Knowledge Compilation for Action Languages
Sergej Scheck, Alexandre Niveau, Bruno Zanuttini

To cite this version:
Sergej Scheck, Alexandre Niveau, Bruno Zanuttini. Knowledge Compilation for Action Languages. Journées Francophones sur la Planification, la Décision et l’ Apprentissage pour la conduite de systèmes (JFPDA 2019), Jul 2020, Angers, France. hal-02942877

HAL Id: hal-02942877
https://hal.archives-ouvertes.fr/hal-02942877
Submitted on 22 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Knowledge Compilation for Action Languages

Sergej Scheck Alexandre Niveau Bruno Zanuttini
Normandie Univ.; UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France
sergej.scheck,alexandre.niveau,bruno.zanuttini@unicaen.fr

1 Introduction

In automated planning, a central aspect of the description of problems is the formal representation of actions. Such representations are indeed needed for specifying the actions available to the agent (PDDL [15] is a standard language for this), and also for the planners to manipulate them while searching for a plan.

In this paper, we consider different representation languages from the point of view of knowledge compilation [9]. Knowledge compilation is the study of formal languages under the point of view of queries (how efficient is it to answer various queries depending on the language?), transformations (how efficient is it to transform or combine different representations in a given language?), and succinctness (how concise is it to represent knowledge in each language?). Most work in knowledge compilation has been done on representations of Boolean functions, for instance, by Boolean formulas in negation normal form, by ordered binary decision diagrams, etc. [9].

As far as we know there has been no systematic study of languages for representing actions per themselves. This is however an important problem, as planners need to query action representations again and again while searching for a plan (for instance, to find out which actions are applicable at the current node of the search tree), and typically start by transforming the action specifications into some representation suited for this. Hence having a clear picture of the properties of languages is clearly of interest for the development of such planners.

However, there have been a few papers studying aspects related to knowledge compilation for planning. For instance, Nebel has considered questions very similar to ours [17]. His study uses a rather powerful notion of compilation, where translations from one formal language to another are allowed to change the set of variables and the set of actions. This captures compilation schemes where one is interested in preserving the existence of plans and their size. Contrastingly, we are interested in a strict notion of compilation, where the set of variables and the specification of initial states and goals are unchanged by the translation, while each action is translated into one with the same semantics. This is more demanding, but makes translations applicable in broader settings (for instance, to problems...
where we want to count or enumerate plans). Bäckström and Jonsson have studied representations of plans with respect to their size and to the complexity of retrieving the individual actions which they prescribe at each step [3]. This is also related to our work, but with a focus on languages for representing plans, while we study languages for representing actions.

We are interested here in (purely) nondeterministic actions, which lie at the core of fully observable nondeterministic planning and of conformant planning [19, 1, 12, 16, 20, 13]. We moreover consider propositional domains, in which states are assignments to a given set of propositions. The languages which we consider are of different natures: (grounded) PDDL is a specification language, NNF action theories are typically used as an internal representation by solvers, and DL-PPA is a logic allowing to specify programs and to reason about them. However, all of them can be viewed as languages for representing actions (as nondeterministic mappings from states to states), and their diversity (allowed constructs, representation of persisting values) allows us to give a clear picture. Our mid-term goal is to give a systematic picture of languages arising from all combinations of allowed constructs among the ones introduced in the literature (like nondeterministic choice, iteration, persistency by default, etc.).

The paper is structured as follows. In Section 2 we give the necessary background about actions and logic, and in Section 3 we formally define the action language which we will consider. We then give our results: in Section 4 we prove positive results about polynomial-time translations between the languages, then in Section 5 we study the complexity of deciding whether a state is a possible successor of another state given an action description in one of these languages, and in Section 6 we give negative results about polynomial translations, which allows us to determine which languages are strictly more succinct than others. Finally, we conclude in Section 7.

2 Preliminaries

For any planning problem we consider a fixed finite set \(P = \{ p_1, \ldots, p_n \} \) of propositional variables. A subset of \(P \) is called a \(P \)-state, or simply a state. The intended interpretation of a state \(s \in 2^P \) is the assignment to \(P \) in which all variables in \(s \) are true, and all variables in \(P \setminus s \) are false. As an example, for \(P = \{ p_1, p_2, p_3 \} \), \(s = \{ p_1, p_3 \} \) denotes the state in which \(p_1 \) and \(p_3 \) are true and \(p_2 \) is false. We write \(P^i \) for \(\{ p_i \mid i \in \mathbb{N} \} \).

Actions In this article we consider (purely) nondeterministic actions, which map states to sets of states. This means that a single state may have several successors through the same action, in contrast with deterministic actions (which map states to states), and that no relative likelihood is encoded between the successors of a state, in contrast with stochastic actions (which map states to probability distributions over states).

Definition 1 (action). Let \(P \) be a finite set of propositional variables. A nondeterministic \(P \)-action is a mapping \(a \) from \(2^P \) to \(2^{2^P} \). The elements of \(a(s) \) are called \(a \)-successors of \(s \).

In the literature, actions are often considered together with preconditions which have to be satisfied to allow the execution of the action. However, for the results in this paper it is not important whether we require the action preconditions to be written explicitly, so for simplicity we assume them to be implicit. This means that an action \(a \) is applicable to a state \(s \) if and only if there exists at least one \(a \)-successor state \(s' \) of \(s \).

Example 2. Consider the following hunting example. Let

\[
P = \{ \text{rabbit_in_sight}, \text{rabbit_alive}, \text{loaded_rifle} \}.
\]

The action \(\text{shoot_rabbit} \) can be described as “if \(\text{rabbit_alive} \) then: if \(\text{loaded_rifle} \) and \(\text{rabbit_in_sight} \), then not \(\text{loaded_rifle} \) and either \(\text{rabbit_alive} \) and not \(\text{rabbit_in_sight} \) or \(\text{rabbit_alive} \) and \(\text{rabbit_in_sight} \), otherwise state unchanged”. The action is applicable only if the \(\text{rabbit} \) is alive (otherwise it is not sensible to shoot at him). In this case, if the hunter is ready to shoot (the rifle is loaded and he can see the \(\text{rabbit} \)), then he tries to shoot the \(\text{rabbit} \) (he might miss the \(\text{rabbit} \) who hears the shot and runs away, so the action is nondeterministic), and if he is not ready to shoot, then nothing happens.

Let \(s = \{ \text{rabbit_in_sight}, \text{rabbit_alive}, \text{loaded_rifle} \} \) be the state where all three variables are true. Then \(\text{shoot_rabbit}(s) \) is the set of states \(\{ s', s'' \} \) with \(s' = s \setminus \{ \text{rabbit_alive}, \text{loaded_rifle} \} = \{ \text{rabbit_in_sight} \} \) and \(s'' = s \setminus \{ \text{rabbit_in_sight}, \text{loaded_rifle} \} = \{ \text{rabbit_alive} \} \).

In this article, we are interested in the properties of representations of actions in various languages.

Definition 3 (action language). An action language is an ordered pair \(\langle L, I \rangle \), where \(L \) is a set of action descriptions and \(I \) is an interpretation function. Action descriptions are ordered pairs \(\langle \alpha, P \rangle \) where \(\alpha \) is a formula and \(P \) is a finite subset of \(\alpha \). The interpretation function \(I \) maps every action description \(\langle \alpha, P \rangle \in L \) to a \(P \)-action \(I(\alpha, P) \).

Observe that \(P \) is \(a \) priori not related to the variables of \(\alpha \) (this depends on the language). For instance, variables of \(P \) not mentioned in an \(\text{NPDDL} \) expression \(\alpha \) are assumed to persist, and a formula may also use variables outside of \(P \) and even outside of \(\alpha \) (called auxiliary variables), as in \(\text{NNFAT} \).

If the language \(\langle L, I \rangle \) and the set \(P \) are clear from the context (or we just consider them to be fixed), then we write \(\alpha(s) \) instead of \(I(\alpha, P)(s) \) for the set of all \(\alpha \)-successors of \(s \).

In this article, we are mostly interested in translations between languages.
Definition 4 (translation). Let $\langle L_1, I_1 \rangle$ and $\langle L_2, I_2 \rangle$ be two action languages. A function $f : L_1 \rightarrow L_2$ is a (proper) translation if $I_1(\alpha, P) = I_2(f(\alpha, P), P)$ holds for all $(\alpha, P) \in L_1$.

In words, this means that the L_1-action description $\langle \alpha, P \rangle$ and the L_2-formula $f(\alpha, P)$ describe the same P-action. Again, when P is clear from the context, we write $f(\alpha)$ for $f(\alpha, P)$.

The function f is called a polynomial-time translation if it can be computed in time polynomial in the size of α and P. It is called a polynomial-size translation if the size of $f(\alpha, P)$ is bounded by a fixed polynomial in the size of α together with the size of P. Clearly, a polynomial-time translation is necessarily also a polynomial-size one, but a polynomial-size translation may not be polynomial-time.

Logic A Boolean formula φ is said to be in negation normal form (NNF for short) if it is built up from literals using conjunctions and disjunctions, i.e., if it is generated by the grammar

$$\varphi ::= p \mid \neg p \mid \varphi \land \varphi \mid \varphi \lor \varphi$$

where p ranges over P. We also use the shorthand notation \top for $p \lor \neg p$ and \bot for $p \land \neg p$, for an arbitrary $p \in P$.

For such a formula φ, $V(\varphi)$ denotes the set of variables occurring in φ.

The set of formulas in NNF is complete, that is, every Boolean function can be described by an NNF formula. It is important to note that a formula φ with $V(\varphi) \subseteq P$ for some set of variables P can be regarded as a formula over P (and the truth value of the corresponding Boolean function does not depend on the variables in $P \setminus V(\varphi)$).

For a boolean formula φ over a set of variables P and a state $s \subseteq P$, we write $s \models \varphi$ if φ evaluates to \top under the assignment s.

Notation As a general rule, we use variables a, b, \ldots for actions, α, β, \ldots for action expressions (in some language), and φ, ψ, \ldots for logical formulas. Since action descriptions are also formulas in some language, we reserve the term “expression” for action descriptions and the term “formula” for logical formulas occurring in them.

Representations In the whole article we assume the expressions and formulas of action languages to be “flat”, i.e., that the amount of memory space required to store the expression or formula is its number of symbols (without the parentheses). This is to be contrasted with representations of NNF formulas (in particular) which isomorphic subformulas are assumed to be represented only once, with any superformula pointing to this shared representation, a representation widely used in the literature about knowledge compilation [9]. We however wish to highlight that all our results would go through if we assumed such “circuit” (or “DAG”) representations for formulas (we leave the case of circuit representations of expressions for future work).

3 Action Languages

In this section we formally define the action languages which we study later.

Variants of PDDL The first language which we consider is the well-known planning domain description language (PDDL). This language is a standardized one used for specifying actions at the relational level, widely used as an input for planners, especially in the international planning competitions [15, 10, 11]. Since we are interested in nondeterministic actions, we consider a nondeterministic variant of PDDL inspired by NPDDL [6], and so as to abstract away from the precise syntax of the specification language, we consider an idealized version. Finally, we consider a grounded version of PDDL, namely, a propositional one. Still we use the name “NPDDL”, since we use essentially the same constructs.

We first define the syntax of NPDDL.

Definition 5 (NPDDL action descriptions). An NPDDL action description is an ordered pair $\langle \alpha, P \rangle$, where α is an expression generated by the grammar

$$\alpha ::= p \mid \neg p \mid \alpha \land \alpha \land \alpha \lor \alpha$$

where p ranges over P and φ over Boolean formulas in NNF over P.

Intuitively,

- ε describes the action with no effect (the only successor is itself),
- p (resp. $\neg p$) is the action which makes p true (resp. false),
- $\alpha \land \alpha$ denotes simultaneous execution (with no successor if the operands are inconsistent together),
- $\alpha \lor \alpha$ denotes conditional execution,
- α denotes nondeterministic choice,

and, importantly, variables not explicitly modified by the action are assumed to keep their value.

We insist that this syntax is an idealization of nondeterministic (grounded) PDDL, for instance, the action which we write $x \triangleright (y(\neg y \land z))$ would be written

$$\text{when } x \text{ (one of } y \text{ and (not } y \text{) z})$$

with the syntax of NPDDL [6].

Action descriptions in NPDDL are interpreted as actions as follows.

Definition 6 (semantics of NPDDL). The interpretation function for NPDDL is the function I defined by $I(\alpha, P)(s) = \{ (s \cup c^+) \mid c^- \varphi \in I(c, e^-) \in I(\alpha, P), M(\alpha, s) \}$, where $M(\alpha, s)$ is the set of possible modifications of s caused by α, defined inductively by

- $M(\varepsilon, s) = \{ (\emptyset, \emptyset) \}$,
\[M(p, s) = \{\langle \{p\}, \emptyset\rangle\} \] and \[M(\neg p, s) = \{\langle \emptyset, \{p\}\rangle\} \]

\[M(\varphi \land \alpha, s) = M(\alpha, s) \text{ if } s \models \varphi, \text{ else } \{\langle \emptyset, \emptyset\rangle\} \]

\[M(\alpha_1 \land \alpha_2, s) = \{\langle e^+_1 \cup e^+_2, e^-_2 \cup e^-_2\rangle \mid \langle e^+_1, e^-_1\rangle \in M(\alpha_1, s), \langle e^+_2, e^-_2\rangle \in M(\alpha_2, s), e^+_1 \cap e^-_2 = e^-_1 \cap e^+_2 = \emptyset\} \]

When we want to denote simultaneous execution of all action descriptions in a set \(A \), we write \(\&_{\alpha \in A} \alpha \). Also note that the action description \(p \land \neg p \) (for an arbitrary \(p \in P \)) defines a nonexecutable action. Hence it can be used as a subaction for encoding a precondition, and we use \(\bot \) as shorthand notation for it.

Example 7 (continued). The following is an NPDDL action description for the action \(\text{shoot_rabbit of Example 2} \):

\[
\begin{align*}
(\neg \text{rabbit_alive} & \lor \bot) \\
\& (\text{rabbit_alive} \land \text{rabbit_in_sight} \land \text{loaded_rifle}) \\
\rightarrow (\neg \text{loaded_rifle} \\
\& (\neg \text{rabbit_alive} \land \neg \text{rabbit_in_sight}))
\end{align*}
\]

We are also interested in the language NPDDL as extended by the sequential execution operator \(\land \).

Definition 8 (NPDDL_{seq}). The language \(\text{NPDDL}_{seq} \) is the language in which action descriptions are generated by the following grammar:

\[
\alpha ::= \epsilon \mid p \mid \neg p \mid \alpha \land \alpha \mid \varphi \rightarrow \alpha \mid (\alpha \lor \alpha) \lor \alpha; \alpha
\]

and the interpretation function is the same as that of NPDDL for all constructs, augmented with

\[
(\alpha_1; \alpha_2)(s) = \{s'' \mid \exists s' \in \alpha_1(s) : s'' \in \alpha_2(s')\}
\]

NNF action theories We now define the second language which we consider as that of (NNF) action theories. Such representations are typically used by planners which reason explicitly on sets of states (aka belief states), since they allow for symbolic operations on belief states and action descriptions [8, 7, 20]. We consider action theories represented in NNF, which encompasses representations usually used like OBDDs or DNFs.

To prepare the definition we associate a variable \(p' \in P' \) to each variable \(p \in P \), where \(P' \) is a disjoint copy of \(P \); \(p' \) is intended to denote the value of \(p \) after the action took place, while \(p \) denotes the value before.

Definition 9 (NNFAT). An NNFAT action description is an ordered pair \((\alpha, P) \) where \(\alpha \) is a Boolean formula in NNF over the set of variables \(P \cup \{p' \mid p \in P\} \). The interpretation of \((\alpha, P) \) is defined by

\[
I(\alpha, P)(s) = \{s' \mid s \cup \{p' \mid p \in s'\} \models \alpha\}
\]

In words, an (NNF) action theory represents the set of all ordered pairs \((s, s') \) such that \(s' \) is a successor of \(s \), as a Boolean formula over variables in \(P \cup \{p' \mid p \in P\} \).

Importantly, NNFAT does not assume the frame axiom, so that if, for example, a variable does not appear at all in an NNFAT action description, then this means that its value after the execution of the action can be arbitrary. For instance, the action description \(\langle x' \lor (\neg y \lor z'), \{x, y, z\} \rangle \) represents an action which either (1) sets \(x \) to true and \(y, z \) to any value (nondeterministically), or (2) sets \(z \) to true and \(x, y \) to any value, in case \(y \) is true in the initial state, and otherwise sets each variable to any value, or (3) performs any consistent combination of (1) and (2).

Observe that a conjunct over variables in \(P \) in an NNFAT action description in fact encodes a precondition.

Example 10 (continued). The action \(\text{shoot_rabbit of Example 2} \) can be written as (we use \(\rightarrow \) and \(\leftrightarrow \) for readability)

\[
\text{rabbit_alive} \\
\land (\text{loaded_rifle} \land \text{rabbit_in_sight}) \\
\rightarrow ((\neg \text{rabbit_in_sight}' \land \text{rabbit_alive}') \\
\lor (\text{rabbit_in_sight}' \land \neg \text{rabbit_alive}')) \\
\land (\neg \text{loaded_rifle}') \\
\land (\text{rabbit_alive} \lor \neg \text{rabbit_alive}') \\
\lor (\text{rabbit_in_sight} \lor \neg \text{rabbit_in_sight}') \\
\lor (\text{loaded_rifle} \lor \neg \text{loaded_rifle}') \\
\rightarrow (\text{loaded_rifle} \land \text{rabbit_in_sight})
\]

As can be seen, encoding in NNFAT the fact that the values of variables persist unless stated otherwise, typically requires subformulas (here the last conjunct) playing the same role as successor-state axioms in the situation calculus [18]. This typically requires a lot of space. We will give a formal meaning to this remark later in the paper (Proposition 30).

Obviously, every action can be represented in this language, since the language of NNF formulas is complete for Boolean functions. We will see later that all the other languages that we study in this article are at least as succinct as NNFAT; hence in particular, they are all complete as well.

DL-PPA The last language that we consider in this paper is the dynamic logic of parallel propositional assignments (DL-PPA for short), which has been introduced by Herzig et al. as an extension of the language DL-PA [14]. DL-PA was initially proposed for reasoning about imperative programs [3]. For instance, deciding whether there exists a plan from a given initial state to a goal characterized by a Boolean formula \(\varphi \) using actions \(\alpha_1, \ldots, \alpha_k \) amounts to deciding whether the initial state satisfies the DL-PA formula \((\alpha_1 \cup \ldots \cup \alpha_k) \varphi \). However, DL-PPA can also be used as an action language [14].

Definition 11 (DL-PPA action descriptions). A DL-PPA action description is an ordered pair \((\alpha, P) \)
where α is an expression generated by the following grammar:

$$\alpha ::= p← \phi \mid \phi? \mid \alpha; \alpha \mid \alpha∪\alpha \mid \alpha⊕\alpha \mid \alpha∗$$

$\phi ::= p \mid \top \mid \neg\phi \mid \phi∨\phi \ldots$

Example 15. The following DL-PPA program illustrates the meaning of the modal operators and of the Kleene star:

- $\langle\text{shoot_rabbit}；\text{shoot_rabbit}∗\rangle$—rabbit_alive?
- $\langle\text{shoot_rabbit}∗,\text{shoot_rabbit}\rangle$—rabbit_alive?
- $\langle\text{shoot_rabbit}∗\rangle$—rabbit_alive?

where α is an expression generated by the following grammar:

$$\alpha ::= p← \phi \mid \phi? \mid \alpha; \alpha \mid \alpha∪\alpha \mid \alpha⊕\alpha \mid \alpha∗$$

$\phi ::= p \mid \top \mid \neg\phi \mid \phi∨\phi \ldots$

Compilation for Action Languages

Knowledge Compilation for Action Languages
This action can be read as follows. If the hunter has a chance to kill the rabbit (which especially means that in the current state the rabbit is alive, as ensured by the first occurrence of shoot_rabbit), then the hunter will shoot. Otherwise he will be disappointed and shoot in the air because he has no hope for success. But there could be several reasons for him being unable to kill the rabbit: the rabbit is already dead, or the rifle is not loaded, or he does not see the rabbit...

Note that DL-PPA has all the features of NPDDL, like the implicit frame axiom, and it additionally allows for modal operators. Hence, summarizing, we study languages with and without the sequence operator, with and without the implicit frame axiom, and with and without modalities. A mid-term goal of our work is to study combinations of such features in a systematic way, and we view this restricted set of languages as a meaningful set of representative languages to start with.

4 Polynomial-Time Translations

In this section, we exhibit translations between some of our languages of interest which can be carried out in polynomial time (hence, a fortiori, are polynomial-size). We remark that the identity function, and an obvious polynomial-time translation from restricted DL-PPA into DL-PPA. We first show that any NNFAT action description α can be translated in polynomial time to an NPDDL action description $f(\alpha)$. The translation looks like a simple rewriting of α, but we have to care about (1) the fact that in NNFAT, a variable not explicitly set to a value can take any value in the next state s', contrary to persistency by default in NPDDL, and (2) the fact that \lor is inclusive-or in NNFAT, while nondeterministic choice in NPDDL is interpreted as one effect taking place (but not both). For (1) we will make explicit in the NPDDL translation that these variables can take any value, and for (2) it will turn out that in the translation of $\alpha_1 \lor \alpha_2$ into $f(\alpha_1) \lor f(\alpha_2)$, $f(\alpha_1)$ will encode all possible transitions of α_1, including those of $\alpha_1 \land \alpha_2$ (the “inclusive part” of the \lor), and similarly for $f(\alpha_2)$.

The translation f is defined inductively as follows for an NNFAT action description $\langle \alpha, P \rangle$:

1. if $V(\alpha) \subseteq P$, then
 $f(\alpha) = (\neg \alpha \triangleright \bot) \land (\alpha \triangleright (\nexists_{p \in P} (p \land \neg p)))$;

2. if $V(\alpha) \not\subseteq P$ and $V(\alpha_1) \subseteq P$, then
 $f(\alpha_1 \lor \alpha_2) = (\neg \alpha_1 \triangleright f(\alpha_2)) \land (\alpha_1 \triangleright (\nexists_{p \in P} (p \land \neg p)))$;
 dually for $V(\alpha_2) \subseteq P$;

3. if $V(\alpha) \not\subseteq P$ and $V(\alpha_1) \subseteq P$, then
 $f(\alpha_1 \land \alpha_2) = (\alpha_1 \triangleright f(\alpha_2)) \land (\neg \alpha_1 \triangleright \bot)$;
 dually for $V(\alpha_2) \subseteq P$;

4. $f(p') = p \land (\nexists_{q \in P \land \neg p} (q \land \neg q))$;

5. $f(\neg p') = \neg p \land (\nexists_{q \in P \land \neg p} (q \land \neg q))$;

6. if $V(\alpha_1), V(\alpha_2) \not\subseteq P$, $f(\alpha_1 \land \alpha_2) = f(\alpha_1) \land f(\alpha_2)$;

7. if $V(\alpha_1), V(\alpha_2) \not\subseteq P$, $f(\alpha_1 \lor \alpha_2) = f(\alpha_1) \lor f(\alpha_2)$.

Observe for future reference that for all states s, all possible modifications (e^+, e^-) in $M(f(\alpha), s)$ are P-complete in the sense that $e^+ \cup e^- = P$ (all variables are mentioned in e^+ or e^-). This is easily seen by induction on the definition of f.

Proposition 16. Let $\langle \alpha, P \rangle$ be an NNFAT action description. Then we have $s' \in \alpha(s) \iff s' \in f(\alpha)(s)$.

PROOF. The translation is clearly polynomial-time, since the “gadgets” added to the rewriting in the first 5 cases involve no recursive call of f. We now show that it is correct, by induction on the structure of α.

1. First assume $V(\alpha) \subseteq P$. Then by the semantics of NNFAT, $s' \in \alpha(s)$ holds if and only if s satisfies α, which is equivalent to s satisfying α and s' being arbitrary, which is equivalent to $s' \in f(\alpha)(s)$ by the definition of $f(\alpha)$ and the semantics of NPDDL.

2. Now assume $\alpha = \alpha_1 \lor \alpha_2$ and $V(\alpha_1) \subseteq P$. For $s' \in \alpha_1(s)$, we have $s' \in \alpha(s)$, and since we have $V(\alpha_1) \subseteq P$, we have that s satisfies α_1, and hence $s' \in f(\alpha)(s)$ is equivalent to $s' \in (\nexists_{p \in P} (p \land \neg p))(s)$, which is true for all s'; hence both $s' \in \alpha(s)$ and $s' \in f(\alpha)(s)$ hold. Now for $s' \not\in \alpha_1(s)$, we have $s' \in \alpha(s)$ if and only if $s' \in \alpha_2(s)$, which is equivalent to $s' \in f(\alpha_2)(s)$ by the induction hypothesis, and this in turn is equivalent to $s' \in f(\alpha)(s)$ by the definition of $f(\alpha_1 \lor \alpha_2)$ and the semantics of NPDDL.

3. Now assume $\alpha = \alpha_1 \land \alpha_2$ and $V(\alpha_1) \subseteq P$. We have that $s \in \alpha(s)$ is equivalent to $s' \in \alpha_1(s) \land s' \in \alpha_2(s)$, and since we have $V(\alpha_1) \subseteq P$, this is equivalent to $s \models \alpha_1 \land s' \in \alpha_2(s)$, which in turn is equivalent to $s \models \alpha_1 \land s' \in f(\alpha_2)(s)$ by the induction hypothesis, which is finally equivalent to $s' \in f(\alpha)(s)$ by the definition of $f(\alpha_1 \land \alpha_2)$ and the semantics of NPDDL.

4. Now let $\alpha = p'$. Then $s' \in \alpha(s)$ is equivalent to $p \in s'$ with s' otherwise arbitrary, which is clearly equivalent to $s' \in f(\alpha)(s)$.

5. The proof for $\alpha = \neg p'$ is symmetric to the previous case.

6. Let $\alpha = \alpha_1 \land \alpha_2$. Then $s' \in \alpha(s)$ is equivalent to $s' \in \alpha_1(s) \land s' \in \alpha_2(s)$, and by the induction hypothesis this is equivalent to $s' \in f(\alpha_1)(s) \land s' \in f(\alpha_2)(s)$. Now since the possible modifications of $f(\alpha_1)$ and $f(\alpha_2)$ are P-complete, it is easily seen from the definition of the semantics of NPDDL that the
set of possible modifications $M(f(\alpha_1) \& f(\alpha_2), s)$ is exactly $M(f(\alpha_1), s) \cap M(f(\alpha_2), s)$, so that $s' \in f(\alpha_1)(s) \land s' \in f(\alpha_2)(s)$ is equivalent to $s' \in (f(\alpha_1) \& f(\alpha_2))(s)$, that is, to $s' \in f(\alpha)(s)$.

7. Finally let $\alpha = \alpha_1 \lor \alpha_2$. Assume first $s' \in \alpha(s)$, and by symmetry $s' \in \alpha_1(s)$; then by the induction hypothesis we have $s' \in (f(\alpha_1))(s)$ and hence, $s' \in (f(\alpha_1)(f(\alpha_2))(s) = f(\alpha)(s)$. Conversely, assume $s' \in f(\alpha)(s)$, then by the definition of $f(\alpha)$ and the semantics of \land, we have $s' \in f(\alpha_1)(s)$ or $s' \in f(\alpha_2)(s)$. Assume by symmetry $s' \in f(\alpha_1)(s)$.

Then by the induction hypothesis we have $s' \in \alpha_1(s)$ and hence, $s' \in (\alpha_1 \lor \alpha_2)(s)$, that is, $s' \in \alpha(s)$.

\square

The following propositions are quite intuitive, because NPDDL$_\text{seq}$ and restricted DL-PPA are essentially the same: $\varphi \lor \ldots$ is analogous to $\varphi^?$, $| \alpha$ is analogous to \lor, and $\&$ is analogous to \land. However, we must pay attention to two facts. The first difference between the languages is that in NPDDL$_\text{seq}$, if φ is not true in $\varphi \lor \alpha$, then the action just does not change the current state whereas in DL-PPA, φ being false results in a failure. The other difference is that formulas in NPDDL$_\text{seq}$ must be in NNF, while DL-PPA does not have restrictions on the occurrence of \lor but does not have the \land connective.

Proposition 17. There is a polynomial-time translation of NPDDL$_\text{seq}$ into restricted DL-PPA.

Proof. Consider an NPDDL$_\text{seq}$ action description α. The translation f first replaces each subformula of the form $\varphi \land \psi$ in α with $-(\varphi \lor \psi)$, then it computes an action description in restricted DL-PPA as follows:

$$
\begin{align*}
f(\top) &= \top^? \\
f(p) &= +p \\
f(\neg p) &= -p \\
f(\alpha_1 \& \alpha_2) &= f(\alpha_1) \cap f(\alpha_2) \\
f(\varphi \lor \alpha) &= (\varphi^?); f(\alpha) \\
f(\alpha_1 \lor \alpha_2) &= f(\alpha_1) \cup f(\alpha_2) \\
f(\alpha_1; \alpha_2) &= f(\alpha_1); f(\alpha_2)
\end{align*}
$$

It is easy to check that this translation can be computed in polynomial time and that it is correct. In particular, φ is duplicated in the fifth line but it involves no recursive call of f, hence preserving polynomial size (the rewriting of $\neg \varphi$ into a DL-PPA formula can be done in linear time), and $\neg \varphi^?$ in the same line ensures that the action does nothing but does not fail when φ is not satisfied. \square

The proof of the converse is completely symmetric.

Proposition 18. There is a polynomial-time translation of restricted DL-PPA to NPDDL$_\text{seq}$.

Proof. Consider a restricted DL-PPA action description (α, P). The translation f first replaces each subformula of the form $\neg(\varphi \lor \psi)$ with $(-\varphi \land \neg \psi)$, ending up with a description in which all formulas are in NNF, then it computes an action description in NPDDL$_\text{seq}$ as follows:

$$
\begin{align*}
f(p \leftarrow \varphi) &= (\varphi \lor p) \land \{\neg p \lor \neg p\} \\
f(\varphi^?) &= (\neg \varphi \lor \psi) \\
f(\alpha_1; \alpha_2) &= f(\alpha_1); f(\alpha_2) \\
f(\alpha_1 \lor \alpha_2) &= f(\alpha_1) \lor f(\alpha_2) \\
f(\alpha_1; \alpha_2) &= f(\alpha_1); f(\alpha_2)
\end{align*}
$$

It is easy to check that this translation can be computed in polynomial time and that it is correct. In particular, φ is duplicated in the first and second lines but it involves no recursive call of f, hence preserving polynomial size, and $\neg \varphi \lor \psi$ in the second line ensures that the action fails when φ is not satisfied. \square

5 Complexity of Deciding Successorship

We now turn to studying the complexity of queries to action descriptions. In this paper, we concentrate on the most natural query, which is formally defined by the following computational problem.

Definition 19 (IS-SUCC). Let L be an action language. The decision problem IS-SUCC is defined by:

- **Input:** an action description $(\alpha, P) \in L$ and two states $s, s' \subseteq P$,
- **Question:** is s' an α-successor of s?

Proposition 20. The problem IS-SUCC is polynomial-time solvable for $L = \text{NNFAT}$.

Proof. From the semantics of NNFAT it follows that deciding $s' \in \alpha(s)$ amounts to deciding whether the assignment to $P \cup \{p' \mid p \in P\}$ induced by s, s' satisfies α, which can clearly be done in linear time. \square

Proposition 21. The problem IS-SUCC is in NP for $L = \text{NPDDL}_\text{seq}$.

Proof. We define a witness for a positive instance to be composed of either α_1 or α_2 for each subexpression $\alpha_1 \lor \alpha_2$ of α, and of a state t for each subexpression $\alpha_1; \alpha_2$ (representing the guessed intermediate state of the execution). Such a witness is clearly of polynomial size. Now verifying it amounts to verifying that when the nondeterministic choices are those encoded by the witness and the execution of sequence constructs go through the encoded intermediate states, s' is indeed an α-successor of s. This can clearly be done in polynomial time since there remains only to evaluate conditions of \lor constructs in given states and applying effects of the form $p \lor \neg p$. \square
For showing hardness, we build a specific action able to “produce” all and only satisfiable 3-CNF formulas. For this we first define an encoding of any 3-CNF formula φ over n variables as an assignment to a polynomial number of variables.

Notation 22. Let $n \in \mathbb{N}$ and X_n be the set of variables $\{x_1, \ldots, x_n\}$. Observe that there are a cubic number N_n of clauses of length 3 over X_n (any choice of 3 variables with a polarity for each). We fix an arbitrary enumeration $\gamma_1, \gamma_2, \ldots, \gamma_{N_n}$ of all these clauses, and we define Q_n to be the set of variables $\{q_1, q_2, \ldots, q_N\}$. Then we identify an assignment s to Q_n, to the 3-CNF formula over X_n, written $\varphi(s)$, which for all i contains the clause γ_i if and only if $q_i \in s$ holds.

We also write $s(\varphi)$ for the assignment to Q_n which encodes a 3-CNF formula φ over X_n. By $\ell \in \gamma_i$ we mean that the literal ℓ occurs in the clause γ_i.

Example 23. Let $n = 2$, and consider an enumeration of all clauses over variables $X_2 = \{x_1, x_2\}$ which starts with $\gamma_1 = (x_1 \lor x_1 \lor x_2), \gamma_2 = (x_1 \lor x_1 \lor \neg x_2), \gamma_3 = (x_1 \lor \neg x_1 \lor x_2), \gamma_4 = (x_1 \lor \neg x_1 \lor \neg x_2), \gamma_5 = (\neg x_1 \lor \neg x_1 \lor \neg x_2), \gamma_6 = (\neg x_1 \lor \neg x_1 \lor \neg x_2), \ldots$. Then the 3-CNF formula $\varphi = (x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_1 \lor \neg x_2)$ is identified to the state $s(\varphi) = \{q_1, q_5\}$.

Using Notation 22, for all $n \in \mathbb{N}$ we define the NPDDL action description β_n, Q_n by

$$\beta_n = \mathcal{G}_{s \in X_n} \left((\mathcal{G}_{\gamma_i \in \gamma_i}(q_i | e)) \mid (\mathcal{G}_{\gamma_i \in \gamma_i}(q_i | e)) \right)$$

Intuitively, β_n chooses an assignment (\bot or \top) to each variable in X_n (outmost nondeterministic choices). Whenever it chooses one, it chooses nondeterministically some clauses which are satisfied by it, and adds them to the result. Hence it builds a satisfiable formula (which is satisfied precisely by—at least—the assignment made of its choices over each variable).

Lemma 24. Let $n \in \mathbb{N}$ and let φ be a 3-CNF formula over X_n. Then φ is satisfiable if and only if $s(\varphi)$ is a β_n-successor of the state \emptyset.

Proof. If φ is satisfiable, let s_X be an assignment to X_n which satisfies it. Consider the execution of β_n in which for each x, when the subexpression corresponding to x is executed, the left (resp. right) subexpression of the nondeterministic choice is executed if $x \in s_X$ holds (resp. if $x \notin s_X$ holds). Finally, consider the execution of this expression $\mathcal{G}_{(q_i | e)}$ for all i, q_i (resp. e) is executed when φ contains (resp. does not contain) the clause γ_i. Clearly, this execution reaches $s(\varphi)$. Conversely, if an execution reaches a state s, then a model of $\varphi(s)$ can be built by considering each variable $x \in X_n$, and including (resp. not including) x if and only if the execution went through the left (resp. right) of the nondeterministic choice when the subexpression corresponding to x was executed.

Since β_n can clearly be built in polynomial time given a set of variables X_n, Lemma 24 directly gives a reduction from the 3-SAT problem to the problem IS-SUCC for NPDDL. Hence the latter problem is NP-hard, and since we have shown IS-SUCC to be in NP for NPDDL$_{seq}$ (Proposition 21), we have the following.

Proposition 25. The problem IS-SUCC is NP-complete for $L = \text{NPDDL}$ and for $L = \text{NPDDL}_{seq}$.

Finally, since NPDDL$_{seq}$ and restricted DL-PPA are translatable into each other in polynomial time (Propositions 17 and 18), we have the following.

Corollary 26. The problem IS-SUCC is NP-complete when L is restricted DL-PPA.

We finally turn to the complexity of IS-SUCC for DL-PPA.

Proposition 27. The problem IS-SUCC is PSPACE-complete for $L = \text{DL-PPA}$.

Proof. It is known that model checking for DL-PPA is PSPACE-complete [4]. This problem is the one of checking whether a given state s is in $\|\varphi\|$ for a given DL-PPA formula φ. We reduce it to IS-SUCC for DL-PPA as follows.

Suppose that we are given a DL-PPA formula φ over the set $P = \{p_1, \ldots, p_n\}$, and let without loss of generality $s = \{p_1, \ldots, p_k\}$. Let r (standing for “result”) be a fresh variable, and build the DL-PPA action description $\langle \alpha, P \cup \{r\} \rangle$ with

$$\alpha = (\langle +p_1; +p_2; \ldots; +p_k; -p_{k+1}; \ldots; -p_n; \varphi?; +r \rangle \cup \langle -p_{k+1}; \ldots; +p_k; -p_1; \ldots; -p_n; \varphi?; -r \rangle$$

Clearly, α can be built in time polynomial in the size of φ, and α does nothing except setting r to \top if $s \in \|\varphi\|$ holds, and to \bot otherwise. It follows that s is a model of φ if and only if the state $\{r\}$ is an α-successor of the state \emptyset.

Hence IS-SUCC is PSPACE-hard for $L = \text{DL-PPA}$. For membership, we reduce it to the satisfiability problem for DL-PPA formulas, which is in PSPACE [4]. Given an action description $\langle \alpha, P \rangle$ with $P = \{p_1, \ldots, p_n\}$, a state $s = \{p_1, \ldots, p_k\}$ (without loss of generality) and a state s', we define α to be the DL-PPA formula

$$\langle +p_1; \ldots; +p_k; -p_{k+1}; \ldots; -p_n; \alpha \rangle \left(\bigwedge_{p \in s'} p \land \bigwedge_{p \in P \setminus s'} \neg p \right)$$

Clearly, φ can be built in polynomial time, and it is satisfiable if and only if the program “go to state s and then execute α” can lead to the state s', which is just a rephrasing of s' being an α-successor of s. \square

2The choice of \emptyset is arbitrary, since the variables of φ are all set by the modalities and are used only there and hence, their initial and final values do not matter.
6 Succinctness

In this section, we study the relative succinctness of action languages. Succinctness is formally defined as follows [9].

Definition 28 (succinctness). An action language \(L_1 \) is said to be at least as succinct as an action language \(L_2 \), denoted by \(L_1 \preceq L_2 \), if \(L_1 \) exists as a polynomial-size translation from \(L_2 \) to \(L_1 \). If \(L_1 \preceq L_2 \) and \(L_2 \not\preceq L_1 \) hold, then \(L_1 \) is said to be strictly more succinct than \(L_2 \), written \(L_1 \prec L_2 \). If \(L_1 \preceq L_2 \) and \(L_2 \preceq L_1 \), then \(L_1 \) and \(L_2 \) are said to be equally succinct.

The succinctness relation \(\preceq \) is reflexive and transitive, hence it is a preorder. However, it is not antisymmetric and thus not an order.

Clearly, if there is a polynomial-time translation from \(L_2 \) to \(L_1 \) then \(L_1 \preceq L_2 \) holds. Hence we have the following as a direct consequence of Propositions 17 and 18.

Proposition 29. The languages NPDDL\(_{seq} \) and restricted DL-PPA are equally succinct.

Our next results rely on assumptions about nonuniform complexity classes. Recall that \(P/\text{poly} \) (resp. \(\text{NP}/\text{poly} \)) is the class of all decision problems such that for all \(n \in \mathbb{N} \), there is a polynomial-time algorithm (resp. a nondeterministic polynomial-time algorithm) which decides the problem for all inputs of size \(n \) [2]. The assumptions \(\text{NP} \not\subseteq \text{P}/\text{poly} \) and \(\text{PSPACE} \not\subseteq \text{NP}/\text{poly} \) which we use are standard ones; in particular, \(\text{NP} \subseteq \text{P}/\text{poly} \) would imply a collapse of the polynomial hierarchy at the second level (Karp-Lipton theorem), and \(\text{PSPACE} \subseteq \text{NP}/\text{poly} \) would imply a collapse at the third level, since already \(\text{coNP} \subseteq \text{NP}/\text{poly} \) would do so [21].

Proposition 30. There is no polynomial-size translation from NPDDL into NNFAT unless \(\text{NP} \subseteq \text{P}/\text{poly} \) holds.

Proof. We use the action description \(\beta_n \) that was introduced in Section 5; the size of \(\beta_n \) is clearly polynomial in \(n \).

Assume that for every NPDDL action description \(\alpha_n \), there is an equivalent NNFAT action description \(\alpha'_n \) of size polynomial in that of \(\alpha_n \). In particular, there is an NNFAT action description \(\beta'_n \) of size polynomial in \(n \) which is equivalent to \(\beta_n \). Then the following is a nonuniform polynomial-time algorithm for the 3-SAT problem; given a formula \(\varphi \) in 3-CNF over \(n \) variables:

1. encode \(\varphi \) into a state \(s(\varphi) \) over the set of variables \(Q_n \) as in Notation 22;
2. decide whether \(s(\varphi) \) is a \(\beta'_n \)-successor of \(\emptyset \);
3. claim that \(\varphi \) is satisfiable if the answer is positive, otherwise claim that \(\varphi \) is unsatisfiable.

All steps are polynomial-time (Proposition 20), the algorithm is correct (Lemma 24), and the algorithm depends only on the number of variables in \(\varphi \) (which is polynomially related to the size of \(\varphi \)), hence this is indeed a nonuniform polynomial time algorithm for 3-SAT. Since 3-SAT is \(\text{NP} \)-complete, we get \(\text{NP} \subseteq \text{P}/\text{poly} \).

We finally consider the relative succinctness of DL-PPA and NPDDL\(_{seq} \). Since model checking in DL-PPA is \(\text{PSPACE} \)-complete, there can be no polynomial time translation from DL-PPA to NPDDL\(_{seq} \) unless \(\text{PSPACE} \subseteq \text{NP} \). However, we will prove a stronger result.

For this, we use the problem of deciding whether a QBF formula is valid, for QBFs restricted to be of the form \(\Phi = \forall x_1 \exists x_2 \ldots \forall x_{2n-1} \exists x_{2n} \varphi \), with \(\varphi \) a 3-CNF formula and \(V(\varphi) \subseteq X_{2n} = \{x_1, \ldots, x_{2n}\} \); clearly, deciding validity is as hard for such formulas (hereafter called "normalized QBFs") as for unrestricted QBFs, and hence it is \(\text{PSPACE} \)-complete.

For all \(n \in \mathbb{N} \), we define the DL-PPA action description \(\{\delta_{2n}, X_{2n} \cup Q_{2n} \} \cup \{r\} \); then \(Q_{2n} \) is as in Notation 22. \(r \) is a fresh variable (standing for "result"), and \(\delta_{2n} \) is defined to be

\[
\begin{align*}
& r \leftarrow \left(+x_1 \cup -x_1 \right) \left(+x_2 \cup -x_2 \right) \\
& \ldots \\
& \left(+x_{2n-1} \cup -x_{2n-1} \right) \left(+x_{2n} \cup -x_{2n} \right)
\end{align*}
\]

with \(\psi_{2n} = \bigwedge_{q_i \in Q_{2n}} \left(q_i \rightarrow (\bigvee x \bigvee \bigwedge \neg x) \right) \) (rewritten without \(\land \) nor \(\lor \) in polynomial time). Observe that the size of \(\delta_{2n} \) is polynomial in \(n \).

Lemma 31. Let \(\Phi \) be a normalized QBF over the set of variables \(X_{2n} = \{x_1, \ldots, x_{2n}\} \). Then \(\Phi \) is valid if and only if \(s(\varphi) \cup \{r\} \) is a \(\delta_{2n} \)-successor of \(s(\varphi) \).

Proof. By the semantics of DL-PPA, the modality \([+x \cup -x] \) mimicks exactly the quantification \(\forall x \), and \([+x \cup -x] \) mimicks exactly \(\exists x \). On the other hand, it is easy to see that an assignment \(s_X \) to \(X_{2n} \) is a model of \(\varphi \) if and only if \(s_X \cup s(\varphi) \) is a model of \(\psi_{2n} \). It follows that \(\Phi \) is valid if and only if \([+x_1 \cup -x_1] [+x_2 \cup -x_2] \ldots [+x_{2n-1} \cup -x_{2n-1}] [+x_{2n} \cup -x_{2n}] \psi_{2n} \) is true in \(s(\varphi) \) and hence, that \(\Phi \) is valid if and only if \(\delta_{2n} \) assigns \(r \) to \(\top \) when run in \(s(\varphi) \), which finishes the proof.

Using \(\delta_{2n} \), the proof of the following result is parallel to that of Proposition 30.

Proposition 32. There is no polynomial-size translation from DL-PPA into NPDDL\(_{seq} \) unless \(\text{PSPACE} \subseteq \text{NP}/\text{poly} \) holds.

Proof. Assume that there is a polynomial-size translation from DL-PPA into NPDDL\(_{seq} \), and for all \(n \), let \(\delta'_n \) be an NPDDL\(_{seq} \) description equivalent to \(\delta_n \) and of size polynomial in that of \(\delta_n \), hence in \(n \). Then the following is a nonuniform nondeterministic polynomial-time translation algorithm for the 3-SAT problem; given a formula \(\varphi \) in 3-CNF over \(n \) variables:

1. encode \(\varphi \) into a state \(s(\varphi) \) over the set of variables \(Q_n \) as in Notation 22;
2. decide whether \(s(\varphi) \) is a \(\beta'_n \)-successor of \(\emptyset \);
3. claim that \(\varphi \) is satisfiable if the answer is positive, otherwise claim that \(\varphi \) is unsatisfiable.

All steps are polynomial-time (Proposition 20), the algorithm is correct (Lemma 24), and the algorithm depends only on the number of variables in \(\varphi \) (which is polynomially related to the size of \(\varphi \)), hence this is indeed a nonuniform polynomial time algorithm for 3-SAT. Since 3-SAT is \(\text{NP} \)-complete, we get \(\text{NP} \subseteq \text{P}/\text{poly} \).
Figure 7.1: Succinctness relations between the languages. A thick arrow from L to L' means $L \prec L'$, a thin line means $L \preceq L'$, and a dashed arrow means that it is still unknown whether $L \preceq L'$.

algorithm for the problem of deciding the validity of a normalized QBF; given a normalized QBF over $2n$ variables, with matrix φ:

1. encode φ into $s(\varphi)$,
2. decide whether $s(\varphi) \cup \{r\}$ is a δ_{2n}-successor of $s(\varphi)$,
3. claim that Φ is valid if the answer is positive, otherwise claim that Φ is not valid.

The steps are all feasible in deterministic or nondeterministic polynomial time (Proposition 21), the algorithm is correct by Lemma 31, and δ_{2n} depends only on the number of variables of Φ, hence this is indeed a nonuniform nondeterministic polynomial-time algorithm for deciding the validity of a normalized QBF. Since this is a PSPACE-complete problem, we conclude $\text{PSPACE} \subseteq \text{NP/poly}$.

7 Conclusion

We have studied the complexity of deciding whether a state is a successor of another one through a given action, and the relative succinctness of three languages which are suitable for specifying planning tasks and actions. We have shown that deciding successorship is polynomial-time solvable for NNFAT, NP-complete for NPDDL, NPDDLseq, and restricted DL-PPA, and PSPACE-complete for DL-PPA. The succinctness results agree with the intuition that the languages which are more succinct also have harder queries; the relationships which we have shown are represented on Figure 7.1.

An examination of the proof of Proposition 32 reveals that the reasons for DL-PPA being strictly more succinct than $\text{NPDDL}_{\text{seq}}$ are the modal operators. Our mid-term goal is to investigate complexity of queries and succinctness in a more systematic way, for languages constructed using combinations of features like the sequence operator, modalities, Kleene star, parallel execution, etc. For example, we want to try to find out whether DL-PPA without the Kleene star is strictly less succinct than DL-PPA (because until now the only elimination of $*$ that we know requires exponential space). Another interesting question is whether $\text{NPDDL}_{\text{seq}}$ is strictly more succinct than NPDDL, because IS-SUCC is NP-complete for both of them.

Acknowledgements

This work has been supported by the French National Research Agency (ANR) through project PIN/GACK (ANR-18-CE40-0011).

References

