
HAL Id: hal-02942873
https://hal.science/hal-02942873

Submitted on 18 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Knowledge-Based Programs as Succinct Policies for
Partially Observable Domains

Bruno Zanuttini, Jérôme Lang, Abdallah Saffidine, François Schwarzentruber

To cite this version:
Bruno Zanuttini, Jérôme Lang, Abdallah Saffidine, François Schwarzentruber. Knowledge-Based
Programs as Succinct Policies for Partially Observable Domains. Artificial Intelligence, 2020, 288,
pp.103365. �10.1016/j.artint.2020.103365�. �hal-02942873�

https://hal.science/hal-02942873
https://hal.archives-ouvertes.fr

Knowledge-Based Programs as Succinct Policies for
Partially Observable DomainsI

Bruno Zanuttinia,∗, Jérôme Langb, Abdallah Saffidinec, François
Schwarzentruberd

aNormandie Univ.; UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France5

bCNRS and LAMSADE, Université Paris-Dauphine, CNRS UMR 7243, France
cUniversity of New South Wales, Sydney, Australia

dUniv. Rennes, CNRS, IRISA, France

Abstract

We suggest to express policies for contingent planning by knowledge-based pro-10

grams (KBPs). KBPs, introduced by Fagin et al. [Reasoning about Knowledge,
MIT Press, 1995], are high-level protocols describing the actions that the agent
should perform as a function of their current knowledge: branching conditions
are epistemic formulas that are interpretable by the agent. The main aim of our
paper is to show that KBPs can be seen as a succinct language for expressing15

policies in single-agent contingent planning.
KBP are conceptually very close to languages used for expressing policies

in the partially observable planning literature: like them, they have conditional
and looping structures, with actions as atomic programs and Boolean formulas
on beliefs for choosing the execution path. Now, the specificity of KBPs is that20

branching conditions refer to the belief state and not to the observations.
Because of their structural proximity, KBPs and standard languages for rep-

resenting policies have the same power of expressivity: every standard policy can
be expressed as a KBP, and every KBP can be “unfolded” into a standard policy.
However, KBPs are more succinct, more readable, and more explainable than
standard policies. On the other hand, they require more online computation
time, but we show that this is an unavoidable tradeoff. We study knowledge-
based programs along four criteria: expressivity, succinctness, complexity of
online execution, and complexity of verification.

IThis paper is a thoroughly extended version of two conference papers [45, 46].
∗Corresponding author
Email addresses: bruno.zanuttini@unicaen.fr (Bruno Zanuttini),

lang@lamsade.dauphine.fr (Jérôme Lang), abdallah.saffidine@gmail.com (Abdallah
Saffidine), francois.schwarzentruber@ens-rennes.fr (François Schwarzentruber)

Preprint submitted to Artificial Intelligence July 21, 2020

1. Introduction

In many applications, artificial agents make decisions in a partially observ-
able environment. They follow a policy, which is sometimes specified manually
by a policy designer, sometimes automatically computed (and sometimes partly25

specified manually, and completed automatically). At an abstract level, such
policies (or plans) in partially observable domains are mappings from belief
states to actions.

The encoding of belief states, and the mapping from belief states to actions,
varies from one framework to another. As soon as the space of belief states has30

a combinatorial structure (because a state is defined by the value taken by some
variables), belief states cannot be represented explicitly as set of states but are
represented in a factorized way: when executing a plan, rather than explicitly
maintaining a current belief state, one proceeds to belief tracking: belief states
are expressed implicitly, for instance by the initial belief state and the history of35

actions and observations, and can be “queried” so as to know whether the goal
is reached or the preconditions of some action are satisfied. With this variety
of representations of belief states comes a variety of representations of policies:
they can be represented by listing all possible histories and their associated
action, or all belief states and their associated action, or the set of reachable40

belief states and their associated action, or as a finite automaton.
What are the criteria that help us evaluating the quality of a representation

of policies? We suggest the following list.

1. Policies should be understandable by humans in order for artificial in-
telligent agents to be socially accepted. Indeed, when a failure occurs,45

the decisions made by the agent should be justified, for instance for legal
issues.

2. Policies should be concise, because of limited storage space. Consider a
fully autonomous nanorobot navigating through a human body. Its tiny
size imposes constraints on the size of the embedded plan, yet the number50

of possible state-action trajectories can be huge. Another example where
a tension between the size of the plan and storage space arises is that of
a robot exploring a totally unknown environment where communication
with the base may not be possible, or possible only in extremely short
periods.55

3. Policies should be generic. They should be generic enough to be instan-
tianted on a number of distinct planning problems of a common family.

4. Policies should be verifiable. There should exist reasonably efficient algo-
rithms to check whether a given policy enables the agent to reach a given
goal in a given environment.60

5. Policies should be reactive: at execution time, the choice of the next action
to execute should be made as quickly as possible.

As already well-known and well-understood in the AI planning community,
these five requirements are incompatible. After making this statement formal,

2

in order to fill desiderata 1–4 we advocate for representing a policy with a65

knowledge-based program (KBP). KBPs have been originally introduced by the
distributed system community [32]. They use the principle of belief tracking,
but they also use a slightly different representation of policies than usual plans
coupled with belief tracking.

In such programs, branching conditions are epistemic formulas that are in-70

terpretable by the concerned agent. Hence to some extent, they can be seen
as mappings from sets of belief states to actions, where sets of belief states are
represented succinctly using epistemic formulas.

There are other representations of this kind. For instance, the representa-
tion of a policy by a set of α-vectors for POMDPs can also be seen as a map75

from (compact representations of) sets of belief states to actions in probabilistic
settings. However, arguably this is not a representation which is easy to read,
edit, or explain.1

It should be noted that KBPs are not maximally succinct: the most succinct
policy for a planning problem is simply its specification. At execution time, it80

produces one action at a time, based on the observation, by using an on-line
contingent planning algorithm.2 This means that the complexity of execution
is as hard as the complexity of partially planning observable planning with
branching, that is, 2-EXPTIME-hard [62]. Thus KBPs offer a tradeoff between
the latter representation (maximally succinct but with a huge cost at execu-85

tion) and the explicit observation-based representation (maximally efficient to
execute but extremely large). As we show, this tradeoff is reasonable, as the
execution problem is only ΘP

2 -complete (hence one step of execution can be
done using a logarithmic number of calls to a Sat solver) while we can have an
exponential gain in succinctness. KBPs are certainly not the only representa-90

tion “in-between”: others have been used in the planning community, such as
finite automata. Yet, such automata, as reactive representations, may also be
exponentially larger than KBPs, as we show (Section 5).

To get a grasp of why it is interesting to express policies as KBPs, let us
consider two examples.95

Example 1 (minesweeper). Minesweeper is a single-player game, played on a
(H,W)-board, where the objective is to

clear a rectangular board containing hidden “mines” or bombs with-
out detonating any of them, with help from clues about the number
of neighbouring mines in each field.3100

The player initially has a number of hints, in the form of the number of
neighbouring mines for some positions, as well as the total number of mines on
the board.

1Of course, representations of policies for POMDPs are more complex, since the beliefs
states are probability distributions over states.

2We thank one of the reviewers for this suggestion.
3Description taken from Wikipedia (https://en.wikipedia.org/wiki/Minesweeper_

(video_game)) on November 14, 2019.

3

https://en.wikipedia.org/wiki/Minesweeper_(video_game)
https://en.wikipedia.org/wiki/Minesweeper_(video_game)

while the agent does not know that the objective is fullfilled do

if the agent knows there is no mine at 〈1, 1〉 then click on 〈1, 1〉
if the agent knows there is no mine at 〈1, 2〉 then click on 〈1, 2〉
. . .

if the agent knows there is no mine at 〈H,W 〉 then click on 〈H,W 〉
od

Figure 1: Example of a knowledge-based program for a Minesweeper board of size (H,W).

? ? ?

? 1 ?

? 2 ?

? ? ?

1 1 0
? 1 ?

? 2 ?

? ? ?

1 1 0
? 1 0
1 2 1
? ? ?

1 1 0
? 1 0
1 2 1
0 1 ?

Figure 2: Example execution of the KBP of Example 1 for Minesweeper.

The knowledge-based program of Figure 1 prescribes the player to repeatedly
clear each position in which it knows there is no mine, until the objective is105

achieved. Obviously, in minesweeper, whether the player has a winning strategy
depends on the initial hints.

Assume for instance that the board is of size 4 × 3, and that the agent ini-
tially knows that there are 2 mines, among which 1 neighbouring 〈2, 2〉 and 2
neighbouring 〈3, 2〉, as depicted on Figure 2 (left). The agent infers that there110

is no mine in the first row, so that it clicks positions 〈1, 1〉, 〈1, 2〉, 〈1, 3〉. As-
sume that this reveals the numbers of neighbouring mines depicted on Figure 2
(middle left). The agent can now infer that there is a mine at 〈2, 1〉, the second
one being at 〈4, 1〉, 〈4, 2〉, or 〈4, 3〉, and (consequently) that there is no mine
at any of 〈2, 3〉, 〈3, 1〉, 〈3, 3〉. Again following the KBP, the agent clicks these115

positions (in a second round of the while loop). Assuming the observations
depicted on Figure 2 (middle right), the agent will finally infer that there is no
mine at 〈4, 1〉 nor at 〈4, 2〉 and click these, resulting in the situation depicted
on Figure 2 (right), in which the agent has (knowingly) achieved the goal and
hence stops.120

Example 2 (diagnosis). Consider a system composed of three components; for
each i = 1, 2, 3, we have a propositional symbol oki meaning that the component
is in working order, an action replacei that makes oki true, and an action testi
that returns the truth value of oki; the background knowledge about the system,
i.e., the logical relationship between which components are in order and which125

ones are not, can be anything. Let κ be the following KBP (Kϕ is read “the
agent knows that formula ϕ is true”):

while
∨
i (¬Koki ∧ ¬K¬oki)

do

4

let i be the first index such that ¬Koki ∧ ¬K¬oki;130

testi ;

if K¬oki then replacei fi
od

It is easy to see that κ succeeds in making the goal ok1 ∧ ok2 ∧ ok3 true, while
avoiding unnecessary replacing actions, and, secondarily, avoiding unnecessary135

test actions. For instance, if the initial knowledge state of the agent is K((ok1 ↔
(ok2∧ok3))∧ (¬ok1∨¬ok2)), then the plan will start by replacing component 1,
because it already knows, from its background knowledge, that it is not working
correctly; then it will test 2; if ok2 is observed then it will replace 3; else, it will
replace 2, test 3, and replace it if needed.140

Observe that κ is generic in the sense that it is a valid plan for any initial
knowledge state.

As we have already suggested, and will soon demonstrate, succinctness comes
with a computational price: KBPs involve computationally hard (more precisely,
Θ2

P-hard) inference tasks at execution time. Admittedly, this is sometimes a145

serious issue. However, there are two reasons why it may be not that serious.
First, these reasoning tasks consist of solving a small (logarithmic in the size of
the input data) number of classical satisfiability problems; at an era when Sat
solvers have become very efficient, for many applications and domain sizes, this
is perfectly reasonable. Second, nothing prevents unrolling the KBP into a full150

explicit policy before executing it. For example, an exploring robot to which a
succinct KBP is transmitted can unfold it into a fully explicit policy (possibly
only up to some horizon, or only along some branches) and then execute it, in
the manner of knowledge compilation [29].

In some domains, it is reasonable to assume that the KBP is written by155

a human, either an expert or a nonexpert, depending on the case. In other
domains, the KBP can be computed automatically by compacting a tree-like
policy generated by a standard planner. Yet in other domains, it can be partially
specified by an expert and then completed automatically.4 In all cases, all the
rest is automated: verification, execution, and (if needed) unrolling. In this160

paper we focus on verification and execution.
To sum up, we study the use of knowledge-based programs as a language

which is generic, succinct, and easy to understand for representing policies. Be-
cause of an unavoidable tradeoff, executing KBPs is computationally hard and
requires online belief tracking. We put this into contrast with reactive repre-165

sentations of policies, such as finite-state automata branching on observations,
which are easy to execute but are less generic, less succinct, and less easy to
understand.

To avoid any misunderstanding we want to stress the following two points

4As an example of such partial specification, see [42]: the human expert gives rules speci-
fying branches that are useless to explore, which the planning algorithm makes uses of.

5

concerning what our paper is not about:170

• we do not present a new paradigm for planning: plans with branching
and loops have been considered for long in the planning community; any
knowledge-based program can be transformed into an equivalent standard
policy, the advantage of knowledge-based programs being that they are
more succinct than standard policies.175

• we do not present new algorithms for plan generation: plan generation is
orthogonal to our work; we assume that the plan has been written by an
expert or (semi-)automatically computed.

Outline. In Section 2 we give an overview of related work, which spans several
research fields: partially observable planning, agent programming languages,180

and logics of knowledge and action. In Section 3 we settle our context of par-
tially observable planning domains and give the necessary background on epis-
temic logic. In Section 4 we recall knowledge-based programs and study their
expressivity as representations of policies. In Section 5 we show that KBPs
can be exponentially more succinct than reactive representations of policies. In185

Section 6 we study the complexity of executing a KBP and relate this to belief
tracking. In Section 7 we study the computational complexity of verifying that a
KBP is valid, considering various possible restrictions on the planning problem.
Finally, in Section 8 we briefly discuss extensions of our work beyond the strict
framework of this paper, and we conclude in Section 9.190

2. Related Work

In this section, we review work related to ours, first about concise represen-
tations for planning (Section 2.1), then about knowledge-based programming
(Section 2.2).

2.1. Related Work in Planning195

In partially observable planning (and more generally in planning), the key
components are (1) the model, (2) the language, and (3) the algorithms [34].

Choosing a model consists of choosing the mathematical objects for the var-
ious elements of planning problems, especially belief states, action effects, and
goals. Uncertainty about states and action effects can be modelled qualitatively200

or probabilistically (a belief state being, respectively, a nonempty set of states
or a probability distribution over states). Our model is the classical qualita-
tive model, also referred to as that of contingent planning. In Sections 2.1.1
and 2.1.2 we position our work with respect to the state of the art in succinct
representations and online execution of plans, respectively, for contingent plan-205

ning. When the uncertainty is probabilistic, the associated model is that of
Partially Observable Markov Decision Processes, which we discuss separately in
Section 2.1.3.

6

2.1.1. Succinct Representations in Contingent Planning

When the set of states has an inherent combinatorial structure, its size is too210

large for allowing an explicit representation of sets of states, action effects, goals,
and policies. In such contexts, a language for expressing succinctly the input
and the output of a problem is needed. In such a case, a factored representation
language consists of defining a problem through a set of relevant variables, whose
domains are finite, and often binary. Here too we follow a classical approach215

by assuming binary variables (which can be done without loss of generality).
Belief states are usually expressed as propositional formulas, possibly with some
syntactical restriction; we do not make such a restriction (but our results could
be extended to such contexts). Action effects can be represented in various
languages; choosing a factored language or another has no significant impact on220

the succinctness and complexity of tasks [57].
Where we significantly depart from the classical literature is about the rep-

resentation of policies.
The compact representation of plans and policies is already a relevant ques-

tion for classical planning [7] and for conformant planning [2, 50]. However, as225

there are no observations in classical nor in conformant planning, plans do not
need branching conditions; nor do they in online contingent planning (where the
planner only computes the next action to execute) [17, 20, 52] and in replanning
(where an unconditional plan is computed only for some branch of the execution
tree) [16, 19]. Note however that we will exhibit cases when a sequential plan is230

much more succinct if represented with branching conditions (see Section 7.2).
In contrast, offline contingent planning corresponds to our setting, in which

there is uncertainty, nondeterminism, and partial observability: then a policy
must specify which action should be taken at each step, conditionally on what
has occurred so far and for all possible contingencies. One can distinguish weak,235

strong, and strong cyclic policies [26], depending on when we consider the policy
to be valid. We focus here on strong policies, which must terminate and achieve
the goal under all circumstances.

The literature considers three formats for the representation of policies in of-
fline contingent planning [34]: (1) mappings from histories (sequences of actions240

and observations performed so far) to actions, (2) mappings from succinctly
represented belief states to actions; (3) finite automata whose transitions are
labelled by actions.

Each of these representations comes with its own problems: history-based
policies need to consider all histories (whose number is exponential in the num-245

ber of observations made until the current stage); belief-based policies need to
consider all belief states (whose number is doubly exponential in the number of
variables); finite automata are difficult to read and understand by humans.

These three representations differ in the choice they make for the representa-
tion of branching conditions: sequences of observations, succinctly represented250

belief states, or states in a finite automaton. Belief-based policies often consider
only a subset of possible beliefs, namely those that can occur at some point of
the execution of the policy. Such policies are used in particular by works which

7

consider regression for planning, that is, computing policies backwards from
the goal to the initial knowledge state [63, 23]. In such approaches, algorithms255

naturally compute a representation of policies mapping belief states to actions.
The specificity of knowledge-based programs with respect to other represen-

tations is that their branching conditions are complex epistemic formulas, that
can represent both succinctly and intuitively sets of belief states, whose repre-
sentation by belief states (even succinctly represented) would be exponential.260

A simple example (discussed further in the paper, see Section 5) is a branching
condition such as knowing the truth value of an even number of variables.

Closest to our work is the representation of policies used by Muise et al.
[56], where policies are represented as functions from compact belief states of
the form

∧
i Kxi ∧

∧
j K¬xj to actions. The authors discuss the fact that such265

policies are succinct but that their execution requires maintaining a belief state,
hence they resort to a conversion into a standard representation [56, Section 3.4].
However, no further investigation of this representation is done; it can be seen
easily that it is a special case of the representation by KBPs.

Finally, let us mention the approach by Bolander et al. [14], where a repre-270

sentation of contingent policies in propositional dynamic logic is investigated.
Due to branching on arbitrary formulas, this work bears close relationships to
ours. However, the approach is semantical, and no succinctness or complexity
questions are addressed.

2.1.2. Online Execution and Belief Tracking in Contingent Planning275

Most of the research in planning consists of developing generic algorithms
both for offline plan generation and for online plan execution. We do not con-
sider plan generation here: we make the assumption that the plan has been
already written by an expert or (semi-)automatically computed.

As far as online execution is concerned, the literature on planning considers280

two different contexts: either action selection is done online without any plan
being computed offline (which is referred to as “online planning”), or a plan has
been precomputed offline and expressed in some format, and action selection
consists of retrieving, from this plan, the next action to perform at any stage
of the execution. As the latter context is also ours, we now discuss it in more285

detail.
How the evaluation of branching conditions is implemented depends on the

choice made for the representation of belief states. There have been proposals
to represent belief states by action-observation sequences, with the use of a
Sat solver for recognizing equal belief states [40], by literals conditioned on the290

initial state [1, 19], by logical formulas [70], or by binary decision diagrams [12].
When executing a plan, we have to keep track of beliefs in one way or

another. The current belief state can be computed from the previous belief
state and the last action performed and observation received; while this works
in theory, in practice this is less easy, as this belief state may quickly become295

very large (in the worst case, it is exponential in the number of propositional
variables). However, as argued in several papers [18, 70, 20], in order to execute
a plan, we do not need to store these belief states explicitly; it is rather sufficient

8

to be able to answer these three types of queries: given an execution history,
(1) has the goal been achieved? (2) which actions are executable, that is, have300

their precondition satisfied? (3) if a given executable action is performed, which
observations are possible?

These tasks are referred to as belief tracking. Although they are all un-
tractable in the worst case, still, it is possible to keep track of the beliefs nec-
essary for solving them in time and space exponential in a width parameter305

associated with the problem, and which measures the degree of interaction be-
tween variables with respect to the set of available actions. When this width is
too large for an exact computation of belief states to be tractable, a solution is
to use approximate belief tracking algorithms [17].

Belief tracking is orthogonal to our work. We focus on the representation of310

policies, while belief tracking focuses on their execution. While we prove worst-
case complexity results about the execution of knowledge-based programs in
Section 6, such execution needs the current branching condition to be evaluated
and thus amounts to a belief tracking problem, namely: given the current se-
quence of actions performed and observations gathered, is the current branching315

condition satisfied? Results about polynomial time and space complexity pa-
rameterized by the width of the problem, and algorithms for approximate belief
tracking, apply, and can be used to make the execution of a KBP easier. We
will return to that in Section 6.

2.1.3. Partially Observable Markov Decision Processes320

Partially Observable Markov Decision Processes (POMDPs) can be seen as
a probabilistic counterpart of contingent planning problems, with probabilis-
tic transition functions and a probabilistic observation model. The study of
POMDPs dates back to the 1960s [4, 68], and they have become a dominant
model for AI planning under partial observability since the 1990s [41] .325

Representation issues, both for the input of the problem (action effects and
observations), and the output (policies) are of course of primary importance,
as in contingent planning. Representing policies succinctly is far more difficult
than in contingent planning, first of all because the set of belief states is infinite.
A well-known way of representing policies in a finite way consists in using the330

fact that value functions are piecewise linear and convex [68]; this yields a
representation by α-vectors, which can be seen as compact representations of sets
of belief states, although arguably much less readable than epistemic branching
conditions as used by knowledge-based programs. On the other hand, point-
based methods allow to consider a smaller number of belief states [59]. Anyway,335

the typical representation of policies in this domain is by finite-state controllers,
that is, finite-state automata branching on the observations received, possibly
further restricted to have a bounded number of states [60].

2.2. Related Work in Logic

Knowledge-based programs rely on epistemic logic, and were initially intro-340

duced for protocol specification [32]. Hence there is an important amount of
work related to ours in the logic community.

9

2.2.1. Golog and the Situation Calculus

Golog is a high-level agent programming language, built on the situation cal-
culus, that uses actions, knowledge, and several program constructs. Knowledge-345

based Golog programs have been considered first by Reiter [61], while Claßen
and Lakemeyer [28], and later Claßen and Neuss [27] implement knowledge-
based programs on modal variants of the situation calculus.

The situation calculus is a first-order language which is much more expressive
than action languages based on propositional logic. But this high expressivity350

comes with a huge price: evaluating branching conditions is undecidable. There-
fore, not only knowledge-based programs cannot be verified in finite time, but
they can even not be executed. To some extent, our knowledge-based programs
can be seen as a decidable, propositional fragment of Golog with knowledge-
based programs.355

The least we can require for a fragment of Golog to be acceptable for building
knowledge-based programs on it is that it is decidable, so that branching condi-
tions can be evaluated and a knowledge-based program can always be executed.
A few attempts to identify decidable classes of epistemic situation calculus the-
ories have been made [36, 30, 31, 74], but without addressing knowledge-based360

programming.
We know of only one work where knowledge-based programs are built over

a decidable fragment of Golog: Zarrieß and Claßen [73] define a framework for
knowledge-based programs where knowledge and actions are represented in an
epistemic extension of the basic description logic DL. As DL is half-way between365

propositional logic and first-order logic, there is a hope for decidability, but
the authors prove that it is not the case: evaluating branching conditions is
undecidable in the general case (due to nondeterministic action choices). How-
ever, they identify two nested decidable fragments, for which evaluating branch-
ing conditions is respectively EXPTIME-complete and PSPACE-complete, with370

knowledge-based program verification being in 2-EXPSPACE. These results are
very valuable because, as the authors say, they obtain decidability for a lan-
guage that goes far beyond propositional logic. On the other hand, our choice
to restrict to propositional logic admittedly makes programs less expressive, but
also computationally much easier (and yet already difficult). Also, succinctness375

is not investigated by Zarrieß and Claßen [73].

2.2.2. Propositional Languages for Planning with Knowledge

The idea of using explicit knowledge preconditions for actions and plans
comes back to work by Moore [54] and Morgenstern [55], and was developed
further by Brafman et al. [21]. Propositional knowledge-based programs in a380

planning framework were first considered by Son and Baral [69]: their formalism
is based on a specific language for expressing action effects (based on causal
rules), and the syntax of their branching conditions is restricted to epistemic
formulas of the form Kϕ. Herzig et al. [39] go further and give a language
for specifying partially observable planning with knowledge-based programs,385

which does not depend on a specific action representation language and allows
any epistemic formula in branching conditions. Petrick and Bacchus [58] use

10

a simplified epistemic language for plans, where for each propositional variable
x, two extra propositional symbols Kx and K¬x are used, expressing that x is
known to be true (resp. false); in the same vein, Albore et al. [1] use a more390

general language with symbols Kx/t and K¬x/t, meaning “it is known that if
t is true in the initial situation, x is true (resp. false)”.

2.2.3. Protocol Synthesis

Knowledge-based programs can be seen as a way of specifying concrete pro-
grams, rather than building them. This view is taken by several authors [21,395

71, 9]. In this view, the underlying question is to compute a protocol (in our
words, a policy), if any, which realizes a given specification, possibly with re-
strictions on the class of protocols and their operational semantics. Our work
can be considered as complementary to these: we consider from the start a pre-
cise operational semantics for knowledge-based programs (see our Section 4.3),400

so that there is no question about how our KBPs can be implemented: they are
by definition realized by this operational semantics. Said otherwise, we do not
see KBPs as a specification language, but as a language in which we describe
policies which can readily be executed (or automatically compiled into other
executable forms).405

2.2.4. Other Related Work

There exist variants of knowledge-based programming where the agent does
not have knowledge, but beliefs, and which allow for uncertain action effects and
noisy observations: probabilistic beliefs [10], and more qualitative beliefs, based
on ordinal conditional functions (also known as “kappa functions”) [48, 49].410

Succinctness and plan verification are not investigated there.
Lastly, let us briefly mention a (more loosely) related stream of work, which

concerns planning for dynamic epistemic logic (DEL) [51, 3, 5, 6]. In this con-
text, actions are rather events with explicit effects on the knowledge of the
agents (in addition to possible ontic effects). Nevertheless, the focus of epis-415

temic planning in the literature is on the multi-agent setting, on the one hand,
and on the other hand on the computation of sequential plans. Hence, maybe
quite counterintuitively, “epistemic planning” refers to a line of work which (so
far at least) has objectives different from ours.

3. Background420

We define partially observable domains and contingent planning problems
(Sections 3.1 and 3.2), and then the useful notions of epistemic logic (Sec-
tion 3.3).

Since we deal with planning problems in factored representations, we assume
a finite set X of propositional variables, and we use a standard propositional425

language built from atoms x ∈ X, the constants ⊥,>, and the connectives
¬,∨,∧,→,↔,⊕. Assignments are denoted compactly; for instance, x1x2x3 de-
notes the assignment of > to x1, x3 and ⊥ to x2. We write P(X) for the set of

11

all assignments to all the variables in X. For an assignment µ ∈ P(X) and a
propositional formula ϕ over X, we write µ |= ϕ if µ satisfies ϕ, and we write430

Sat(ϕ) for the set of all assignments to X which satisfy ϕ (called satisfying
assignments of ϕ).

3.1. Partially Observable Domains

Our model is a standard one for planning [35]; it can also be seen as the
qualitative counterpart of (stochastic) partially observable Markov Decision Pro-435

cesses (POMDPs) [41].
Given a finite set of variables X, we call state any assignment s to all the

variables in X, so that the state space of a planning domain is P(X), also
denoted by S. Actions from a finite set A (possibly) modify the current state
and yield observations from a finite set O, through a partial transition function440

δ : S × A → P(O × S) \ {∅}. We also write s
a|o−−→ s′ for (o, s′) ∈ δ(s, a).

This means that each time action a is taken in state s, it may be the case
(according to a nondeterministic choice by the environment) that the current
state is modified from s to s′ and that the agent receives observation o. Observe
that both modifications of the state and observations are nondeterministic in445

general.
Following Brafman and Shani [20], we assume the following compact repre-

sentation of the transition and observation function. A deterministic action a
is defined to be a triple 〈prea, eff a, obsa〉, where

• prea is a propositional formula over X, denoting the precondition of a,450

• eff a is a set of ordered pairs 〈conda,`, `〉, at most one per literal ` over X,
where conda,` is a propositional formula over X denoting the condition
under which a makes ` become true, and where for given a, `, conda,` and
conda,¯̀ are mutually inconsistent,

• obsa is a set of ordered pairs 〈whena,o, o〉, at most one per observation o ∈455

O, where whena,o is a propositional formula over X denoting the condition
(over the outcome state) under which o is observed, and where for given
a, formulas whena,o are mutually inconsistent and jointly exhaustive, that
is, each state satisfies whena,o for exactly one o ∈ O.

We also write cond ` and wheno when the action is clear from the context.460

More formally, the semantics is given by

s
a|o−−→ s′ ⇐⇒


s |= prea

for all literals `,
(
s′ |= ` iff s |= (conda,` ∨ (` ∧ ¬conda,¯̀))

)
s′ |= whena,o

where the second line states that literals ` with s |= conda,` are made true in
s′, and others are left unchanged (tacitly assuming conda,` = ⊥ if no condition
is given for `).

12

Now a nondeterministic action a is simply modelled as a set {a1, . . . , an} of
deterministic actions all with the same precondition, one of which is nondeter-
ministically selected when a is taken, that is,

s
{a1,...,an}|o−−−−−−−−→ s′ ⇐⇒ ∃i ∈ {1, . . . , n} , s ai|o−−→ s′

An action is called purely ontic if it always yields the same observation, and
purely epistemic if it never changes the state.465

Definition 3 (partially observable domain). A partially observable domain is
a triple M = 〈X,A,O〉, where X = {x1, . . . , xn} is a finite set of propositional
variables, A = {a1, . . . , ak} is a nonempty finite set of nondeterministic actions
over X and O, represented compactly, and O = {o1, . . . , op} is a nonempty finite
set of observations.470

Example 4 (continued). The domain for the Minesweeper (Example 1), on an
H×W board, is formally defined as follows. The set of variables Xms is defined
to be {mi,j , ci,j | i = 1, . . . ,H, j = 1, . . . ,W}. Variable mi,j encodes that there
is a mine at 〈i, j〉, variable ci,j encodes that 〈i, j〉 has already been cleared. The
set of actions Ams is defined to be {clicki,j | i = 1, . . . ,H, j = 1, . . . ,W}, and the475

set of observations to be Oms = {o0, . . . , o8, olost}, where on is observed when
the agent clicks a position not containing a mine and having n mines among its
neighbours, and olost is observed when a mine is detonated.

For a state s and a position 〈i, j〉, let us write s ∪ ci,j for the state equal
to s except for (s ∪ ci,j)(ci,j) = >, and N(i, j) for the set of positions neigh-480

bouring 〈i, j〉. We can now define the transition function δms by δms(s, clicki,j) =
{(olost, s ∪ ci,j)} for s(mi,j) = > and δms(s, clicki,j) = {(on, s ∪ ci,j)} for s(mi,j) =
⊥, with n the number of mines neighbouring 〈i, j〉.

For the factored form, two example conditions describing clicki,j are condci,j =
>, meaning that ci,j is always set to true by the action, and whenolost = mi,j,485

meaning that olost is observed when mi,j is true.

When an agent takes actions repeatedly in an environment governed by a
partially observable domain M , the system evolves as follows. At each timestep
t, the system is in some state st. Then the agent executes one of its actions
at. If st does not satisfy prea, then the whole execution fails. Otherwise, a pair490

(ot, st+1) is picked by the environment, ot is perceived by the agent, and the
system evolves to state st+1. We emphasize that the observation ot is the only
piece of information available to the agent: the agent does not observe the new
state st+1.

A run for M is a (finite or infinite) sequence r = s0a0o0s1a1o1s2 . . . satisfying495

for all timesteps t = 0, 1, . . . : st ∈ S, at ∈ A, ot ∈ O, and st
at|ot−−−→ st+1. For all

suitable timesteps t, we also write st(r) for st, at(r) for at, and ot(r) for ot.
We say that r starts in state s0. For a finite run r = s0a0o0s1 . . . st−1at−1ot−1st,

we say that r ends in state st, and we call t its length.
For r = s0a0o0s1a1o1s2 . . ., the information directly available to the agent is500

the history h(r) induced by r, defined to be h(r) = a0o0a1o1 More generally,

13

? ? ?

? 1 ?

? 2 ?

? ? ?

1 ? ?

? 1 ?

? 2 ?

? ? ?

1 1 ?

? 1 ?

? 2 ?

? ? ?

1 1 0
? 1 ?

? 2 ?

? ? ?

s1 s2, o1 s3, o1 s4, o0

Figure 3: Example of sequence of states and observations for Minesweeper.

a history (resp. a finite history, a history of length t) is such a sequence which
is induced by some run (resp. by some finite run, by some run of length t). We
write |h| for the length of h, and ε for the empty history.

Example 5 (continued). Consider the sequence of states and observations de-505

picted on Figure 3, where the pictures represent states in the obvious manner
(with mines at 〈2, 1〉 and 〈4, 3〉). The word r = s1 click1,1 o1 s2 click1,2 o1 s3 click1,3 o0 s4

is a run for our Minesweeper domain. The history induced by r is h(r) =
click1,1 o1 click1,2 o1 click1,3 o0.

3.2. Planning Problems510

A planning problem takes place in a partially observable domain, but further
specifies a set of (possible) initial states and a set of goal states. Solving such
a problem means finding a policy for the agent to reach one of the goal states
in finite time, starting in any of the possible initial states and whatever the
outcome of nondeterministic actions. Still following Brafman and Shani [20],515

we assume the natural and standard representation of initial and goal states by
propositional formulas over X.

Definition 6 (contingent planning instance). A (contingent) planning instance
is a triple Π = 〈M,ϕI , ϕG〉, where M is a partially observable domain with set
of variables X and ϕI , ϕG are propositional formulas over X called the initial520

belief state and the goal, respectively.

When the concrete representation of the initial belief state and the goal does
not matter, we sometimes denote a planning instance by 〈M, I,G〉 for sets of
states I,G instead of formulas.

Example 7 (continued). For an H×W board, the contingent planning instance
associated to the game of Minesweeper, with no position initially cleared and
exactly 2 mines, is the triple Πms = 〈Mms, ϕ

I
ms, ϕ

G
ms〉 defined by

Mms = 〈Xms, Ams, Oms〉 as in Example 4

ϕIms =
∧
i,j(¬ci,j) ∧

∨
6=(mi,j ∧mi′,j′) ∧

∧
6= ¬(mi,j ∧mi′,j′ ∧mi′′,j′′)

ϕGms =
∧
i,j(ci,j ⊕mi,j)

where
∨
6=,
∧
6= mean that the disjunction (resp. conjunction) is taken on all525

ordered pairs (resp. triples) of pairwise different positions.

14

Note that we consider ontic goals; we briefly discuss the natural extension
of our work to epistemic goals in Section 8.1.

Solutions to planning instances Π are given by policies. Conceptually, a
policy maps finite histories to actions; it tells the agent which action to take530

depending on what it has done and observed so far.

Definition 8 (policy). Let 〈X,A,O〉 be a partially observable domain. A policy
is a partial function from the set of all finite histories to A. A finite-horizon
policy is a policy for which there exists t ∈ N satisfying that all histories h such
that π(h) is defined have length at most t.535

Observe that we allow policies to be partially defined. When π(h) is unde-
fined and h is the current history perceived by the agent, then the agent halts.
In particular, a policy may define actions only for those histories which occur
in the way from a given initial belief state to a given goal, and/or be defined
only for histories up to some length. In general, a policy may define actions for540

histories of arbitrary length (e.g., the policy defined by π(h) = a for all finite
histories h), though a finite-horizon policy cannot, by definition.

Example 9 (continued). Let (pt)t be the enumeration 〈1, 1〉, 〈1, 2〉, 〈1, 3〉 . . .
of all the positions on the Minesweeper board. The function πms defined by
πms(h) := clickp|h| is the policy that prescribes to click on the positions in the545

order specified by this enumeration, independently of what the agent perceives.
Now write t(h) for the index of the last position clicked in h (a|h|−1(h) =

clickpt(h)
). Then the function π′ms defined by π′ms(ε) := clickp0 and for h 6= ε,

π′ms(h) := clickpt(h)+1
for o|h|−1(h) = o0, and π′ms(h) := clickpt(h)+2

otherwise (if
defined), is the policy that prescribes to click on the positions in order, except550

when the last position clicked revealed one or more mines in its neighbourdhood
(in which case the next position is skipped over). Both πms and π′ms are finite-
horizon policies (they are defined on histories of length at most t = H ×W).

We now define notions pertaining to which runs may occur given that the
agent is executing a given policy. We say that a run r = s0a0o0s1a1o1s2 . . . is: π-555

consistent if for all timesteps t = 0, 1, . . . , the action at is π(a0o0 . . . at−1ot−1);
π-maximal if it is finite and π-consistent, but π is not defined on h(r); and
M -safe if for all timesteps t = 0, 1, . . . , the state st satisfies the precondition
preat . We also call a history π-consistent if it is induced by some run which is
π-consistent.560

Definition 10 (valid policy). A policy π is said to be valid for a contingent
planning instance Π = 〈M, I,G〉 if the two following conditions are true:

• there exists t ∈ N such that all π-maximal runs r for M starting in a state
s ∈ I are finite, M -safe, and of length at most t;

• all π-maximal runs r for M starting in a state s ∈ I, end in a state s′ ∈ G.565

Such a policy is also said to be t-valid.

15

In words, a valid policy must terminate in finite time on all (consistent)
histories, take actions for which the current history ensures that the precondi-
tion is satisfied, and whatever actually occurred (consistent with the history), it
must terminate in a state which satisfies the goal. In particular, if in some run570

the agent reaches a goal state but continues to act (following its policy), finally
stopping in a nongoal state, then we consider that the policy is not valid.

Example 11 (continued). Consider the problem instance Πms given in Ex-
ample 7, with H = 4 and W = 3. Then neither πms nor π′ms of Exam-
ple 9 is valid for Πms. Indeed, assume there are mines at 〈2, 1〉 and 〈4, 3〉,575

and that no position is initially cleared. Then starting from this state (s0)
and with initial belief ϕIms, the unique πms-maximal run consists of the agent
clicking all 12 positions in order then stopping, hence this run ends in a state
which does not satisfy the conjuncts c2,1 ⊕m2,1 nor c4,3 ⊕m4,3 of ϕGms. Simi-
larly, the unique π′ms-maximal run starting in s0 consists of the agent clicking580

〈1, 1〉, 〈1, 3〉, 〈2, 1〉, 〈2, 3〉, 〈3, 1〉, 〈3, 3〉, 〈4, 2〉, hence it ends in a state which does
not satisfy the conjuncts for 〈1, 2〉, 〈2, 1〉, 〈2, 2〉, 〈3, 2〉, 〈4, 1〉.

3.3. Epistemic Logic

Conditions in KBPs are subjective formulas of single-agent epistemic logic
[32]. They are Boolean combinations of atoms of the form Kϕ which are read585

“the agent knows that the propositional formula ϕ holds”.5

Definition 12 (subjective formulas). Let X be a finite set of propositional
variables. The language ELX of subjective formulas is defined by the following
grammar, where ϕ ranges over propositional formulas over X:

Φ ::= Kϕ | ¬Φ | Φ ∨ Φ | Φ ∧ Φ

We also introduce the dual construction K̂ϕ as a shorthand for ¬K¬ϕ; it is
read “the agent considers possible that the propositional formula ϕ holds”.

Example 13 (continued). The formula

Φms = Km2,1 ∧K(m4,1 ∨m4,2 ∨m4,3) ∧ K̂m4,1 ∧ K̂m4,2 ∧ ¬K̂(m4,1 ∧m4,2)

is read “the agent knows that there is a mine at 〈2, 1〉, it knows that there is one
at (at least) one of 〈4, 1〉, 〈4, 2〉, 〈4, 3〉, it considers it possible that there is one at590

〈4, 1〉 and possible that there is one at 〈4, 2〉, but not that there is one at both.

Epistemic formulas are usually interpreted on pointed Kripke structures, but
for subjective formulas, there is no loss of generality if they are interpreted on

5As the agent is positively and negatively introspective (the agent knows what it knows
and what it does not know), there would be no additional expressiveness, were nesting of
modalities allowed, so that we do not allow such nesting in the language.

16

sets of assignments to X. We call such a set B ⊆ P(X) a belief state (over X).6

Intuitively, in planning, the belief state of an agent is the set of all states s such595

that the agent considers that the current, actual state may be s.

Definition 14 (semantics of EL). Let X be a finite set of propositional variables,
let B be a belief state over X, and let Φ ∈ ELX be an epistemic formula. Then
B is said to satisfy Φ, written B |= Φ, if one of the following conditions holds:

Φ = Kϕ and for all states s in B, we have s |= ϕ,
Φ = ¬Ψ and B 6|= Ψ,
Φ = Ψ1 ∨Ψ2 and B |= Ψ1 or B |= Ψ2,
Φ = Ψ1 ∧Ψ2 and B |= Ψ1 and B |= Ψ2.

600

Note that B |= K̂ϕ if there exists a state s in B satisyfing s |= ϕ.

Example 15 (continued). Let Bms (resp. B′ms) be the belief state containing all
states which are consistent with the situation depicted on the middle left (resp.
middle right) of Figure 2 (and the assumption that there are 2 mines). Then
Bms satisfies the formula Φms of Example 13, but B′ms does not, since it does605

not satisfy its conjunct K̂m4,1.

4. Knowledge-Based Programs

We first formally recall the syntax of knowledge-based programs (KBPs), as
introduced by Fagin et al. [32]. We then discuss their semantics as policies for
a partially observable model.610

4.1. Syntax

KBPs are built from actions using sequence, branching, and iteration. Con-
ditions are subjective epistemic formulas.

Definition 16 (KBP). Let M = 〈X,A,O〉 be a partially observable model. A
Knowledge-Based Program (KBP) is an expression generated by:

κ ::= ε | a | κ ; κ | if Φ then κ else κ fi | while Φ do κ od

where ε is the empty program, a ranges over A, and Φ ranges over ELX .

We often omit the else part (as usual) when the corresponding subprogram is615

empty, and we sometimes enclose a KBP inside bold brackets ([. . .]) to promote
readability. We call while-free any KBP which does not contain any while
construct.

The intended interpretation is the straightforward one for all constructs.
However, it depends of how branching and continuation conditions are evaluated620

when a KBP is executed, for what we give a precise definition in Section 4.3.

6The term “knowledge state” would be more appropriate, however, “belief state” is the
term most used in the planning literature, especially for POMDPs.

17

while ¬KϕGms do
if K¬m1,1 then click1,1 else ε fi;
if K¬m1,2 then click1,2 else ε fi;
. . .
if K¬mH,W then clickH,W else ε fi

od

Figure 4: The formal example of the KBP for Minesweeper.

Note that a KBP cannot branch on an objective property ϕ of the current
state, because the current state is not (directly) observable by the agent. This
is why epistemic formulas occurring in KBPs are restricted to be subjective.

Example 17 (continued). Figure 4 essentially reproduces our KBP κms for625

Minesweeper, with the formal syntax of KBPs.

Let us also emphasize that we do not allow a KBP to use auxiliary variables
(as we may want to do for, say, storing the number of mines whose positions we
do not know yet in Minesweeper). Definition 16 indeed restricts the epistemic
branching conditions to be over the set of variables X which defines the problem.630

We put this restriction so as to keep KBPs readable, as variables in X typically
encode tangible features of the environment.

4.2. Progression

In order to define how KBPs are executed by an agent, we first recall the
standard definition of the progression of a belief state by an action and an635

observation [18]. Intuitively, when the agent has a belief state B (representing
the states candidate for being the actual one), executes an action, and receives
an observation, the progressed belief state represents the knowledge which it
has at the new timestep, assuming that it reasons perfectly.

Definition 18 (progressed belief state). Let 〈X,A,O〉 be a partially observable
model, B ⊆ P(X) be a belief state, a ∈ A be an action, and o ∈ O be an
observation. The belief state Prog(B, a, o) progressed by a and o starting in B
is defined by

Prog(B, a, o) =

{
s′ ∈ S | ∃s ∈ B, s a|o−−→ s′

}
.

For a finite history h, the belief state progressed by h starting in B, written640

Prog(B, h), is defined by Prog(B, ε) = B and Prog(B, aoh′) = Prog(Prog(B, a, o), h′).

Example 19 (continued). Figure 5 (left) shows a situation together with the
corresponding belief state B (framed rectangle, where we ignore the value of
ci,j’s). The KBP κms prescribes action click1,1, and as a result the agent receives

18

B
1 1 0

1 0
2 2 0

1 0

1 1 0
1 0

2 2 1
1 1

1 1 0
1 0

1 2 1
0 1

0 1 1
0 1
1 2 1

1 0

0 1 1
0 1
1 2 2
1 1

0 1 1
0 1
0 2 2
0 1

0 0 0
1 1 0

2 0
2 0

0 0 0
1 1 0

2 1
2 1

0 0 0
1 1 0

2 1
1 2

0 0 0
0 1 1
1 2

2 1

0 0 0
0 1 1
1 2
1 2

0 0 0
0 1 1
0 2
0 2

? ? ?

? 1 ?

? 2 ?

? ? ?

click1,1|o1−−−−−−→

Prog(B, click1,1, o1)
1 1 0

1 0
2 2 0

1 0

1 1 0
1 0

2 2 1
1 1

1 1 0
1 0

1 2 1
0 1

1 ? ?

? 1 ?

? 2 ?

? ? ?

Figure 5: Example of progression for minesweeper in which the agent clicks on the top-left
cell (click1,1) and observes that there is one mine around that cell (o1).

observation o1. The result of progressing B by this action and observation is645

depicted on Figure 5 (right).7

Observe that progression by an action with nondeterministic (ontic) effects
tends to enlarge the belief state (because there are several s′ for each s), and
that progression by an observation tends to reduce it (because observations rule
out some states). For instance, if there are two variables x1, x2, the progression650

of B0 = {x1x2, x1x2} by a purely ontic action which nondeterministically sets
x2 to the value of x1 or leaves it unchanged, is B1 = {x1x2, x1x2, x1x2}, and
further taking a purely epistemic action revealing that x2 is false yields the
belief state B2 = {x1x2, x1x2}. However, this is not always the case, as different
effects may yield the same outcome, and observations may reveal nothing in a655

given belief state. For instance, progressing B2 by a purely ontic action which
nondeterministically sets x1 to the value of x2 or to ⊥, yields B3 = {x1x2}, and
further observing that x1 is false yields B4 = B3.

4.3. Operational Semantics

Before giving the operational semantics, we first get rid of certain KBPs that660

run into infinite series of tests without taking any action, e.g. [while > do ε od].
A KBP takes an action for sure if it is of the form [a], [if Φ then κ1 else κ2 fi],

where κ1, κ2 take an action for sure, or of the form [κ1 ; κ2] where at least one
of κ1, κ2 takes an action for sure.

Definition 20 (well-formed KBP). A KBP is said to be well-formed if (i) all665

its subprograms are well-formed and (ii) it is ε, it takes an action for sure,

7An animation of progression of belief states in Minesweeper and other domains is available
at http://hintikkasworld.irisa.fr [66, 25].

19

http://hintikkasworld.irisa.fr

a if κ = ε
(a, ε) if κ = a
(ActB(κ1), [ContB(κ1) ; κ2]) if κ = [κ1 ; κ2] and Tκ1UB 6=a
(ActB(κ2),ContB(κ2)) if κ = [κ1 ; κ2] and Tκ1UB =a
Tκ1UB if κ = [if Φ then κ1 else κ2 fi] and B |= Φ
Tκ2UB if κ = [if Φ then κ1 else κ2 fi] and B 6|= Φ
(ActB(κ1), [ContB(κ1) ; κ]) if κ = [while Φ do κ1 od] and B |= Φ
a if κ = [while Φ do κ1 od] and B 6|= Φ

Figure 6: KBP evaluation TκUB defined by induction on κ.

it is of the form [κ1 ; κ2] or [if Φ then κ1 else κ2 fi], or it is of the form
[while Φ do κ od], where κ takes an action for sure.

We are now ready to formally define how well-formed KBPs are executed.
At any timestep t, the branching conditions Φ are evaluated with respect to670

the current belief state B, that is, the agent decides whether B |= Φ holds.
Then the execution amounts to evaluate all branching conditions until reaching
an action (or the empty KBP). Hence execution consists of a series of belief
tracking queries, as we explain in details in Section 6.

Given a well-formed KBP κ and a belief state B, the KBP evaluation TκUB675

is either (i) the pair (ActB(κ),ContB(κ)), where ActB(κ) is the next action to
take given that conditions are evaluated in B, and ContB(κ) is the KBP with
which to continue execution after taking action ActB(κ), or (ii) the symbol a,
meaning that the execution stops because there is no next action anymore. The
KBP evaluation is formally defined by induction on κ, as presented on Figure 6.680

Since κ is well-formed, the evaluation of κ = [while Φ do κ1 od] is well-
defined: κ1 takes an action for sure, thus ActB(κ1) is defined.

4.4. Induced Policies

With this in hand, for a given initial belief state, a well-formed KBP induces
a policy, formally defined as follows.685

Definition 21 (induced policy). Let 〈X,A,O〉 be a partially observable model,
κ be a well-formed KBP, and B be a belief state. The policy induced by κ
starting in B, written πκ,B, is defined on finite histories as follows.

• πκ,B(ε) = ActB(κ) if TκUB 6= a holds;

• πκ,B(a0o0h′) = πκ′,B′(h′), with κ′ = ContB(κ) and B′ = Prog(B, a0, o0),690

if a0 = ActB(κ) and Prog(B, a0, o0) 6= ∅ hold.

In all other cases, πκ,B(h) is undefined.8

8In the second case, it might also be undefined because πκ′,B′ (h′) is itself undefined.

20

Let us insist that a KBP does not define a policy per se, but only relative to
an initial belief state (possibly >). Hence KBPs are generic in the sense that
they induce a policy for all possible initial belief states (though a KBP does not695

necessarily induce a valid policy for all initial belief states, of course).

Example 22 (continued). Consider again the KBP κms and assume that it
is run in the situation of Figure 5 (left), as adequately captured by a belief
state B. Then the policy πκms,B satisfies πκms,B(ε) = click1,1. Indeed, since
we have B |= ¬KϕGms, by Definition 21 and the definition of TκmsUB, we have700

πκms,B(ε) = ActB(κms) = ActB(κ′ms), where κ′ms is the subprogram consisting
of the body of the while loop in κms, and in turn, since we have B |= K¬m1,1,
we have ActB(κ′ms) = ActB(click1,1) = click1,1.

Now consider the history click1,1 o1. Again by Definition 21, we have

πκms,B(click1,1 o1) = ActB′([ContB(κ′ms) ; κms])

with B′ = Prog(B, click1,1, o1) (which is depicted on the right of Figure 5). Now
ContB(κ′ms) is [if K¬m1,2 then click1,2 else ε fi; . . .] (the body of the while705

loop starting with the second if subprogram), and since we have B′ |= K¬m1,2,
we have πκms,B(click1,1 o1) = click1,2.

With a similar reasoning, we get πκms,B(click1,1 o0) = click1,2. On the
other hand, πκms,B(click1,1 o2) is not defined, since Prog(B, click1,1, o2) is empty
(meaning that click1,1 o2 is not a valid history, as can be seen on Figure 5).710

Importantly, observe that the language of KBPs is robust to syntax in the
sense that the operational semantics of, say, [if Φ1 ∧ Φ2 then κ else κ′ fi] and
[if Φ1 then [if Φ2 then κ else κ′ fi] else κ′ fi] are the same, as is desirable for
a natural programming language.

4.5. Expressivity715

We conclude this section by observing that while-free KBPs are expressive
enough for representing valid finite-horizon policies. This is a well-known result
in the planning community, usually stated as the fact that belief states form a
sufficient statistics for planning [15]. The intuition is that if there is a policy
π which achieves a goal ϕG after a certain history, then there is a KBP which720

achieves the same goal whenever the regression of ϕG through π is known to
hold [39]. Another way to see this is that even if policies are formally defined
to be mappings from histories to actions, only the knowledge brought about
by the history (that is, the current belief state) is relevant to planning ahead,
which is essentially due to the fact that the dynamics of our planning problems725

is Markovian.

Proposition 23. Let Π = (M, I,G) be a contingent planning instance. If for
some t ∈ N, there is a t-valid policy π for Π, then there is a while-free KBP κ
such that πκ,I is t-valid for Π.

Note that Proposition 23 does not show that all policies can be represented730

by a KBP. Indeed, the agent may receive different observations that yield the

21

same knowledge update. Though a policy might in general prescribe different
actions for these different observations, KBPs cannot make the difference when
evaluating epistemic conditions, and hence must prescribe the same action. But
of course this is harmless for the validity of the policy.735

5. Succinctness

In this section, we demonstrate the exponential gain in succinctness of KBPs
with respect to a variety of other classes of representations of policies. We ex-
hibit a family of planning instances with valid policies which (1) can be rep-
resented as succinct (while-free) KBPs, but for which (2) there is no valid,740

succinct policy in these other classes (not even another one than the one repre-
sented by a succinct KBP), under a standard complexity-theoretic assumption
(NP 6⊆ P/poly, see below). Observe that this does not prevent some of these
other representations to be exponentially smaller than KBPs for other families
of instances. However, this shows that they are at best incomparable to KBPs745

as concerns succinctness.9

The classes of representations which we consider are all classes of reactive
representations, where by “reactive” we mean that the policy can be executed
efficiently at each step, as well as maps from belief states to actions.

Definition 24 (reactive). A class R of representations of policies is said to be750

reactive if for all policies π, π(h) can be computed in polynomial time in the
size of the domain, the length of history h, and the size of the representation of
π in R.10

Definition 25 (map from belief states to actions). A representation of a policy
π for a contingent planning problem with initial state I is said to be as a map755

from belief states to actions if it consists of a set of ordered pairs (Bi, ai),
where for all i, Bi represents a belief state and ai is π(h) for all histories with
Prog(I, h) = Bi.

Reactive representations cover many standard representations of policies (in
particular policy trees and finite-state-controllers), and they correspond to com-760

pact sequential-access representations for standard planning as formalized by
Bäckström and Jonsson [7].

On the other hand, maps from belief states to actions cover many represen-
tations of policies which rely on belief tracking at execution time [18, 20], and
which vary on the representation of belief states: explicitly, for instance as BDDs765

9The language of KBPs can be easily extended by branching also on the last observation
received, and to a more compact representation allowing to share subprograms, in which case it
is always at least as succinct, and possibly exponentially more so, than finite-state controllers,
while all complexity results in this paper remain the same. Branching on the last observation
received is studied in a multi-agent setting by [64]. Moreover, by definition, KBPs are always
at least as succinct as maps from belief states to actions.

10The algorithm is required to return “undefined” if π(h) is undefined.

22

or CNF formulas [70], or implicitly, as the history so far [33, 40]. These are in
general not reactive, because of the size of the belief state to be maintained at
execution, or because of the complexity of matching intensional representations
to each other.

Note that KBPs can also be seen as maps from belief states to actions,770

but more generally they map sets of belief states (as captured by epistemic
formulas) to actions. Though the idea is implicit in the contingent planning
literature, to the best of our knowledge it has never been investigated as a
concrete representation of policies, and most often policies are represented as
maps from each (implicit or explicit) belief state which is reachable from the775

initial belief state to actions.
Overall, our results in this section show that (1) when the application at

hand does not have too stringent constraints at execution time (like real-time
execution), KBPs may have a clear advantage over any reactive representation,
namely that of succinctness, in addition to readability,11, and that (2) summa-780

rizing sets of belief states by epistemic formulas also gives a clear advantage
over plain (implicit or explicit) belief states, again in terms of succinctness.

5.1. Construction

We build a family of contingent planning instances (Πn)n∈N of size poly(n),
where poly(n) is a notation for any function bounded by a polynomial in n, in785

such a way that instances Πn have valid KBPs of size poly(n), but no valid policy
with a reactive representation of size poly(n), assuming NP 6⊆ P/poly, nor with a
representation as a map from belief states to actions of size poly(n). Recall that
NP is the class of decision problems decided by a nondeterministic polynomial-
time Turing machine. Now P/poly, introduced by Karp and Lipton [44], is the790

class of decision problems for which there is a deterministic polynomial-time
Turing machine, and a family of finite words (an)n∈N, called advice sequence,
such that |an| = poly(n) and for all instances w of size n, w is a positive instance
of the decision problem if and only if the Turing machine accepts 〈w, an〉. An
alternative definition is as the class of decision problems for which there is a795

nonuniform polynomial-time algorithm, that is, a family of algorithms (An)n∈N
such that for all n, An decides the instances of size n in time polynomial in n (the
advices in the previous definition can be seen as the code of these algorithms).
The hypothesis NP 6⊆ P/poly is widely believed to be true; in particular, NP ⊆
P/poly would imply that the polynomial hierarchy collapses to the second level800

[44].
The idea of Πn is to encode 3-Sat, the problem of deciding whether a 3CNF

propositional formula (conjunction of clauses each of size 3) has at least one
satisfying assignment [43]. Initially, the agent has no knowledge and it has to
first “sense” a 3CNF formula ψ over n variables x1, . . . , xn. Then the agent has805

actions to change the values of x1, . . . , xn, enabling it to build a model of ψ, if

11Of course, succinctness also favours readability.

23

possible at all. It can also declare whether ψ is satisfiable or not. Moreover, we
constrain a valid plan to reach the goal before some deadline T .

Precisely, let us first define the partially observable domainMn = 〈Xn, An, On〉.
Observe that there are 8

(
n
3

)
= poly(n) different clauses of length 3 over n vari-810

ables; we write 3-Clausesn for the set of all clauses of length 3 over the variables
x1, . . . , xn.

The set of variables Xn of Mn contains the following 16
(
n
3

)
+2n+5 variables:

• x1, . . . , xn are the propositional variables appearing in ψ;

• xγ∈ψ, for all clauses γ ∈ 3-Clausesn, read as “the 3CNF formula ψ(x1, . . . , xn)815

contains the clause γ”;

• xwasTrue, which is true if and only if ψ was true in the initial state;

• xend, which becomes true when the agent declares whether ψ is satisfiable;

• xerror, which becomes true if the agent makes an error in this declaration;

• xt=0, . . . , xt=T , encoding the current timestep in unary, where T = 8
(
n
3

)
+820

n+ 2 is the last timestep.12

To sum up, a state intuitively contains an assignment to the variables (x1, . . . , xn),
a 3CNF ψ over these n variables, the value of ψ wrt the initial values of
(x1, . . . , xn), Boolean values stating that the agent declared whether ψ is sat-
isfiable or not and encoding whether this declaration was erroneous, and the825

current timestep.
We introduce actions for “sensing” the presence of a clause in the 3CNF

ψ, for setting the values of x1, . . . , xn, and for declaring the formula ψ to be
satisfiable or to be unsatisfiable. Precisely, the set of actions is

An = {senseγ | γ ∈ 3-Clausesn} ∪ {xi:=>, xi:=⊥ | i = 1, . . . , n} ∪ {sat!,unsat!} .

The set of observations is On = {oy, on, ovoid}, which are read “yes, ψ has the
clause sensed by the agent”, “no, ψ does not have the clause sensed by the
agent”, and “void observation”, respectively.

Action senseγ does not change the current state but tells the agent whether
γ appears in ψ via observation oy or on. Action xi:=> makes xi true and yields
a void observation, and dually for xi:=⊥. Action sat! makes xend true, and
makes xerror true if the values x1, . . . , xn do not satisfy ψ. Dually, action unsat!
makes xend true, and makes xerror true if ψ was satisfied by the initial values
of x1, . . . , xn. Finally, all actions have a tautological precondition; no action
changes propositions xγ∈ψ (that is, the 3CNF ψ is never modified) nor xwasTrue;
if xerror is true, it remains true; and the timestep is increased by 1 when an
action is performed, except if the deadline T is reached. This description is

12Since T = poly(n), we would have no benefit in encoding the timestep in binary.

24

Action Effects Observations
senseγ none whenoy = xγ∈ψ

whenon = ¬xγ∈ψ
xi:=> condxi = > whenovoid = >
xi:=⊥ cond x̄i = > whenovoid = >
sat! condxend

= > whenovoid = >
condxerror

= ¬ϕisTrue

unsat! condxend
= > whenovoid = >

condxerror
= xwasTrue

all condxt=t+1
= xt=t ∀t ≤ T − 1 −

cond x̄t=t+1
= x̄t=t ∀t ≤ T − 2 −

Table 1: Description of actions for the construction in Section 5.1

captured by the description in Table 1, where formula ϕisTrue encodes the fact
that the current assignment to x1, . . . , xn satisfies the formula ψ:

ϕisTrue =
∧

γ∈3-Clausesn

[
xγ∈ψ →

(∨
xi∈γ

xi ∨
∨
¬xi∈γ

¬xi

)]
830

This completes the description of the domain Mn. Intuitively, since the value
of xwasTrue never changes but is never observed, the agent can take action unsat!
without running the risk of making xerror true only if it is sure that xwasTrue

is false, that is, that ψ was not satisfied by the (arbitrary) initial values of
x1, . . . , xn, or, in other words, that ψ is unsatisfiable. Otherwise, its only way835

to achieve the goal is to use action sat!, and for this it needs to build a model
of ψ.

We now define the rest of the instance Πn. In the initial belief state ϕI ,
xwasTrue stores whether ψ is satisfied by the current assignment to x1, . . . , xn,
neither xend nor xerror are true, and the current timestep is 0:

ϕIn = (xwasTrue ↔ ϕisTrue) ∧ ¬xend ∧ ¬xerror ∧ xt=0 ∧
T∧
t=1

¬xt=t

The goal is to reach a state, before the deadline T , in which the agent has
declared whether ψ is satisfiable or not, without having made an error:

ϕGn = ¬xt=T ∧ xend ∧ ¬xerror

Clearly, the instance Πn = 〈Mn, ϕ
I
n, ϕ

G
n 〉 has size polynomial in n.

Proposition 26. There is a family (κn)n∈N of while-free KBPs such that κn is
valid for Πn and has size poly(n).840

Proof. Write 3-Clausesn =
{
γ1, γ2, . . . , γ8(n

3)

}
, and consider the KBP κn given

on Figure 7.

25

senseγ1 ; . . . ; senseγ
8(n

3)
;

if K̂ϕisTrue then

if K̂(x1 ∧ ϕisTrue) then x1:=> else x1:=⊥ fi;

if K̂(x2 ∧ ϕisTrue) then x2:=> else x2:=⊥ fi;
. . .
if K̂(xn ∧ ϕisTrue) then xn:=> else xn:=⊥ fi;
sat!

else
unsat!

fi

Figure 7: The KBP κn of the proof of Proposition 26

sense ψ

sense ψ

sat!

unsat!

8
(
n
3

)
1

n 1

T = 8
(
n
3

)
+ n+ 2

Figure 8: Overview of some executions of Πn.

26

To show that κn is valid, let r be a κn-maximal run starting in ϕIn, and write
ψ for the formula encoded in the first state of r. Figure 8 shows the possible
such runs. Clearly, r is finite and consists of at most T − 1 = 8

(
n
3

)
+ n + 1845

steps. Moreover, obviously r is Mn-safe, since all actions have a tautological
precondition.

We now show that r ends in a state which satisfies ϕGn . First, clearly ¬xt=T

holds in the last state of r. Now in case ψ is unsatisfiable, the agent can clearly
infer that ϕisTrue is not true, and it performs unsat!. Hence xend is true, and850

xerror is false because so is xwasTrue. Dually, in case ψ is satisfiable, the agent
can clearly infer K̂(ϕisTrue). Then the agent sets the variables x1, . . . xn so as

to satisfy ψ. Indeed, at each step, if K̂(xi ∧ ϕisTrue) is true, this means that
it is possible to make ψ true by extending the current partial assignment of
x1, . . . , xi−1 with xi = >; otherwise, since ψ is satisfiable, this is possible with855

xi = ⊥. Hence the agent ends by executing sat!, so that xend becomes true and,
as ϕisTrue is now true, xerror remains false. Hence in all cases, the last state of
r satisfies the goal formula ϕG.

Proposition 27. Assuming NP 6⊆ P/poly, for any reactive class R, there is no
family (πn)n∈N such that πn is valid for Πn and has a poly(n)-size representation860

in R.

Proof. Towards contradiction, assume there is such a family (πn)n∈N. We con-
struct a polynomial-time algorithm for 3-Sat which uses (πn)n∈N as the advice
sequence. The algorithm takes a 3CNF formula ψ over n vars as well as (πn) as
an input, and executes the following steps:865

1. set x1, . . . , xn to be the list of variables appearing in ψ;

2. build an assignment s0 to Xn with arbitrary values for x1, . . . , xn, val-
ues for xγ∈ψ’s corresponding to ψ, and values for the other variables as
determined by ϕIn;

3. compute a πn-maximal run r starting in s0 by simulating πn;870

4. accept if sat! is taken in some state st of r; reject otherwise.

Since the goal requires any valid policy to stop in a polynomial number of steps
(8
(
n
3

)
+ n + 1) and πn is reactive, computing r requires only polynomial time.

Therefore our algorithm runs in polynomial time. Let us prove that it is correct.
If it accepts its input 〈ψ, πn〉, then action sat! was taken in some state st of875

r. Thus, since xerror is false in the last state of r (because πn achieves the goal),
st must satisfy ϕisTrue. Hence the assignment st restricted to x1, . . . , xn makes
ψ true. Hence ψ is satisfiable.

Conversely, if the algorithm rejects its input 〈ψ, πn〉, then πn has taken action
unsat! in some state st (because the goal requires xend to be true). Towards880

contradiction, assume that ψ has a satisfying assignment µ, and let s0
µ be a

state equal to s0 except that x1, . . . , xn are assigned as in µ and that xwasTrue is
true. Clearly, s0

µ satisfies ϕIn. Now since the values of the xi’s and xwasTrue have
no influence on the observations received by the agent, πn would take exactly
the same actions in a run starting in s0

µ as in r. In particular, it would take885

27

action unsat! at some point, despite xwasTrue being true, hence making xerror

true, which contradicts the validity of πn. Hence ψ is unsatisfiable, as desired.
Hence we have a polynomial-time algorithm for 3-Sat using πn as an advice.

Since πn has size polynomial in n, it follows that 3-Sat is in P/poly, which
contradicts NP 6⊆ P/poly since 3-Sat is NP-complete [43].890

Intuitively, what Proposition 27 says is that any reactive policy for Πn would
necessarily have an exponential number of branches or paths, or would violate
the “deadline” 8

(
n
3

)
+n+1 of the problem. About this latter point, observe that

we could set any deadline polynomial in n (and greater than 8
(
n
3

)
+n) and have

the same results, so that any reactive policy would in fact have an exponential895

number of branches or paths, or take an exponential number of actions in some
runs. For instance, an algorithm which explores all possible assignments to the
variables in order to find a satisfying one for ψ could be written in a succinct
and reactive form (essentially, the DPLL algorithm would be suitable), but it
would obviously take an exponential number of actions in general.900

Now as concerns representations of policies as maps from belief states to
actions, it is also easy to see that they cannot be of polynomial size for the
family (Πn)n∈N. Indeed, any valid policy must clearly sense all clauses at some
point, and then any two different 3CNF formulas would lead it to a different
belief state.905

Proposition 28. There is no family (πn)n∈N such that πn is valid for Πn and
has a representation as a map from belief states to actions with poly(n) belief
states.

As another example of a family of policies which is succinct when represented
with epistemic branching conditions, but which cannot be succinct when these
are not allowed (even with implicit representations of belief states), consider a
policy expressing “if the agent knows the value of an even number of variables,
then take action a1, else take action a2”. In the language of KBPs, this can be
expressed by the succinct condition

[if (Kx1 ∨K¬x1)↔ (Kx2 ∨K¬x2)↔ · · · ↔ (Kxn ∨K¬xn) then a1 else a2 fi]

while clearly this cannot be expressed succinctly if general epistemic formulas
are not allowed.910

Finally, as a concrete example of a policy representation which is much less
compact (and much less readable) than an equivalent KBP, Figure 9 shows a
reactive policy which has exactly the same behaviour as the KBP κms of our
running example, starting in the situation s1 depicted on Figure 3. In fact,
we can show that Minesweeper essentially exhibits the same behaviour as 3-915

Sat does: given an instance of Minesweeper, there is a polysize KBP which
“says” whether there is a safe position to click (obtained by slightly modifying
κms), while if there was an equivalent, polysize reactive policy, we would get
coNP ⊆ P/poly (which is equivalent to NP ⊆ P/poly) from the fact that this
question is a coNP-complete problem [67]. This gives an example of a natural920

28

1, 1 1, 20 1, 30 2, 10 2, 20 2, 31 3, 11 4, 1; 4, 20

4, 3

1

4, 21

4, 1
2

2, 3

1

3, 30 4, 2; 4, 30

4, 1
1

4, 20

4, 3

0

1, 3

1

2, 1

1

3, 1
0

3, 3; 4, 1; 4, 20

3, 3
1

4, 2; 4, 31

4, 1; 4, 3
2

1, 2
1

1, 31 2, 30 3, 10 3, 31 4, 1; 4, 21

3, 3
2

4, 2; 4, 30

4, 1; 4, 3
1

Figure 9: A reactive policy for Minesweeper equivalent to κms starting in state s1 of Figure 3.
The nodes are labelled with the positions where to click, and the edges with the uncovered
numbers.

problem for which KBPs are exponentially more succinct than any reactive class
of representations.13

6. Complexity of Execution

Informally, the execution problem consists of determining the next action to
perform when executing a KBP.925

Definition 29 (execution problem for KBPs). The execution problem is the
following decision problem.

• Input: a partially observable domain M , a factored initial belief state ϕI ,
a KBP κ (inducing the policy π = πκ,Sat(ϕI)), a finite π-consistent history
h, and an action a.930

• Output: “Yes” if π(h) = a holds, that is, a is the action prescribed by κ,
starting in ϕI , after the history h; “No” otherwise.

6.1. Execution as Belief Tracking

Recall that (online) belief tracking is the problem of deciding, given an initial
belief state and a history so far, whether a formula (typically, the precondition of935

13The proof is a little more involved than the one with 3-Sat, but follows essentially the
same structure.

29

an action or the goal) holds in the current belief state [20]; in formulas, whether
Prog(I, h) |= Kϕ holds for given I, h, ϕ.

It follows that the execution problem for KBPs is essentially one of belief
tracking. However, an important difference is that for KBPs, solving a single
execution problem requires to decide a number of atomic conditions of the form940

Kϕ in the general case. For instance, in our Minesweeper example, if the kth
position is the first one which is safe to click, then the agent needs to evaluate
k formulas of the form K¬m

,i,j , in addition to the condition of the while
loop, before finding the next action to execute. For this reason, the execution
problem for KBPs is harder than online belief tracking, namely, Θ2

P-complete945

(Proposition 32), and this holds even for an empty history.
This being said, it is clear that executing a KBP amounts to solving a

number of online belief tracking problems, with the atoms Kϕ of branching
and continuation conditions as queries.14 Moreover, from membership in Θ2

P

(Proposition 30) we get that these problems can be solved in parallel for one950

instance of the execution problem.

6.2. Complexity Results

Recall that Θ2
P is the class of problems decided by a polynomial-time algo-

rithm that can make independent queries to an NP oracle, or, equivalently, a
logarithmic number of queries to an NP oracle [38, 24].955

Proposition 30. The execution problem for KBPs is in Θ2
P.

Proof. We write I for Sat(ϕI), we denote by t the length of h, and by h<u the
prefix of h of length u. The algorithm follows the following steps:

1. decide the independent questions Prog(I, h<u) |= Kϕ for all timesteps
u ≤ t and for all atomic epistemic formulas Kϕ appearing in all branching960

conditions of κ,15

2. infer the results of the queries Prog(I, h<u) |= Φ for all epistemic formulas
Φ occurring as a branching condition in κ,

3. execute the KBP κ until timestep t by using the answers to the queries,
and deduce whether a is to be executed.965

The questions in the first step are in fact online belief tracking queries. The
answer to such a query Prog(I, h<u) |= Kϕ is negative if and only if there is a
sequence of states s0, s1, . . . , su, with s0 ∈ I, which is consistent with M and
with h<u, but is such that su does not satisfy ϕ. For a given sequence, these

14Observe that we assume the history given in input to be π-consistent, so that we do not
need to check that the preconditions of actions held all along the history, as required by offline
belief tracking [18].

15The algorithm needs to evaluate all conditions because we formulated the execution prob-
lem without assuming anything about what information the agent maintains, so that it must
first recover what branch of its KBP it is currently executing; informally, it must “replay” its
KBP. However, this has no impact on the complexity of execution, since our hardness result
(Proposition 32) already holds for a KBP with only one branching condition.

30

conditions can clearly be checked in polynomial time, hence each query is a coNP970

question. Now each query in the second item can be answered in polynomial
time given the previous answers, since each Φ is a Boolean combination of
atomic epistemic formulas (after rewriting K̂ϕ into ¬K¬ϕ), and similarly, the
third step can be performed in polynomial time.

Hence the algorithm runs in polynomial time with independent queries to975

a coNP oracle or, equivalently, to an NP oracle. It follows that the execution
problem is in Θ2

P.

Hence, as the proof makes clear, one can resort to online belief tracking al-
gorithms for executing KBPs, using one of the numerous techniques developed
in the literature: in particular, explicitly maintaining the belief state [70], re-980

sorting to an NP oracle [33, 40, 18], using regression [20]. Further, when belief
tracking is tractable, this means that all questions in the first step of the proof
of Proposition 30 can be answered in polynomial time.

Proposition 31. Let C be a class of partially observable models for which the
online belief tracking problem is in P. Then the execution problem for KBPs,985

restricted to models M in C, is in P.

Hence one can take advantage of special cases identified in the literature,
like bounded causal width [18] or contextual width [20].

For the general case however, we now show that the problem is Θ2
P-hard.

Proposition 32. The execution problem for KBPs is Θ2
P-hard. Hardness holds990

even for while-free KBPs, the empty history, and the initial belief state ϕI = >.

Proof. We prove hardness by a reduction from the following problem, known to
be Θ2

P-complete [72, Theorem 3.2]:16 given k propositional formulas ϕ1, . . . , ϕk
such that Sat(ϕi) ⊆ Sat(ϕi+1) for all i, is the smallest j such that ϕj is satisfiable
an odd number?995

We assume without loss of generality that k is even (otherwise we add ϕk+1 =
>). We define the partially observable domain M = 〈X,A,O〉, with X being the
set of variables occurring in the formulas ϕ1, . . . , ϕk and A being {aeven, aodd}
(the set O of observations and the description of the actions are irrelevant). Let
us define the following KBP κ:

[if (K¬ϕ1 ∧ K̂ϕ2) ∨ (K¬ϕ3 ∧ K̂ϕ4) ∨ . . . ∨ (K¬ϕk−1 ∧ K̂ϕk) then aeven else aodd fi]

The reduction computes the instance 〈M,ϕI , κ, h, a〉 where M and κ are defined
above, the initial belief ϕI is >, the history h is the empty history ε, and the
action a is aodd. The whole construction is polynomial, and it is easy to see
that aodd is (the first action) executed if and only if the smallest j such that ϕj
is satisfiable is an odd number.1000

16We thank Ronald de Haan for discussions about this result.

31

7. Complexity of Verification

We now turn to the problem of verifying that a knowledge-based program is
valid for the planning problem which it intends to solve. We recall that validity
means that the program terminates and that each of its possible executions
respects the precondition of actions and reaches the goal (then stops).1005

Definition 33 (verification problem for KBPs). The verification problem for
KBPs is the following decision problem.

• Input: a contingent planning instance Π = 〈M,ϕI , ϕG〉 and a KBP κ

• Output: “Yes” if κ is valid for Π; “No” otherwise.

We start by showing membership to EXPSPACE, and then we prove EX-1010

PSPACE-hardness. Inbetween, we construct a KBP whose unique execution
path has a doubly exponential length, and which will be used as a clock for the
hardness proof. Finally, we show that the restriction to while-free KBPs makes
the complexity of verification fall down to the second level of the polynomial
hierarchy.1015

7.1. Verifying KBPs is in EXPSPACE

Proposition 34. The verification problem for KBPs is in EXPSPACE.

Proof. Let 〈Π, κ〉 be an instance of the verification problem. We design a non-
deterministic algorithm that decides that κ is not valid for Π. Write π for
πκ,Sat(ϕI), the policy induced by κ starting in the initial belief state.1020

The algorithm iteratively guesses, timestep per timestep, the elements of a
run r, and checks that r is indeed a run for M and that it is π-consistent. If at
some point an action is taken while its precondition is not true, then the algo-
rithm accepts its input (it has found a—prefix of a—π-maximal run which is not
M -safe). Moreover, meanwhile, at each new timestep it increments a counter.1025

If the counter goes beyond a theshold 22poly(n)

(precisely, 22n

times the number
of control points in κ, given that there are only 22n

different belief states), the
algorithm again accepts its input (the execution is necessarily in some previ-
ously met configuration, and hence π can get stuck in a nonterminating cycle).
Otherwise, the run terminates, and the algorithm accepts its input if and only1030

if the final state does not satisfy the goal.
This algorithm runs in exponential space because at each timestep, the only

information which must be maintained consists of the current state, action, ob-
servation, the current belief state (which has exponential size when represented
as a set of states), and the counter (which requires only 2poly(n) bits). Thus,1035

the verification problem is in coNEXPSPACE. Now by Savitch’s theorem [65],
we have NEXPSPACE = EXPSPACE, and since EXPSPACE is deterministic, we
have coNEXPSPACE = coEXPSPACE = EXPSPACE.

32

7.2. A Very Slow KBP

We show how to build a polysize KBP that terminates after a doubly ex-1040

ponential number of steps. This KBP is used as a clock in the proof of the
EXPSPACE-hardness of KBP verification (Proposition 37).

This construction is of independent interest. Indeed, as it turns out, the KBP
which we build uses only purely ontic actions. As a consequence, it evolves in a
nonobservable environment (with nondeterministic actions), which is the setting1045

of conformant planning [2, 50]. Since there are no observations, there is only
one possible execution, so that we can restrict to policies which are equivalent
to sequences of actions. Since the KBP which we build has a doubly exponential
long trace, it is in fact equivalent to a sequence of actions of doubly exponential
length. Still, using branching on epistemic conditions, we are able to encode1050

this sequence into a KBP of polynomial size. This can be seen as using epis-
temic conditions for representing in a very compact form the current timestep
in the sequence of actions. We believe that such use of branching for represent-
ing sequential policies very compactly has been overlooked in the literature on
classical and conformant planning (with the exception of Bäckström et al. [8]).1055

Overview of the Construction. We write < for the lexicographic order on states.
For instance, P({x1, x2, x3}) is ordered by x1x2x3 < x1x2x3 < · · · < x1x2x3.
Given a belief state B over a set of variables X and Y ⊆ X, we write B|Y for{
s|Y | s ∈ B

}
, where s|Y denotes the restriction of s to the variables in Y . This

allows us to talk about the beliefs of the agent about the variables in Y .1060

The idea of our construction is to build a partially observable domain Mn,
an initial belief state ϕI,clock

n , and a KBP κclock
n , in such a way that, informally,

after t steps of execution, the current belief state is the tth one in a certain
enumeration of all belief states. For this, the actions taken by κclock

n at each
execution of the loop will either remove a state from the previous belief state1065

(using a deterministic action) or add one (using a nondeterministic action).

Domain. Precisely, we first build a domain M = 〈Xn, An, On〉 (with On =
{ovoid}). We defineXn to be the set of 4n+1 variables {xi, xa

i , x
r
i, x

g
i | i = 1, . . . , n}∪{

xodd
}

, and we write Y = {xi | i = 1, . . . , n}.17 For a given belief state B over

Xn, we view B|Y as a vector ~b = b1b2 . . . b2n−1b2n of 2n bits, with bi = 1 if1070

and only if the ith state si (in the order <) is in B. Then our KBP starts

with ~b0 = 00 . . . 01 (i.e., B0 = {11 . . . 1} or, informally, the initial belief state

K(x1 ∧ · · · ∧ xn)), and loops until ~b2
2n−1 = 10 . . . 00, or, equivalently, until the

current belief state satisfies K(¬x1 ∧ · · · ∧ ¬xn). The loop changes the current
~bt to its successor ~bt+1 according to the Gray code, which is a way to enumerate1075

all Boolean vectors by changing exactly one bit at a time.

17The mnemonics are: xai (resp. xri , x
g
i) takes the value of xi in the state to be added to B

(resp. in the state to be removed from B, in the greatest state of B).

33

Definition 35 (Gray Code). The successor of a Boolean vector ~b according to

the Gray Code is the Boolean vector obtained from ~b as follows:

1. if ~b has an even number of 1’s, flip b2n ,

2. otherwise, let g = max{i | bi = 1} and flip bg−1.1080

For instance, the enumeration is 0001, 0011, 0010, 0110 . . . 1000 for n = 2 (we
do not use 0000). In terms of belief states, this is the enumeration

{x1x2}, {x1x2, x1x2}, {x1x2}, {x1x2, x1x2}, . . . , {x1x2},

which indeed passes through all belief states.
Observe that by definition of ~b, the greatest i with bi = 1 identifies the

greatest state in B (in the order <), and flipping bi amounts to add/remove si
to/from B.

We now define the set of actionsAn to be {xci :=>, xci :=⊥ | i = 1, . . . , n, c = a, r, g}∪1085

{xa
i :=x

g
i , x

r
i:=x

g
i | i = 1, . . . , n} ∪

{
aadd, arem, aodd

}
. Action xa

i :=> determinis-
tically sets xa

i to >, and similarly for other actions xci :=v. Action xa
i :=x

g
i (resp.

xr
i:=x

g
i) deterministically sets xa

i (resp. xr
i) to the current value of xg

i . Action
aodd switches the value of xodd.

Now action aadd is a simple nondeterministic action, which either does noth-
ing or sets x1, . . . , xn to the values of xa

1, . . . , x
a
n:

aadd =
{
aadd

1 , aadd
2

}
with ∀i, condaadd2 ,xi

= xa
i and condaadd2 ,x̄i

= x̄a
i .

It is easy to realize that when the agent takes this action in a belief state B in1090

which the xa
i ’s are for sure assigned values v1, . . . , vn, the progressed belief state

B′ satisfies B′|Y = B|Y ∪ {v1 . . . vn}.
Finally, action arem is a simple deterministic action, which leaves all variables

unchanged, except if each xi is assigned the same value as xr
i, in which case it

sets x1, . . . , xn to the values of xg
1, . . . , x

g
n:

∀i, condxi =
(n∧
i=1

(xi ↔ xr
i)
)
∧ xg

i and cond x̄i =
(n∧
i=1

(xi ↔ xr
i)
)
∧ ¬xg

i

By construction, after taking this action in a belief state B in which the xr
i’s

(resp. xg
i ’s) are for sure assigned v1, . . . , vn (resp. vg

1 , . . . , v
g
n), if (v1, . . . , vn) 6=

(vg
1 , . . . , v

g
n) and vg

1 . . . v
g
n ∈ B|Y hold, then the resulting belief state B′ satisfies1095

B′|Y = B|Y \ {v1 . . . vn}.

Knowledge-Based Program. Before defining the knowledge-based program κclock
n ,

we define three subprograms. The first subprogram is written κg. When κg is
run starting in a belief state B, it ends up assigning to xg

1, . . . , x
g
n the values

v1, . . . , vn such that v1 . . . vn is the greatest assignment (in the order <) in B|Y ;1100

in words, it copies the greatest possible assignment of the xi’s to the xg
i ’s. The

idea is simply to use a dichotomic search among the assignments to Y :

34

if K(¬x1) then xg
1:=⊥ else xg

1:=> fi;

if K
(
(x1 ↔ xg

1)→ ¬x2

)
then xg

2:=⊥ else xg
2:=> fi;

. . .1105

if K
((∧n−1

i=1 (xi ↔ xg
i)
)
→ ¬xn

)
then xg

n:=⊥ else xg
n:=> fi

The second subprogram is written κr. When κr is run starting in a belief
state B in which the xr

i’s are assigned values v1, . . . , vn for sure, it ends up in a
belief state B′ satisfying B′|Y = B|Y \ {v1 . . . vn}. To do so, κr first ensures that

the xr
i’s (resp. xg

i ’s) are for sure assigned values v1, . . . , vn (resp. vg
1 , . . . , v

g
n) and1110

(v1, . . . , vn) 6= (vg
1 , . . . , v

g
n) holds, as required for action arem to serve its purpose.

For this, it first assigns to the xg
i ’s the values of the greatest assignment to Y

in B, by running κg,18 then, if it turns out that this is the same assignment
as that of the xr

i’s (K
∧n
i=1(xg

i ↔ xr
i)), it runs the dual program of κg (which

considers the smallest instead of the greatest assignment). Then it runs arem.1115

Obviously, the preprocessing ensures that the xr
i’s and the xg

i ’s have different
values only if there are at least two assignments in B, so that the greatest and
the smallest ones are different; we will ensure this when using κr.

Finally, the third subprogram is written κd. When κd is run starting in a
belief state B in which the xg

i ’s are assigned values v1, . . . , vn for sure, it ends1120

up with the same belief state, except that at all states the assignment to the
xg
i ’s has been decremented by 1 (in the order <):

if Kxg
n then xg

n:=⊥
else if Kxg

n−1 then xg
n−1:=⊥ ; xg

n:=>
. . .1125

else if Kxg
1 then xg

1:=⊥ ; xg
2:=> ; . . . ; xg

n:=>
fi

Importantly, observe that M and κg, κr, κd all have a description of size at
most quadratic in n.

With this in hand, we define the KBP κclock
n to be the KBP depicted on1130

Figure 10.

Proposition 36. Let ϕI,clockn be the formula x1 ∧ · · · ∧ xn ∧ xodd. The unique
maximal run for κclockn starting in ϕI,clockn has length 22n − 1.

Proof. All actions used in κclock
n are purely ontic, therefore there is a unique

maximal run starting in ϕI,clock
n . Now, each step of the execution of κclock

n1135

simulates the computation of the successor of the current ~b (representing the
current belief state as projected onto Y) according to the Gray code. Since the
initial belief state is by definition the set of satisfying assignments of ϕI,clock

n ,

18The choice of the greatest possible assignment is arbitrary.

35

while ¬K(¬x1 ∧ · · · ∧ ¬xn) do
if K¬xodd do

/* even number of 1’s, flip b2n */

if K(¬x1 ∨ · · · ∨ ¬xn) do
/* 11 . . . 1 /∈ B: add it */

xa
1:=> ; xa

1:=> ; . . . ; xa
n:=> ; aadd

else
/* 11 . . . 1 ∈ B: remove it */

xr
1:=> ; xr

2:=> ; . . . ; xr
n:=> ; κr

fi
else

/* odd number of 1’s, flip bg−1 */

κg ; κd ;
if K

(
(x1 6↔ xg

1) ∨ · · · ∨ (xn 6↔ xg
n)
)

then
/* sg−1 /∈ B: add it */

xa
1:=xg

1 ; xa
2:=xg

2 ; . . . ; xa
n:=xg

n ; aadd

else
/* sg−1 ∈ B: remove it */

xr
1:=xg

1 ; xr
2:=xg

2 ; . . . ; xr
n:=xg

n ; κr

fi
fi;
aodd

od

Figure 10: The KBP κclockn .

36

corresponding to ~b = 00 . . . 01, and the KBP stops when its current belief state
satisfies K(¬x1 ∧ · · · ∧ ¬xn), corresponding to ~b = 10 . . . 00, all belief states1140

except ∅ (corresponding to ~b = 00 . . . 00) are reached exactly once. Therefore
the length of the execution path is 22n − 1, as desired.

7.3. Verifying KBPs is EXPSPACE-Hard

We now show that verifying KBPs is EXPSPACE-hard. The proof is based on
a reduction from the plan existence problem in unobservable planning (Nup).1145

In our terms, an instance of Nup is a triple Π = 〈M,ϕI , ϕG〉, where M has
only one (void) observation, yielded by all actions in all states; the question
is whether there exists a valid policy. The Nup problem was proven to be
EXPSPACE-hard by Haslum and Jonsson [37]; another proof was given later by
Rintanen [62].19

1150

The main difference between an instance of Nup and an instance of KBP
verification is that the latter also includes a KBP κ. The key idea of the reduc-
tion is to build a KBP which explores all possible plans for an instance of Nup,
and which is valid if and only if none of them reaches the goal.

Proposition 37. The verification problem for KBPs is EXPSPACE-hard. Hard-1155

ness holds even for KBPs which are known to terminate.

Proof. Let Π1 = 〈M1, ϕ
I
1, ϕ

G
1 〉, with M1 = 〈X1, A1, O1〉, be an instance of Nup.

We define a partially observable domain M2 = 〈X2, A2, O2〉, a contingent plan-
ning instance Π2 = 〈M2, ϕ

I
2, ϕ

G
2 〉, and a KBP κ such that there is a valid policy

for Π1 if and only if κ is not valid for Π2. Since the whole construction is feasible1160

in polynomial time and coEXPSPACE is the same as EXPSPACE, this is enough
to conclude.

The idea of κ is essentially to simulate a nondeterministic search for a valid
plan for Π1. By construction, valid plans, and only them, will induce runs on
which the KBP will end up fasifying the goal.1165

Let n = |X1|, and Xclock
n , Aclock

n be the components of the domain defined in
Section 7.2. We define the set of variables X2 to be X1 ∪{xerror, xend}∪Xclock

n ,
assuming without loss of generality that the three sets are disjoint. The set of
actions A2 is defined to be

{
achoose, alose, aG

}
∪ Aclock

n , where achoose is a fresh
action which nondeterministically executes one of the actions in A1, and yields
an observation which reveals which one it has picked:20

achoose = {a′ | a ∈ A1} with ∀a ∈ A1, eff a′ = eff a and whena′,oa = >,

and alose (resp. aG) is an action which sets xerror (resp. xend) to > and yields
a void observation ovoid. Accordingly, we define O2 = {oa | a ∈ A1} ∪ {ovoid}.

19The syntax of actions is slightly different from ours, but examination of the proof by
Rintanen [62, Theorem 13] shows that this does not change the result

20We assume without loss of generality that the actions in A1 all have a tautological pre-
condition; otherwise, we replace the precondition prea with >, we add an effect of the form
condxunsafe = prea, and we add ¬xunsafe to the goal.

37

Finally, we define ϕI2 to be ϕI1 ∧ ¬xerror ∧ ¬xend ∧ ϕI,clock
n , where ϕI,clock

n is
defined in Proposition 36, ϕG2 to be ¬xerror ∧ xend, and the KBP κ to be

while ¬KϕG1 ∧ ¬Kϕbeep
n do1170

achoose ; κclock,inner
n

od;

if KϕG1 then alose else aG fi

where ¬Kϕbeep
n = ¬K(¬x1 ∧ · · · ¬xn) is the continuation condition of κclock

n ,
and κclock,inner

n is the body of its while loop.1175

Let π be any policy for Π1 which is a sequence of actions without any branch-
ing and of length at most 22n − 2. Let hπ be the history for M2 in which after
each tth execution of achoose, the observation received is oπ(t), where π(t) is the
tth action in π. Then it is easy to realize that at any timestep, the agent’s belief
state, as progressed by hπ and projected onto the variables in X1, is the same1180

as it would in the execution of π.
Now if Π1 admits a valid policy, it admits one without any branching (be-

cause Π1 has only purely ontic actions) and of length at most 22n − 2 [62].21

Let π be such a policy; then before the clock beeps the agent’s belief state, as
progressed by hπ, satisfies KϕG1 and hence, the agent exits the while loop and1185

executes alose, so that κ is not valid for Π2. Dually, if there is no valid policy
for Π1, then in all histories the agent exits the while loop after 22n − 2 rounds
(because Kϕbeep

n becomes true) without its belief state satisfying KϕG1 , so that
it executes aG, and finally κ is valid for Π2. This completes the proof.

7.4. Verifying While-Free KBPs1190

We now consider the case when the KBP is while-free.

Proposition 38. The verification problem for while-free KBPs is Π2
P-complete.

Hardness holds even if the initial belief state is restricted to be > and all ontic
actions to be deterministic.

Proof. We first show membership in Π2
P. First observe that for a while-free1195

KBP, all consistent runs have length polynomial in its size. Hence to show that
κ is not valid for a factored instance Π = 〈M,ϕI , ϕG〉, we can guess a run r of
polynomial length and verify that:

1. its starting state satisfies ϕI ;

2. it is indeed a run for M ;1200

3. it is πκ,Sat(ϕI)-consistent and maximal;

4. it is not M -safe, or its last state does not satisfy ϕG.

21This is because there are 22
n−1 different, nonempty belief states, and a run containing N

actions induces N + 1 belief states; so a longer policy would necessarily induce a loop, which
can be simplified.

38

Conditions 1, 2 and 4 can clearly be checked in polynomial time. Condition 3
requires to solve a polynomial number of execution problems; since the execution
problem is in Θ2

P (Proposition 30), each of these execution problems can be1205

solved in polynomial time using a polynomial number of NP-oracles; therefore,
Condition 3 can be checked in polynomial time using a polynomial number of
NP-oracles. Hence the verification problem is in Π2

P.
For hardness, let ∀x∀1 . . . x∀p ∃x∃1 . . . x∃q ϕ be a QBF formula. Define a factored

model in which there is a purely epistemic action ai, for i = 1, . . . , p, which1210

yields observation oxi
or o¬xi

depending on the value of x∀i , and a purely ontic,
deterministic action aG which sets a variable xend to >.

Now define an instance with ϕI = > and ϕG = xend, and finally, let κ be
the KBP

[a1 ; a2 ; . . . ; ap ; if K̂ϕ then aG else ε fi]1215

Clearly, this KBP is valid for the contingent planning instance if and only if for
all initial states s0, after reading the values of x∀1 , . . . , x

∀
p in s0, the agent consid-

ers it possible that ϕ is true. This in turn is equivalent to ∀x∀1 . . . x∀p ∃x∃1 . . . x∃q ϕ
being valid, which completes the proof since deciding the validity of such a QBF
is Π2

P-complete [53].1220

Like for the execution problem (Proposition 31), polynomial cases of the
online belief tracking problem can be leveraged for verification of while-free
KBPs. Indeed, when queries Prog(I, h) |= Kϕ can be answered in polynomial
time, it is easy to see that Step 3 of the proof of Proposition 38 can be performed
in polynomial time by “replaying” the KBP.1225

Proposition 39. Let C be a class of partially observable models for which the
online belief tracking problem is in P. Then the verification problem for while-
free KBPs, restricted to models M in C, is in coNP.

8. Extensions of the Model and the Language

We briefly discuss a few different extensions of our basic model and language,1230

and for each of them, we discuss which of our results would continue to hold.

8.1. Epistemic Goals

Note that despite the fact that we investigate knowledge-based approaches
to the representation of policies, we do not define epistemic goals: a goal is
achieved at some timestep depending on the current state, not on the agent’s1235

current knowledge. The reason why we made this choice is that since we com-
pare knowledge-based policies to other representations of policies for contingent
planning, especially along succinctness, we need the models to coincide with the
standard ones for contingent planning, which have ontic goals.

The difference is more conceptual than technical, though. Below we show1240

that our results would hold as well for positive epistemic goals, expressed by
positive epistemic formulas. Positive epistemic formulas are defined inductively
as follows:

39

• Kϕ is a positive epistemic formula;

• if Φ and Ψ are positive epistemic formulas, then Φ ∧ Ψ and Φ ∨ Ψ are1245

positive epistemic formulas.

Examples of single-agent planning problems with epistemic goals are numer-
ous. For instance, in the epistemic version of Minesweeper, the goal is to know
the exact location of the mines; in a diagnosis problem, the goal is to know
which components are faulty.1250

In single-agent settings, it makes little sense to allow epistemic goals that are
not positive (while examples can of course be constructed, they have a rather
artificial flavour).22 Now, the plan verification problem for planning instances
with positive epistemic goals can be polynomially reduced in a straightforward
way to plan verification for ontic goals, and vice versa. For one direction, this1255

is trivial: a KBP is valid for a planning problem whose goal is ϕG if it is valid
for the corresponding planning problem whose goal is KϕG. For the reverse
direction, consider a planning problem with a positive epistemic goal ΦG. Then
κ is valid for this planning problem if and only if the KBP [κ ; if ΦG then aG]
is valid for the goal xend, where aG is an action that sets xend to true, and an1260

initial state for which xend is known to be false.
Therefore, all complexity results of Section 7 carry on to plan verification

for planning problems with positive epistemic goals.

8.2. Different Action Languages

We chose one language for the compact representation of transition func-1265

tions, namely that of Brafman and Shani [20], because it is simple, yet powerful
enough. However, Nebel [57] has shown that most natural representations of ac-
tions are equivalent to each other in terms of expressivity and computation. We
could have chosen another language from the literature, such as, for instance,
expressing actions by propositional action theories (where the effects of an ac-1270

tion are described by a formula involving variables typed by t and others by t′,
for representing the state of the world before and after the action). With such a
language, as well as with any other language with polynomial-size translations to
and from the language we chose here, all our succintness and complexity results
continue to hold. In particular, it can be seen that our membership complexity1275

results (Propositions 30, 34, 38) only use the fact that deciding whether a state
is in the initial belief state, satifies the goal, or satisfies the precondition of an

action, and whether a transition s
a|o−−→ s′ exists, can be done in polynomial

time.

22This is completely different in environments with several agents, where an agent may have
the goal to know a secret without another agent knowing it.

40

9. Conclusion and Future Work1280

We have revisited knowledge-based programs by placing them in the context
of AI planning, which they had not been initially designed for. Though similar
principles have been explored by the planning community, they had not been
studied before as an explicit representation of policies. As such, KBPs turn out
to have useful properties: they are succinct, generic (with respect to the initial1285

belief state), and arguably easy to write and understand.23 This comes with
a computational price to pay when executing a knowledge-based program (and
to a lesser extent, when verifying its validity for a given planning problem);
whether this price should be paid or not depends of course of the specificities of
the problem at hand.1290

Obviously, the first direction for future work is to develop and experiment
algorithms for synthesizing (small) valid KBPs for a given planning problem.
As preliminary results in this direction, we have settled the complexity of the
associated decision problem (is there a — small — valid KBP?) under various
restrictions [46]. Of course, in the general case, there exists a valid KBP if and1295

only if there exists a plan at all, so that the problem is 2-EXPTIME-complete
[37, 62]; the results by Lang and Zanuttini [46] show that, unsurprisingly, the
complexity is much lower when small KBPs are sought for.

Back to the synthesis problem, a natural idea is to use the regression-based
algorithm proposed by Herzig et al. [39]. However, this algorithm does not seem1300

to scale up easily,24 and synthesizing (small) KBPs remains a challenging issue.
In some applicative settings, another option would be to first compute reactive,
history-based policies using approaches from the literature, and then compact
them into KBPs, using for instance online regression [20] along each branch.

An orthogonal direction for future work consists of considering richer set-1305

tings. A first, natural extension is to probabilistic settings, like POMDPs [41].
First investigations in this direction were made by Belle and Levesque [10] and
by Lang and Zanuttini [47]. A second important extension of the model is to col-
laborative planning, like for Dec-POMDPs [11] or their qualitative counterpart
[22]. In such settings, the ability to reason about the other agents’ knowledge1310

at execution time is especially important, since the agents typically follow some
predefined programs that are common knowledge, but make private observa-
tions. First investigations have been made by Saffidine et al. [64], and this
direction is also obviously related to epistemic planning [13].

Acknowledgements. The authors wish to thank Alexandre Niveau and Anaëlle1315

Wilczynski for many useful discussions about this work, and for their partici-
pation in experimental work related to it. This work was supported by Agence
Nationale de la Recherche under the “programme d’investissements d’avenir”

23Of course, this claim is not formally provable. See however Example 2: the KBP is
arguably very simple to understand and to explain, while a standard policy is arguably not.

24We made some preliminary experiments.

41

ANR-19-P3IA-0001 (PRAIRIE). We also warmly thank the reviewers who con-
siderably helped us to improve our paper.1320

References

[1] Alexandre Albore, Héctor Palacios, and Hector Geffner. A translation-
based approach to contingent planning. In Proc. IJCAI 2009, pages 1623–
1628, 2009.

[2] Alexandre Albore, Héctor Palacios, and Hector Geffner. Compiling uncer-1325

tainty away in non-deterministic conformant planning. In Proc. ECAI 2010,
pages 465–470, 2010.

[3] Mikkel Birkegaard Andersen, Thomas Bolander, and Martin Holm Jensen.
Conditional epistemic planning. In Proc. JELIA 2012, pages 94–106, 2012.

[4] Karl Johan Åström. Optimal control of Markov processes with incomplete1330

state information. Journal of Mathematical Analysis and Applications, 10
(1):174–205, 1965.

[5] Guillaume Aucher. DEL-sequents for regression and epistemic planning.
Journal of Applied Non-Classical Logics, 22(4):337–367, 2012.

[6] Guillaume Aucher and Thomas Bolander. Undecidability in epistemic plan-1335

ning. In Proc. IJCAI 2013, pages 27–33, 2013.

[7] Christer Bäckström and Peter Jonsson. Algorithms and limits for compact
plan representations. J. Artif. Intell. Res., 44:141–177, 2012.

[8] Christer Bäckström, Anders Jonsson, and Peter Jonsson. Automaton plans.
J. Artif. Intell. Res., 51:255–291, 2014.1340

[9] Jorge A. Baier and Sheila A. McIlraith. On planning with programs that
sense. In Proc. KR 2006, pages 492–502, 2006.

[10] Vaishak Belle and Hector J. Levesque. ALLEGRO: belief-based program-
ming in stochastic dynamical domains. In Proc. IJCAI 2015, pages 2762–
2769, 2015.1345

[11] Daniel S. Bernstein, Shlomo Zilberstein, and Neil Immerman. The com-
plexity of decentralized control of Markov decision processes. In Proc.
UAI 2000, pages 32–37, 2000.

[12] Piergiorgio Bertoli, Alessandro Cimatti, Marco Roveri, and Paolo Traverso.
Strong planning under partial observability. Artif. Intell., 170(4-5):337–384,1350

2006.

[13] Thomas Bolander and Mikkel Birkegaard Andersen. Epistemic planning for
single and multi-agent systems. Journal of Applied Non-Classical Logics,
21(1):9–34, 2011.

42

[14] Thomas Bolander, Thorsten Engesser, Andreas Herzig, Robert Mattmüller,1355

and Bernhard Nebel. The dynamic logic of policies and contingent planning.
In Proc. JELIA 2019, pages 659–674, 2019.

[15] Blai Bonet and Hector Geffner. Planning with incomplete information as
heuristic search in belief space. In Proc. AIPS 2000, pages 52–61, 2000.

[16] Blai Bonet and Hector Geffner. Planning under partial observability by1360

classical replanning: Theory and experiments. In Proc. IJCAI 2011, pages
1936–1941, 2011.

[17] Blai Bonet and Hector Geffner. Flexible and scalable partially observable
planning with linear translations. In Proc. AAAI 2014, pages 2235–2241,
2014.1365

[18] Blai Bonet and Hector Geffner. Belief tracking for planning with sensing:
Width, complexity and approximations. J. Artif. Intell. Res., 50:923–970,
2014.

[19] Ronen I. Brafman and Guy Shani. Replanning in domains with partial
information and sensing actions. J. Artif. Intell. Res., 45:565–600, 2012.1370

[20] Ronen I. Brafman and Guy Shani. Online belief tracking using regression
for contingent planning. Artif. Intell., 241:131–152, 2016.

[21] Ronen I. Brafman, Joseph .Y. Halpern, and Yoam Shoham. On the knowl-
edge requirements of tasks. Artif. Intell., 98(1–2):317–350, 1998.

[22] Ronen I. Brafman, Guy Shani, and Shlomo Zilberstein. Qualitative1375

planning under partial observability in multi-agent domains. In Proc.
AAAI 2013, pages 130–137, 2013.

[23] Daniel Bryce, William Cushing, and Subbarao Kambhampati. State ag-
nostic planning graphs: deterministic, non-deterministic, and probabilistic
planning. Artif. Intell., 175(3-4):848–889, 2011.1380

[24] Samuel R. Buss and Louise Hay. On truth-table reducibility to SAT. Inf.
Comput., 91(1):86–102, 1991.

[25] Tristan Charrier, Sébastien Gamblin, Alexandre Niveau, and François
Schwarzentruber. Hintikka’s world: Scalable higher-order knowledge. In
Proc. IJCAI 2019, pages 6494–6496, 2019.1385

[26] Alessandro Cimatti, Marco Pistore, Marco Roveri, and Paolo Traverso.
Weak, strong, and strong cyclic planning via symbolic model checking.
Artif. Intell., 147(1–2):35–84, 2003.

[27] Jens Claßen and Malte Neuss. Knowledge-based programs with defaults in
a modal situation calculus. In Proc. ECAI 2016, pages 1309–1317, 2016.1390

43

[28] Jörg Claßen and Gerhard Lakemeyer. Foundations for knowledge-based
programs using ES. In Proc. KR 2006, pages 318–328, 2006.

[29] Adnan Darwiche and Pierre Marquis. A knowledge compilation map. J.
Artif. Intell. Res., 17:229–264, 2002.

[30] Giuseppe De Giacomo, Yves Lespérance, and Fabio Patrizi. Bounded sit-1395

uation calculus action theories. Artif. Intell., 237:172–203, 2016.

[31] Giuseppe De Giacomo, Yves Lespérance, Fabio Patrizi, and Stavros Vas-
sos. Progression and verification of situation calculus agents with bounded
beliefs. Studia Logica, 104(4):705–739, 2016.

[32] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Vardi. Rea-1400

soning about Knowledge. MIT Press, 1995.

[33] Paolo Ferraris and Enrico Giunchiglia. Planning as satisfiability in nonde-
terministic domains. In Proc. AAAI 2000, pages 748–753, 2000.

[34] Hector Geffner and Blai Bonet. A Concise Introduction to Models and
Methods for Automated Planning. Synthesis Lectures on Artificial Intelli-1405

gence and Machine Learning. Morgan & Claypool Publishers, 2013.

[35] Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated Planning
and Acting. Cambridge University Press, 2016.

[36] Yilan Gu and Mikhail Soutchanski. Decidable reasoning in a modified
situation calculus. In Proc. IJCAI 2007, pages 1891–1897, 2007.1410

[37] Peter Haslum and Peter Jonsson. Some results on the complexity of plan-
ning with incomplete information. In Proc. ECP 1999, pages 308–318,
1999.

[38] Lane A. Hemachandra. The strong exponential hierarchy collapses. J.
Comput. Syst. Sci., 39(3):299–322, 1989.1415

[39] Andreas Herzig, Jérôme Lang, and Pierre Marquis. Action representa-
tion and partially observable planning using epistemic logic. In Proc. IJ-
CAI 2003, pages 1067–1072, 2003.

[40] Jörg Hoffmann and Ronen I. Brafman. Contingent planning via heuristic
forward search with implicit belief states. In Proc. ICAPS 2005, pages1420

71–80, 2005.

[41] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra.
Planning and acting in partially observable stochastic domains. Artif. In-
tell., 101:99–134, 1998.

[42] Lars Karlsson. Conditional progressive planning under uncertainty. In1425

Proc. IJCAI 2001, pages 431–438, 2001.

44

[43] Richard M. Karp. Reducibility among combinatorial problems. In Proc.
Complexity of Computer Computations, pages 85–103, 1972.

[44] Richard M. Karp and Richard J. Lipton. Some connections between nonuni-
form and uniform complexity classes. In Proc. STOC 1980, pages 302–309,1430

1980.

[45] Jérôme Lang and Bruno Zanuttini. Knowledge-based programs as plans –
the complexity of plan verification. In Proc. ECAI-2012, pages 504–509,
2012.

[46] Jérôme Lang and Bruno Zanuttini. Knowledge-based programs as plans:1435

Succinctness and the complexity of plan existence. In Proc. TARK 2013,
2013.

[47] Jérôme Lang and Bruno Zanuttini. Probabilistic belief-based programs. In
Proc. IJCAI-15, pages 1594–1600, 2015.

[48] Noël Laverny and Jérôme Lang. From knowledge-based programs to graded1440

belief-based programs, part I: On-line reasoning. Synthese, 147(2):277–321,
2005.

[49] Noël Laverny and Jérôme Lang. From knowledge-based programs to graded
belief-based programs, part II: Off-line reasoning. In Proc. IJCAI 2005,
pages 497–502, 2005.1445

[50] Yanjun Li, Quan Yu, and Yanjing Wang. More for free: a dynamic epis-
temic framework for conformant planning over transition systems. J. Log.
Comput., 27(8):2383–2410, 2017.

[51] Benedikt Löwe, Eric Pacuit, and Andreas Witzel. DEL planning and some
tractable cases. In Proc. LORI 2011, pages 179–192, 2011.1450

[52] Shlomi Maliah, Ronen I. Brafman, Erez Karpas, and Guy Shani. Partially
observable online contingent planning using landmark heuristics. In Proc.
ICAPS 2014, 2014.

[53] Albert R. Meyer and Larry J. Stockmeyer. The equivalence problem for
regular expressions with squaring requires exponential space. In Proc. 13th1455

Annual Symposium on Switching and Automata Theory, pages 125–129,
1972.

[54] Robert C. Moore. A Formal Theory of Knowledge and Action. PN, 1985.

[55] Leora Morgenstern. Knowledge preconditions for actions and plans. In
Proc. IJCAI 1987, pages 867–874, 1987.1460

[56] Christian J. Muise, Vaishak Belle, and Sheila A. McIlraith. Computing
contingent plans via fully observable non-deterministic planning. In Proc.
AAAI 2014, pages 2322–2329, 2014.

45

[57] Bernhard Nebel. On the compilability and expressive power of propositional
planning formalisms. J. Artif. Intell. Res., 12:271–315, 2000.1465

[58] Ronald Petrick and Fahiem Bacchus. Extending the knowledge-based ap-
proach to planning with incomplete information and sensing. In Proc.
ICAPS 2004, pages 2–11, 2004.

[59] Joelle Pineau, Geoffrey J. Gordon, and Sebastian Thrun. Anytime point-
based approximations for large POMDPs. J. Artif. Intell. Res., 27:335–380,1470

2006.

[60] Pascal Poupart and Craig Boutilier. Bounded finite state controllers. In
Proc. NIPS 2004, pages 823–830, 2004.

[61] Raymond Reiter. Knowledge in action: logical foundations for specifying
and implementing dynamical systems. MIT press, 2001.1475

[62] Jussi Rintanen. Complexity of planning with partial observability. In Proc.
ICAPS 2004, pages 345–354, 2004.

[63] Jussi Rintanen. Conditional planning in the discrete belief space. In Proc.
IJCAI 2005, pages 1260–1265, 2005.

[64] Abdallah Saffidine, François Schwarzentruber, and Bruno Zanuttini.1480

Knowledge-based policies for qualitative decentralized pomdps. In Proc.
AAAI 2018, pages 6270–6277, 2018.

[65] Walter J. Savitch. Relationships between nondeterministic and determin-
istic tape complexities. J. Comput. Syst. Sci., 4(2):177–192, 1970.

[66] François Schwarzentruber. Hintikka’s world: Agents with higher-order1485

knowledge. In Proc. IJCAI 2018, pages 5859–5861, 2018.

[67] Allan Scott, Ulrike Stege, and Iris van Rooij. Minesweeper may not be
NP-complete but is hard nonetheless. The Mathematical Intelligencer, 33:
5–17, 2011.

[68] Richard D. Smallwood and Edward J. Sondik. The optimal control of1490

partially observable Markov processes over a finite horizon. Operations
Research, 21(5):1071–1088, 1973.

[69] Trao Cao Son and Chitta Baral. Formalizing sensing actions: A transition
function based approach. Artif. Intell., 125(1-2):19–91, 2001.

[70] Son Thanh To, Tran Cao Son, and Enrico Pontelli. A generic approach1495

to planning in the presence of incomplete information: Theory and imple-
mentation. Artif. Intell., 227:1–51, 2015.

[71] Ron van der Meyden and Moshe Y. Vardi. Synthesis from knowledge-based
specifications (extended abstract). In Proc. CONCUR 1998, volume 1466,
pages 34–49, 1998.1500

46

[72] Klaus W. Wagner. Bounded query classes. SIAM J. Comput., 19(5):833–
846, 1990.

[73] Benjamin Zarrieß and Jens Claßen. Verification of knowledge-based pro-
grams over description logic actions. In Proc. IJCAI 2015, pages 3278–3284,
2015.1505

[74] Benjamin Zarrieß and Jens Claßen. Decidable verification of Golog pro-
grams over non-local effect actions. In Proc. AAAI 2016, pages 1109–1115,
2016.

47

	Introduction
	Related Work
	Related Work in Planning
	Succinct Representations in Contingent Planning
	Online Execution and Belief Tracking in Contingent Planning
	Partially Observable Markov Decision Processes

	Related Work in Logic
	Golog and the Situation Calculus
	Propositional Languages for Planning with Knowledge
	Protocol Synthesis
	Other Related Work

	Background
	Partially Observable Domains
	Planning Problems
	Epistemic Logic

	Knowledge-Based Programs
	Syntax
	Progression
	Operational Semantics
	Induced Policies
	Expressivity

	Succinctness
	Construction

	Complexity of Execution
	Execution as Belief Tracking
	Complexity Results

	Complexity of Verification
	Verifying KBPs is in EXPSPACE
	A Very Slow KBP
	Verifying KBPs is EXPSPACE-Hard
	Verifying While-Free KBPs

	Extensions of the Model and the Language
	Epistemic Goals
	Different Action Languages

	Conclusion and Future Work

