold results in a quick
degradation of the precision for both the matrix-vector and inner products. All the
matrix-vector products are computed in simple precision after 20 iterations, while
the inner products start to be computed in simple precision after 30 iterations,
precision that is mostly used after 90 iterations. We note a jump in the loss of
orthogonality when the simple precision is triggered in the computation of the
inner products. However, as expected from the theory, this does not degrade the
decrease of the residual which is similar to the one observed with GMRES in double

1https://julialang.org/



INEXACT GMRES 15

precision. When the aggressive threshold is used, we note that the simple precision
is triggered after a few iterations for both the matrix-vector and inner products.
The matrix-vector products are then computed in half precision from iteration 90
to convergence, while the precision of the inner products oscillate between half and
single depending on the amplitude of the vectors. The consequences are a complete
loss of orthogonality after 100 iterations, which results in a slowing down in the
decrease of the internally-recurred residual and a stagnation of the residual.

The effect of requiring a higher accuracy is mainly a delay in the exploitation of
the multi-arithmetic. The results shown in Figure 4 are similar to those obtained
with a coarser tolerance, except for the delay in triggering the computation in
simple, and half precisions. We note again a similar decrease in the residuals
compared to the GMRES algorithm in double precision. The loss of orthogonality
is more severe when the agressive threshold is used, due to an earlier use of the
simple precision in the inner products, as well as the use of the half precision in
the latest iterations. The residual does not decrease anymore until the maximum
number of iterations is reached.

This once again illustrates the tradeoff between the level of inexactness of the
computations and the maximum attainable accuracy.

7 Conclusion

We have shown how inner products can be performed inexactly in MGS-GMRES
without affecting the convergence or final achievable accuracy of the algorithm.
We have also shown that a known framework for inexact matrix-vector products
is still valid despite the loss of orthogonality in the Arnoldi vectors. It would be
interesting to investigate the impact of scaling or preconditioning on these results.
Additionally, in future work, we plan to address the question of how much compu-
tational savings can be achieved by this approach on massively parallel computer
architectures.
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Conservative threshold (22) Aggressive threshold (21)
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Figure 3: GMRES with variable precision floating-point arithmetic: Ex-
periments with the 494 bus matrix and ε = 10−6‖A‖2. The bottom figure
corresponds to GMRES in double precision.
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Conservative threshold (22) Aggressive threshold (21)
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Figure 4: GMRES with variable precision floating-point arithmetic: Exper-
iments with the 494 bus matrix and ε = 10−12‖A‖2. The bottom figure
corresponds to GMRES in double precision.
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A Appendix

A.1 Proof of (9)

In line 7 of Algorithm 1, in the `th pass of the inner loop at step j, we have

w
(`)
j = w

(`−1)
j − h`jv` (30)

for ` = 1, . . . , j and with w
(0)
j = Avj . Writing this equation for ` = i + 1 to j, we

have

w
(i+1)
j = w

(i)
j − hi+1,jvi+1,

w
(i+2)
j = w

(i+1)
j − hi+2,jvi+2,

...

w
(j)
j = w

(j−1)
j − hj,jvj .

Summing the above and cancelling identical terms that appear on the left and right
hand sides gives

w
(j)
j = w

(i)
j −

j∑
`=i+1

h`jv`.

Because w
(j)
j = vj+1hj+1,j , this reduces to

w
(i)
j =

j+1∑
`=i+1

h`jv`. (31)

Because the inner products hij are computed inexactly as in (5), from (30) we have

w
(i)
j = w

(i−1)
j − hijvi

= w
(i−1)
j − (vTi w

(i−1)
j + ηij)vi

= (I − vivTi )w
(i−1)
j − ηijvi.

Therefore,

vTi w
(i)
j = −ηij .

Multiplying (31) on the left by −vTi gives

ηij = −
j+1∑
`=i+1

h`j(v
T
i v`), (32)

which is the entry in position (i, j) of the matrix equationη11 . . . η1k
. . .

...
ηkk

 = −

v
T
1 v2 . . . vT1 vk+1

. . .
...

vTk vk+1


h21 . . . h2k

. . .
...

hk+1,k

 ,
i.e., (9).
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A.2 Proof of Lemma 1

Equation (10) follows from

eTj H
†
k

[
Hj−1 0

0 0

]
︸ ︷︷ ︸
∈R(k+1)×k

[
yj−1

0k−j+1

]
= eTj H

†
kHk

[
yj−1

0

]
= eTj

[
yj−1

0

]
= 0,

and thus

|eTj yk| = |eTj H
†
kβ1e1| =

∣∣∣∣eTj H†k (β1e1 − [Hj−1 0
0 0

] [
yj−1

0

])∣∣∣∣
=

∣∣∣∣eTj H†k [β1e1 −Hj−1yj−1
0

]∣∣∣∣ ≤ ‖H†k‖2‖tj−1‖2.
As for (12), for any γ > 0, the smallest singular value of the matrix

[
βγe1, HkD

−1
k

]
is the scaled total least squares (STLS) distance [24] for the estimation problem
HkD

−1
k z ≈ βe1. As shown in [23], it can be bounded by the least squares distance

min
z
‖βe1 −HkD

−1
k z‖2 = ‖βe1 −HkD

−1
k zk‖2 = ‖βe1 −Hkyk‖2 = ‖tk‖2,

where zk = Dkyk. From [23, Theorem 4.1], we have

‖tk‖2(
γ−2 + ‖Dkyk‖22/(1− τ2k )

)1/2 ≤ σmin

([
βγe1, HkD

−1
k

])
≤ γ‖tk‖2, (33)

provided τk < 1, where

τk ≡
σmin

([
βγe1, HkD

−1
k

])
σmin

(
HkD

−1
k

) .

We now show that if γ = (ε‖b‖2)−1 and Dk satisfies (11), then τk ≤ 1/
√
2. From the

upper bound in (33) we immediately have

σmin

([
βγe1, HkD

−1
k

])
≤ γ‖tk‖2 =

‖tk‖2
ε‖b‖2

.

Also,

σmin

(
HkD

−1
k

)
= min

z 6=0

‖HkD
−1
k z‖2

‖z‖2
= min

z 6=0

‖Hkz‖2
‖Dkz‖2

≥ min
z 6=0

‖Hkz‖2
‖Dk‖2‖z‖2

=
σmin(Hk)

‖Dk‖2
.

Therefore, if (11) holds,

τk ≤
‖tk‖2
ε‖b‖2

‖Dk‖2
σmin(Hk)

≤ 1√
2
.

Substituting γ = (ε‖b‖2)−1 and τk ≤ 1/
√
2 into (33) gives (12).
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A.3 Proof of Lemma 2

Note from (13) that the singular values of Q satisfy(
σi(Q)

)2
= σi(Q

TQ) = σi(Ik − F ), i = 1, . . . , k.

Therefore, √
1− ‖F‖2 ≤ σi(Q) ≤

√
1 + ‖F‖2, i = 1, . . . , k. (34)

Equation (14) is equivalent to the linear matrix equation

QTMQ = Ik −QTQ.

It is straightforward to verify that one matrix M satisfying this equation is

M = (Q†)T (Ik −QTQ)Q†

= Q(QTQ)−1(Ik −QTQ)(QTQ)−1QT .

Notice that the above matrix M is symmetric. It can also be verified using the
singular value decomposition of Q that the eigenvalues and singular values of In+M
are

λi(In +M) = σi(In +M) =

{(
σi(Q)

)−2
, i = 1, . . . , k,

1, i = k + 1, . . . , n,

which implies that the matrix In+M is positive definite. From the above and (34),
provided ‖F‖2 ≤ δ < 1,

1

1 + δ
≤ 1(

σmax(Q)
)2 ≤ σi(In +M) ≤ 1(

σmin(Q)
)2 ≤ 1

1− δ
, (35)

from which (15) follows.
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cal stability of GMRES, BIT Numerical Mathematics, 35 (1995), pp. 309–330.

[7] J. V. D. Eshof and G. Sleijpen, Inexact Krylov subspace methods for
linear systems, SIAM Journal on Matrix Analysis and Applications, 26 (2004),
pp. 125–153.

[8] R. Freund, Quasi-kernel polynomials and convergence results for quasi-
minimal residual iterations, Numerical Methods in Approximation Theory, 9
(1992), pp. 77–95.

[9] R. Freund, Quasi-kernel polynomials and their use in non-Hermitian matrix
iterations, Journal of Computational and Applied Mathematics, 43 (1992),
pp. 135–158.

[10] R. Freund and N. Nachtigal, QMR: A quasi-minimal residual method for
non-Hermitian linear systems, Numerische Mathematik, 60 (1991), pp. 315–
339.

[11] L. Giraud, S. Gratton, and J. Langou, Convergence in backward error of
relaxed GMRES, SIAM Journal on Scientific Computing, 29 (2007), pp. 710–
728.

[12] S. Gratton, E. Simon, and P. Toint, Minimizing convex quadratic with
variable precision Krylov methods, arXiv, abs/1807.07476 (2018).
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