
HAL Id: hal-02942303
https://hal.science/hal-02942303

Submitted on 17 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-Based Testing of Post-WIMP Interactions Using
Object Oriented Petri-nets

Alexandre Canny, David Navarre, José Creissac Campos, Philippe Palanque

To cite this version:
Alexandre Canny, David Navarre, José Creissac Campos, Philippe Palanque. Model-Based Testing
of Post-WIMP Interactions Using Object Oriented Petri-nets. International Workshop on Formal
Methods for Interactive Systems (FMIS 2019), Oct 2019, Porto, Portugal. pp.486-502, �10.1007/978-
3-030-54994-7_35�. �hal-02942303�

https://hal.science/hal-02942303
https://hal.archives-ouvertes.fr

Official URL
https://doi.org/10.1007/978-3-030-54994-7_35

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/26284

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Canny, Alexandre and Navarre, Davidand

Campos, José Creissac and Palanque, Philippe Model-Based

Testing of Post-WIMP Interactions Using Object Oriented Petri-

nets. (2020) In: International Workshop on Formal Methods for

Interactive Systems (FMIS 2019), 7 October 2019 - 11 October

2019 (Porto, Portugal).

Model-Based Testing of Post-WIMP Interactions Using

Object Oriented Petri-nets

Alexandre Canny1, David Navarre1, José Creissac Campos2 and Philippe Palanque1

1 ICS-IRIT, Université Paul Sabatier – Toulouse III, Toulouse, France
2 HASLab/INESC TEC & Department of Informatics/University of Minho, Portugal

{alexandre.canny,navarre,palanque}@irit.fr, jose.campos@di.uminho.pt

Abstract. Model-Based Testing (MBT) relies on models of a System Under Test

(SUT) to derive test cases for said system. While Finite State Machine (FSM),

workflow, etc. are widely used to derive test cases for WIMP applications (i.e.

applications depending on 2D widgets such as menus and icons), these notations

lack the expressive power to describe the interaction techniques and behaviors

found in post-WIMP applications. In this paper, we aim at demonstrating that

thanks to ICO, a formal notation for describing interactive systems, it is possible

to generate test cases that go beyond the state of the art by addressing the MBT

of advanced interaction techniques in post-WIMP applications.

Keywords: Post-WIMP Interactive Systems, Software Testing, Model-Based

Testing.

1 Introduction

Model-Based Testing (MBT) of software relies on explicit behavior models of a system

to derive test cases [30]. The complexity of deriving comprehensive test cases increases

with the inner complexity of the System Under Test (SUT) that requires description

techniques with an important expressive power. The modelling of post-WIMP (Win-

dows, Icons, Menus and Pointers) interactive applications (i.e. applications with an in-

terface not dependent on classical 2D widgets such as menus and icons [31]) proves to

be a challenging activity as pointed out by [13]. For instance, when using a touch

screen, each finger down/up is a virtual input device being added or removed from the

systems at runtime and behaves in parallel with the other fingers or input devices. A

modelling technique able to describe such interactive systems must support the descrip-

tion of dynamicity.

Beyond the problem of describing the SUT behavior, testing Graphical-User Inter-

face, whether it is WIMP or post-WIMP, is known to be a complex activity [10], espe-

cially because of the unpredictability of the human behavior as well as the virtually

infinite number of possible interaction sequences. To face such difficulty, model-based

testing techniques have been developed to try to generate relevant test sequences with-

out relying on manual scripting or capture and replay of tester’s interactions.

The massive adoption of touch screens means advanced touch interactions (e.g.

swipe, pinch-to-zoom, etc.) gained in popularity, while most of the existing MBT tech-

niques for interactive applications are designed to deal with events performed on the

standard GUI widgets (e.g. button, combo box, etc.) [1][10][16][28]. Lelli et al. [16]

identified the need for new MBT techniques for post-WIMP applications by highlight-

ing the need for supporting ad-hoc widgets (i.e. non-standard widgets developed spe-

cifically for the application) and advanced interaction techniques.

In this paper, we propose to build upon the work of Hamon et al. [13], which used

the ICO [21] formal modelling technique to describe post-WIMP interactive systems,

as a support to the generation of test cases for interaction techniques of post-WIMP

applications, and to demonstrate that testing can be conducted following the standard

process for Model-Based Testing proposed in [30]. As interaction techniques have to

cope with the high dynamicity of Input/Ouput, as well as temporal aspects, they prove

to be one of the most difficult components of interactive systems to be described. Thus,

they are the prime focus of this paper, even though we will highlight that our proposed

approach applies to other components of the interactive systems’ architecture as well.

This paper is structured as follows: Section 2 presents related work on the MBT of

interactive applications; Section 3 introduces the interaction technique on which we

propose to apply the approach and its modelling in ICO; Section 4 discusses the gener-

ation of the test cases from the ICO specification and Section 5 provides some com-

ments on test execution; Section 6 discusses the generalizability of the proposed ap-

proach to other components of the SUT; Section 7 concludes the paper by discussing

future work.

2 Related Work

The classical approaches to interactive applications testing consider that the user’s in-

teraction takes place at the GUI widget level (e.g. buttons, icons, label, etc.). While it

is the case in the WIMP paradigm, this assertion cannot be used in the post-WIMP

paradigm where “at least one interaction technique is not dependent on classical 2D

widgets such as menus and icons” [31]. Consider a gesture-based (post-WIMP) draw-

ing tool. One may want to define (and test) whether moving two fingers on the drawing

area means zooming (pinch-to-zoom), rotating or drawing. As this may be determined

by how the user effectively moves his/her fingers (speed, angle, pressure level, delay

between finger down events, etc.), it goes beyond available standard testing techniques

for widget level interactions.

In this section, we first introduce the process of MBT and discuss the existing Model-

Based Testing techniques for WIMP applications. We then discuss the testing of post-

WIMP applications in order to highlight challenges to overcome.

2.1 The Process of Model-Based Testing

In their Taxonomy of Model-Based-Testing Approaches, Utting et al. [30] present the

model-based testing process illustrated by Fig. 1. In this process, a model of the SUT

is built from informal requirements or existing specification documents (Fig. 1.(1)) and

test selection criteria (Fig. 1.(2)) are chosen to guide the automatic test generation to

produce a test suite that fulfils the test policy defined for the SUT. These criteria are

then transformed (Fig. 1.(3)) into a test cases specification (i.e. a high-level description

of a desired test case). Utting et al. [30] use the example of test case specification using

state coverage of a finite state machine (FSM). In such case, a set of test case specifi-

cation {reach s0, reach s1, reach s2…} where s0, s1, s2 are all the states of the FSM is

the test case specification.

Fig. 1. The process of Model-Based-Testing (from [30])

Once the model and the test case specifications are defined, a set of test cases is

generated with the aim of satisfying all the test case specifications (Fig. 1.(4)). With

the test suite generated, the test cases are executed (either manually -i.e. by a physical

person- or automatically thanks to a test execution environment). This requires concre-

tizing the test inputs (Fig. 1.(5-1)) and comparing the results against expected ones to

produces a verdict (Fig. 1.(5-2)).

2.2 Model-Based Testing of WIMP Application

In software engineering, the nearly three-decades-old field [1] that addresses concerns

regarding the testing of user interfaces is called “GUI testing”. In [1] GUI testing is

defined as performing sequences of events (e.g., “click on button”, “enter text”, “open

menu”) on GUI widgets (e.g., “button”, “text-field”, “pull-down menu”). For each se-

quence, the test oracle checks the correctness of the state of the GUI either after each

event or at the end of the sequence. Since the domain is three-decade-old, it naturally

focused on WIMP UIs as they were the only available at the time. This focusing is still

quite present today.

Some of the research works presented in the following paragraphs do not follow the

process of MBT presented by Utting [30], but they propose relevant and inspiring ap-

proach for WIMP application testing.

Memon et al. [18] propose a detailed taxonomy of the Model-Based techniques em-

ployed to generate test cases in GUI testing. These techniques rely on various kinds of

models (state machine, workflow, etc.) that target mono-event-based systems (i.e. sys-

tems on which UI events are produced directly as a result of a single action on a widget:

key typed, mouse clicked, etc.). They describe the possible test cases by checking reach-

ability of a node. It is important to mention that most of the techniques listed in [18]

rely on models built by reverse engineering of the SUT [25].

Another approach based on reverse engineering is the one of Morgado et al. [20] in

the iMPAcT tool. This tool uses patterns of common behavior on Android applications

to automatically test them. The tool explores the SUT checking for UI patterns using a

reverse engineering process. Each UI pattern has a corresponding testing strategy (a

Test Pattern) that the tool applies.

Bowen et al. [8] adopt the test-first development approach in which abstract tests are

built from formal specification of the system functionality (given using Z [29]) and

from a presentation model describing the interactive components (widgets) of the user

interface. These abstract test cases are used to produce JUnit and UISpec4J1 test cases.

Finally, Campos et al. [9] propose an example of approach that matches the outlines

of the MBT-process by using task models to perform scenario-based testing of user-

interfaces coded in Java using the Synergistic IDE Toucan [17]. The conformance be-

tween the application code and the task models is checked at runtime thanks to annota-

tions in the Java code that allow the association of methods calls to the Interactive Input

and Output Tasks. The scenarios produced from the task model are then played auto-

matically on the Java application.

2.3 Model-Based Testing of post-WIMP Application

Testing post-WIMP applications requires going beyond GUI testing as mentioned by

Lelli et al. [16]. This requires considering ad-hoc widgets and complex interaction tech-

niques that cannot be performed simply as sequences of events on GUI widgets. For

instance, interactions such as gesture-based or voice command activations are not tied

to a specific GUI widget.

One of the main references in post-WIMP application testing is Malai [16] that has

been proposed as a framework to describe advanced GUI Testing. It allows the descrip-

tion of interaction using Finite State Machine (FSM) with two types of end state: ter-

minal state and aborting state. These states are dedicated to identifying whether the user

completed the interaction or aborted it. The output actions associated with completing

the interaction (i.e. reaching its terminal state) are described in a specific reification of

tools called instruments.

However, the use of FSM limits the description of interaction techniques and should

be enhanced to support:

1 https://github.com/UISpec4J/UISpec4J

· The description of dynamic instantiation of physical and virtual in-

put/output devices: on systems with a touchscreen, the display is a physi-

cal output device and the touch layer the physical input device. When deal-

ing with multi-touch interaction, a finger is a virtual device that is added/re-

moved whenever it touches the screen or is removed from it;

· The description of timing aspects to represent quantitative temporal evo-

lution of the interaction technique (available in timed-automata);

· The description of concurrent aspect to represent concurrent usage of in-

put devices by the user; events from these devices might be fused to pro-

duce higher-level multimodal event [15];

· The description of dynamic user interface behavior driven by temporal

events such as animations during transition between states of the system

[19];

· The description of system configurations as, for instance, using resolu-

tion scaling on displays with high pixels densities affects the size, location

and translation of the GUI elements on screen. Beyond, this also applies to

mobile and web-based UI in which having a responsive-design behaving

properly is a concern.

While advances have been made in the description of such aspect, especially in work

such as [13], there are not, to the best of our knowledge, techniques taking advantages

of them to generate tests cases for interactive applications. In the following of the paper,

we introduce and use the ICO formalism to demonstrate the need for advanced model-

ling techniques for effective testing of interactive applications.

3 Modelling of a Post-WIMP Case Study Using ICO

In this section, we present an architecture for post-WIMP applications and highlight

where the interaction techniques take place. We then present the informal requirements

for the “finger clustering” interaction technique used as a case study in the remaining

of this paper. Thereafter, we introduce the formal description technique we use, ICO

[21], and present the models associated to the “finger clustering” interaction technique.

3.1 Architecture of a Post-WIMP Application

Effectively testing an interactive application requires a good understanding of its archi-

tecture and of the role of its components to select appropriate test criteria [10]. While a

detailed architecture such as MIODMIT [11] is able to describe in detail the hardware

and software components of interactive systems, we use in this paper a simpler software

architecture (inspired by ARCH [4]) for touch applications, presented in Fig. 2, to detail

the role of the component we focus on. The work presented in the remaining of this

paper is still applicable to a more complex architecture.

Fig. 2. Example of architecture of a post-WIMP application adapted from [13].

As this paper discusses specific aspects of post-WIMP application, we do not detail

the “back-end”, or Functional Part, of the application (leftmost part of Fig. 2). The

Dialogue Part of the application shares a common role in WIMP and post-WIMP ap-

plications, i.e. translating high-level events resulting of the user interaction into invo-

cations on the Functional Part. The main difference between WIMP and post-WIMP

applications then resides in the Window Manager that contains, from right to left, the

widgets (that share similar roles to widgets of WIMP interfaces), the Interaction Tech-

niques, the Logical Input Device and the Low-Level Transducer.

The Low-Level Transducer is connected to the Touch Provider (rightmost part of

Fig. 2), i.e. the driver of the touch screen. The Touch Provider produces the lowest-

level events in the input chain as they are directly derived from the touch screen behav-

ior. The role of the Low-Level Transducer is to handle these low-level events and to

translate them to make sense for the Window Manager logic. On touch applications,

the Low-Level Transducer creates Logical Input Devices (i.e. Fingers) with unique IDs

and additional information (coordinates, pressure level, etc.). The Logical Input De-

vices are added to the Window Manager Interaction Technique(s) that will notify widg-

ets and other subscribers (such as a drawing panel) using high-level events when either

simple (e.g. tap) or complex (e.g. pinch) interactions are performed.

While this paper focus on the testing of the Interaction Technique, i.e. on verifying

that for a set of Logical Input Device actions, the correct high-level events are produced,

we highlight the applicability of our methods to the other components of the architec-

ture and on integration testing of these components.

3.2 Presentation of the “Finger Clustering” Interaction Technique

The case study we use in this paper is a multi-touch interaction technique that produces

events when fingers are clustered (i.e. within a given range of each other) and de-clus-

tered according to the requirements presented below. These requirements are the inputs

for the MBT Process (top-right of Fig. 1):

· Clusters may either contain two or three fingers;

· Clusters of three fingers are always created in priority over clusters of two

fingers (i.e. if 4 fingers are on the screen in a range suitable for creating a

cluster of 3 fingers, a three finger cluster will be created with a finger left

alone; in no occasion such circumstance may lead to the creation of two clus-

ters of two fingers);

· The distance between two fingers must be under 100 pixels to create a 2 finger

clusters;

· Clusters of three fingers are created when three fingers on the screen form a

triangle with each of its edges measuring less than 100 pixels. If it happens

that two fingers of an existing cluster of 2 fingers can be part of a three fingers

cluster, then the three fingers cluster is created, removing the 2 fingers cluster.

· Clusters of 2 fingers are de-clustered whenever the distance between the 2

fingers it contains goes over 150 pixels;

· Clusters of 3 fingers are never de-clustered because of the length of the edges

of the triangle;

· Clusters of 3 fingers are automatically de-clustered after 5 seconds;

· All the clusters cease to exist, producing the corresponding de-clustering

event, whenever a finger contained in this cluster is removed from the screen.

The events produced by this interaction technique are the following ones: twoFin-

gersClustered, twoFingersDeclustered, threeFingersClustered, threeFingersDeclus-

tered.

3.3 ICO: A Formal Description Technique Dedicated to the Specification of

Interactive Systems

The ICO formalism is a formal description technique dedicated to the specification of

interactive systems [21]. It uses concepts borrowed from the object-oriented approach

(dynamic instantiation, classification, encapsulation, inheritance and client/server rela-

tionship) to describe the structural or static aspects of systems and uses high-level Petri

nets to describe their dynamic or behavioral aspects.

ICOs are dedicated to the modeling and the implementation of event-driven inter-

faces, using several communicating objects to model the system, where both the behav-

ior of objects and the communication protocol between objects are described by the

Petri net dialect called Cooperative Objects (CO). In the ICO formalism, an object is

an entity featuring four components: a cooperative object which describes the behavior

of the object, a presentation part (i.e. the graphical interface), and two functions (the

activation function and the rendering function) which make the link between the coop-

erative object and the presentation part.

An ICO specification fully describes the potential interactions that users may have

with the application. The specification encompasses both the "input" aspects of the in-

teraction (i.e. how user actions affects the inner state of the application, and which ac-

tions are enabled at any given time) and its "output" aspects (i.e. when and how the

application displays information relevant to the user).

This formal specification technique has already been applied in the field of Air Traf-

fic Control interactive applications [21], space command and control ground systems

[22], interactive military [6] or civil cockpits [3].

The ICO notation is fully supported by a CASE tool called PetShop [5][23]. All the

models presented in the following of this paper have been edited using it. Beyond, the

presented test generation techniques are part of an effort to support MBT in PetShop.

3.4 Modeling of the Interaction Technique Using ICO

Based on the requirements provided in section 3.1, we can build a model of the inter-

action technique (step 1 of the MBT process) using ICO. Fig. 4 presents this model,

which is made of places (oval shapes), transitions (rectangular shapes) and arcs. Two

communication means are proposed by ICO: a unicast and synchronous communica-

tion, represented by method calls, and a multicast asynchronous communication, rep-

resented by event handling:

· When an ICO proposes method calls, they are each mapped into a set of three places

representing three communication ports (the service input, output and exception

ports). For instance, on the top part of Fig. 4, the places called SIP_addFinger,

SOP_addFinger and SEP_addFinger are the input, output and exception ports of the

method addFinger. When this method is called (for instance, in the addFingerToIn-

teraction transition of Fig. 3), a token is created, holding the parameters of the invo-

cation and is put in place SIP_addFinger. The transitions that invoke such methods

have got a ‘I’ on the right part of their header.

· When an ICO is able to handle events, it uses special transitions called event handlers

such as transition updateFingerX in the middle-right of Fig. 4. Such transitions are

described using a set of information holding the event source, the event name, extra

event parameters and a condition that concerns the event parameters. In the example

of transition updateFingerX, the event source is fx, a value held by place

FINGERS_MERGED_BY_TWO, the event name is touchevent_up, the event pa-

rameters contain an object called info and there is no condition on the parameter.

These event handlers may handle events from outer sources or from other models.

When the event source is another model, this model contains transitions that raise

events. Events are raised using the keyword raiseEvent in the code part of the tran-

sition and an “E->” is put in the right part of the header of the transition (see transi-

tion merge2Fingers of Fig. 4).

The model illustrated by Fig. 4 represents the behavior of the “Finger Clustering” In-

teraction Technique described in section 3.2. This behavior may be divided into two

different parts according to their role:

· Managing fingers life cycle: Each finger is added or removed from the interaction

technique model. In between, their coordinates may be updated (i.e. the finger has

moved):

─ Adding finger to the interaction technique is done using the method addFinger,

implemented using the SIP_addFinger place, addFinger transition and

SOP_addFinger place (see Fig. 4). This method is called by a transition of the

Low-Level transducer model (see Fig. 3). This invocation is made each time a

Finger is created to add it to the interaction technique. When the finger enters the

interaction technique, it is placed in the SINGLE_FINGERS place. This mecha-

nism allows for dynamic appearance of fingers in the interaction technique. To

ease the rest of the discussion, we limited the number of fingers instantiated in

the interaction technique to 4 using the place FINGER_LIMIT. Removing this

place would remove this restriction.

─ Removing or updating fingers coordinates is performed by handling events that

comes from the Low-Level transducer model (see Fig. 3). When a

touchEvent_up is received, the corresponding finger is removed from the inter-

action technique model (this is the case for instance with transition remove1 on

the left part of Fig. 4). When a touchEvent_update is received, the correspond-

ing point (associated with a finger) is updated (this is the case for instance with

transition updating1Finger on the top right part of Fig. 4).

· Detecting clusters of fingers: Each time a finger is added or removed from the in-

teraction technique model, or each time the coordinates of one finger is updated, the

clustering or de-clustering of fingers is computed:

─ For two or three fingers, the principle is the same, supported thanks to the pre-

conditions of the mergeXFingersX and unMergeXFingers transitions, that com-

pute the proximity of the fingers.

─ The 5 seconds timeout for de-clustering three fingers is handled thanks to a “timed

transition” (note the [5000] - expressed in ms - line at the bottom of the un-

Merge3Fingers transition) that removes the fingers held by place

FINGERS_MERGED_BY_THREE.

While we are able to describe the interaction technique, the approach can be applied

to other components of the architecture. For instance, Fig. 3 presents the ICO model of

the Low-Level Transducer component of the architecture presented earlier. Note that

the addFingerToInteraction transition contains an invocation on the interaction tech-

nique. This invocation is the one associated with the SIP/SOP places in the Interaction

Technique Model. To prevent inconsistent input such as two fingers at the same loca-

tion (which is physically impossible), a test arc allows to check whether a touch down

is associated with a touch point of a finger already on the screen.

Fig. 3. ICO Model for the Low-Level Transducer

Fig. 4. ICO Model for the finger clustering interaction technique.

4 Generating Test Cases from ICO Specifications

In this section, we focus on steps 2, 3 and 4 of the MBT process (see Fig. 1) applied to

our case study. We first present our test selection criteria and specification and then

present our test generation approach.

4.1 Test Selection Criteria and Test Case Specification

Testing an interaction technique consists in verifying that, for a set of low-level input

events, the corresponding high-level event is produced so that components subscribed

to it (e.g. application dialogs or widgets) are notified with a well-formed event. This

differs from testing the application as done in the work presented in section 2.2. Indeed,

in these, the events considered in the test cases are already high-level ones and the

verification that is made is that the effect on the UI is the correct one. To perform testing

on the interaction techniques requires to i) describe the sequences of actions triggering

the events raised by the interaction techniques and to ii) describe the associated events

to observe on the interaction technique.

Regarding the finger clustering interaction techniques, this means that we want to be

able to identify all the possible sequences of low-level events leading to the raising of

the “twoFingersClustered”, “threeFingersClustered”, “twoFingersDeclustered and

“threeFingersDeclustered” events in the interaction technique transitions. For illustra-

tion purpose, we focus on the raising of the “threeFingersClustered” event.

4.2 Generating Test Cases for the Interaction Technique

To identify the relevant test cases for the raising of the “threeFingersClustered” event,

we use the reachability graph of the Petri-net. A reachability graph of a Petri-net is a

directed graph G=(V,E), where v!V represents a class of reachable markings; e!E rep-

resents a directed arc from a class of markings to another class of markings [32]. Fig.

5 presents the reachability graph of the interaction technique introduced previously. In

this graph, each state contains four digits symbolizing the number of tokens contained

in the places “FINGER LIMIT”, “SINGLE FINGER”, “FINGERS MERGED BY

TWO” and “FINGERS MERGED BY THREE”. For instance, the state “4,0,0,0” at the

top means that the “FINGER LIMIT” place contains 4 tokens and that the other places

are empty. We take advantage of the APT (Analysis of Petri nets and labelled transition

systems) project2 [7] to generate this graph.

2 https://github.com/CvO-Theory/apt

Fig. 5. Reachability graph derived from the ICO model of the interaction technique

As observable in Fig. 5, the reachability graph is actually a Finite State Machine with

no accepting state. Considering that the event we focus on is raised in the “merge3Fin-

gersX” transition, we know that the event must be raised whenever a state of the FSM

having a “merge3Fingers” incoming edge is reached. Marking these states (i.e.

“1,0,0,1” and “0,1,0,1”) as accepting ones allows us to describe the actual grammar of

the test cases for the “threeFingersClustered” event. This grammar3 only misses con-

crete values for fingers coordinates. The following is an example of test case matching

this grammar expressed into Backus-Naur Form (BNF):

<testCase> ::= <addFinger> <touchEventf_update> <addFinger> <addFin-

ger> <touchEventf_update> <merge3Fingers>

The reachability graph we present in this case study contains values for each place as

we intentionally limited to 4 the number of fingers in the interaction technique. How-

ever, some touch screens support more than 4 fingers and therefore one may want to

use multiple clusters of three fingers. It would be possible to remove this restriction

while still being able to apply our process by performing our analysis on a symbolic

reachability graph. Symbolic reachability graphs use variables instead of concrete val-

ues in the states for the analysis of Petri-nets with such infinite marking, making it

possible to express infinite number of states.

To prepare the instantiation of the test scripts, we must focus on how the required

values are produced, partly supported by the model of the application. This model de-

scribes the conditions under which the transitions are fired. In our case, it describes the

constraints on the distance between the points, defining the values domain. When in-

stantiating the test scripts, the integration of these constraints relies on a semi-auto-

mated support, where the values are checked at editing time. For instance, in the instan-

tiation of the grammar example proposed above, whatever the coordinates of the three

added fingers are, the distance between them must fit the precondition of the transitions

“merge3Fingers1” and “merge3Fingers2”.

3 For which the regular expression can be obtained from the FSM using tools such as FSM2Regex

(http://ivanzuzak.info/noam/webapps/fsm2regex/)

5 Test Cases Execution

In this section, we discuss the execution of the test of the interaction technique, i.e.

steps 5.1 and 5.2 of the MBT process. While the advances we propose are mostly related

to test cases generation, we find it important to emphasis the relevance of selecting the

test adapter appropriately and to discuss the possible ways to use our test cases.

5.1 Test Adapter Selection

Testing the interaction technique consists in verifying that for a set of input events the

corresponding high-level event is produced. Key in executing such test properly is be-

ing able to produce an input event that is actually the event expected by the interaction

technique as an input, i.e. an event from the low-level transducer. Assuming that we are

testing our interaction technique as part of a JavaFX application, this means producing

JavaFX Touch Events4. However, testing the interaction technique alone may prove to

be insufficient to ensure that the interaction technique will behave properly for the end-

user. Indeed, while evaluating our approach, we encountered a known issue that no

touch events are forwarded to JavaFX by most popular distributions of Linux using a

GTK-based desktop environment5. In other words, the Touch Provider of these distri-

butions is not producing relevant events for the Low-Level Transducer that cannot, in

turn, produce events for the interaction technique. This means that the JavaFX finger

clustering cannot be used on a Linux platform even though tests based on JavaFX

Touch Event would have indicated that the interaction technique behaves properly.

Therefore, when testing touch applications, one may want to produce Operating Sys-

tem-level events and to perform integration testing of the Low-Level Transducer/Inter-

action Technique couple. Such tests can be executed on the Windows platform by using

the Touch Injection technology of the Windows API6 to produce OS-level touch events

as inputs. Regarding Linux, it is worth mentioning that ARM versions of GTK are not

prone to the issue presented earlier.

5.2 Test Execution for the Interaction Technique

The execution of the tests on the SUT is an activity that is highly dependent of the way

the SUT is implemented. Overall, testing the interaction technique alone requires i)

being able to forward the event sequence of the test script to the interaction technique

and ii) being able to subscribe to the events the interaction technique produces. The

easiest way to test the interaction technique of the SUT is to do it using white-box or

grey-box testing. Indeed, in such cases, it is easy to either instrument the class of the

SUT responsible for the interaction technique or to encapsulate it in a test adapter with

which the test execution environment can interact. Then, the test execution environment

can perform the event sequence described by the test script. The role of the oracle is

4 https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/input/class-use/TouchEvent.html
5 https://bugs.openjdk.java.net/browse/JDK-8090954
6 https://docs.microsoft.com/en-us/windows/desktop/api/_input_touchinjection/

then to determine whether the test passed based on whether or not it received the ex-

pected event from the interaction technique in a timely manner.

6 Generalizability of the Approach

While this paper focused on the interaction technique component of the architecture

presented in section 3.1, the ICO notation, alongside with its CASE tool Petshop, sup-

port the modelling and the test generation for other components of the architecture, as

well as GUI Testing as defined by Banerjee et al. [1]. This section highlights the gen-

eralizability of the modelling philosophy and of the test case generation approach. Due

to space constraint and to the highly SUT-dependent nature of the tests execution, we

will however not develop further on test execution.

6.1 Generalizability of the Modelling Philosophy

In addition to interaction techniques, we pointed out in section 3.4 that ICO can be used

to model the low-level transducer of a post-WIMP application (Fig. 3). Modelling of

Logical Input Devices (e.g. fingers) and their dynamic instantiation is covered in [13].

Moreover, [21] demonstrates that ICO allows the description of the Application (dialog

part) components, including those with dynamic instantiation of widgets, on examples

such as an Air Traffic Control (ATC) plane manager. To validate that our work is com-

patible with GUI Testing of WIMP application, we modelled the application specified

in Memon et al.'s [18] review of advances in MBT for applications with a GUI front-

end. We had no trouble describing the behavior of this WIMP application using ICO in

Petshop. Combining this with the modelling of post-WIMP interaction techniques

demonstrated herein, shows that we are able to model post-WIMP applications.

6.2 Generalizability of the Test Case Generation Approach

Thanks to Memon et al.’s review of advances in MBT [18], we were able to verify that

our test generation approach worked for WIMP applications. Indeed, [18] presented

various models for the application it specifies, including one being a Finite State Ma-

chine. This allowed us to verify that the reachability graph of the Petri-net was the same

(name of states aside) as the FSM in [18]. Beyond that, on applications that involve

dynamicity such as the ATC plane manager dialog, the approach fits well as each air-

craft is added to the dialog model using invocation in the same way as fingers are added

to the interaction technique presented in this paper. Yet, as the number of aircraft on

the radar visualization is virtually infinite, the use of a symbolic reachability graph is

made mandatory, while standard reachability graph can be kept for interaction tech-

niques (as the maximum number of touch points supported by the screen is known).

7 Conclusion and Future Work

Testing interactive applications is known to be a challenging activity, whether we con-

sider WIMP or post-WIMP applications. In this paper, we have shown that while the

testing of WIMP applications retained most of the attention of researchers and practi-

tioners in the field of MBT, post-WIMP applications raise new challenges for the com-

munity. Indeed, properly testing post-WIMP following the standard Model-Based Test-

ing process requires modelling techniques that are expressive enough to describe the

dynamic instantiation of virtual and physical devices, timing aspects, system configu-

ration, etc. Only such models allow the generation of exhaustive enough test cases.

Building on previous work on the Petri-net-based notation ICO (and its associated

CASE tool, PetShop), we showed that we are able to propose a toolchain that addresses

the need for expressive modelling techniques in order to support the generation of test

cases for post-WIMP application following the MBT process. We showed that thanks

to the mechanism supported by ICO we are able to support the high dynamicity of post-

WIMP applications for all the software components of the architecture. This expres-

siveness allows for the generation of abstract test case using a grammar derived from

the reachability graph of Petri-nets.

As we focused on a specific component of the architecture, i.e. the interaction tech-

nique, we found that post-WIMP applications are more sensitive than WIMP applica-

tions to the execution platform, as touch event are not always well forwarded to libraries

by operating-systems, highlighting the need for integration testing. A future extension

to our work would be to implement the generation of integration test cases into PetShop

by relying on the different artifacts allowing the communication between models.

Finally, we are currently investigating using such approach for the testing of inter-

active applications to be deployed in large civil aircraft interactive cockpits. Indeed,

following guidance from supplement DO-333 [27] on formal methods to the DO-178C

certification process [26], one may use formal specifications during the development

of such application. If a formal model of the interactive application is built for support-

ing reliability arguments (e.g. “low-level requirements are accurate and consistent

[26]”) we propose to exploit that model to generate test cases from that formal specifi-

cation (as proposed by Gaudel [12]). Such process could result in more cost-effective

test case generation leveraging on available formal models. Beyond, thanks to the ex-

pressive power of ICO, such approach could support the adoption of application offer-

ing richer interaction techniques (e.g. animations [19] or multitouch [13]) even in

safety-critical context (e.g. brace touch [24]).

References

1. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science, 126:183–235,

1994.

2. Banerjee, I., Nguyen, B., Garousi, V., Memon, A.M.: Graphical user interface (GUI) testing:

Systematic mapping and repository. Information and Software Technology. 55, 1679–1694

(2013).

3. Barboni E., Conversy S., Navarre D. & Palanque P. Model-Based Engineering of Widgets,

User Applications and Servers Compliant with ARINC 661 Specification. 13th conf. on De-

sign Specification and Verification of Interactive Systems (DSVIS 2006), LNCS Springer

Verlag. p25-38

4. Bass, L., Little, R., Pellegrino, R., Reed, S., Seacord, R., Sheppard, S. and Szezur, M.R. The

arch model: Seeheim revisited. In User Interface Developpers' Workshop (1991).

5. Bastide, R., Navarre, D., Palanque, P.: A Model-based Tool for Interactive Prototyping of

Highly Interactive Applications. In: CHI ’02 Extended Abstracts on Human Factors in Com-

puting Systems. pp. 516–517. ACM, New York, NY, USA (2002).

6. Bastide R., Navarre D., Palanque P., Schyn A. & Dragicevic P. A Model-Based Approach

for Real-Time Embedded Multimodal Systems in Military Aircrafts. Sixth International

Conference on Multimodal Interfaces (ICMI'04) October 14-15, 2004, USA, ACM Press.

7. Best, E., Schlachter, U.: Analysis of Petri Nets and Transition Systems. Electron. Proc. The-

or. Comput. Sci. 189, 53–67 (2015).

8. Bowen, J., Reeves, S.: Generating Obligations, Assertions and Tests from UI Models. Proc.

ACM Hum.-Comput. Interact. 1, 5:1–5:18 (2017).

9. Campos, J.C., Fayollas, C., Martinie, C., Navarre, D., Palanque, P., Pinto, M.: Systematic

Automation of Scenario-based Testing of User Interfaces. In: Proceedings of the 8th ACM

SIGCHI Symposium on Engineering Interactive Computing Systems. pp. 138–148. ACM,

New York, NY, USA (2016).

10. Canny, A., Bouzekri, E., Martinie, C., Palanque, P.: Rationalizing the Need of Architecture-

Driven Testing of Interactive Systems. In: Human-Centered and Error-Resilient Systems

Development. Springer, Cham (2018).

11. Cronel, M., Dumas, B., Palanque, P., Canny, A.: MIODMIT: A Generic Architecture for

Dynamic Multimodal Interactive Systems. In: Bogdan, C., Kuusinen, K., Lárusdóttir, M.K.,

Palanque, P., and Winckler, M. (eds.) Human-Centered Software Engineering. pp. 109–129.

Springer International Publishing (2019).

12. Gaudel, M.-C.: Testing can be formal, too. In: TAPSOFT ’95: Theory and Practice of Soft-

ware Development. pp. 82–96. Springer, Berlin, Heidelberg (1995).

13. Hamon, A., Palanque, P., Silva, J.L., Deleris, Y., Barboni, E.: Formal Description of Multi-

touch Interactions. In: Proceedings of the 5th ACM SIGCHI Symposium on Engineering

Interactive Computing Systems. pp. 207–216. ACM, New York, NY, USA (2013).

14. Hamon, A., Palanque, P., Cronel, M., André, R., Barboni, E., Navarre, D.: Formal Modelling

of Dynamic Instantiation of Input Devices and Interaction Techniques: Application to Multi-

touch Interactions. In: Proceedings of the 2014 ACM SIGCHI Symposium on Engineering

Interactive Computing Systems. pp. 173–178. ACM, New York, NY, USA (2014).

15. Ladry, J.-F., Navarre, D., Palanque, philippe: Formal Description Techniques to Support

the Design, Construction and Evaluation of Fusion Engines for Sure (Safe, Usable, Reliable

and Evolvable) Multimodal Interfaces. In: Proceedings of the 2009 International Conference

on Multimodal Interfaces. pp. 185–192. ACM, New York, NY, USA (2009).

https://doi.org/10.1145/1647314.1647347.

16. Lelli, V., Blouin, A., Baudry, B., Coulon, F.: On model-based testing advanced GUIs. In:

2015 IEEE Eighth International Conference on Software Testing, Verification and Valida-

tion Workshops (ICSTW). pp. 1–10 (2015).

17. Martinie, C., Navarre, D., Palanque, P., Barboni, E., Canny, A.: TOUCAN: An IDE Sup-

porting the Development of Effective Interactive Java Applications. In: Proceedings of the

ACM SIGCHI Symposium on Engineering Interactive Computing Systems. pp. 4:1–4:7.

ACM, New York, NY, USA (2018).

18. Memon, A.M., Nguyen, B.N.: Advances in Automated Model-Based System Testing of

Software Applications with a GUI Front-End. In: Zelkowitz, M.V. (ed.) Advances in Com-

puters. pp. 121–162. Elsevier (2010).

19. Mirlacher, T., Palanque, P., Bernhaupt, R.: Engineering Animations in User Interfaces. In:

Proceedings of the 4th ACM SIGCHI Symposium on Engineering Interactive Computing

Systems. pp. 111–120. ACM, New York, NY, USA (2012).

20. Morgado, I.C., Paiva, A.C.R.: The iMPAcT Tool for Android Testing. Proc. ACM Hum.-

Comput. Interact. 3, 4:1–4:23 (2019).

21. Navarre, D., Palanque, P., Ladry, J.-F., Barboni, E.: ICOs: A Model-based User Interface

Description Technique Dedicated to Interactive Systems Addressing Usability, Reliability

and Scalability. ACM Trans. Comput.-Hum. Interact. 16, 18:1–18:56 (2009).

22. Palanque P., Bernhaupt R., Navarre D., Ould M. & Winckler M. Supporting Usability Eval-

uation of Multimodal Man-Machine Interfaces for Space Ground Segment Applications Us-

ing Petri net Based Formal Specification. Ninth Int. Conference on Space Operations, Italy,

June 18-22, 2006.

23. Palanque P., Ladry J-F, Navarre D. & Barboni E. High-Fidelity Prototyping of Interactive

Systems can be Formal too 13th Int. Conf. on Human-Computer Interaction (HCI Interna-

tional 2009) LNCS, Springer.

24. Palanque P., Cockburn A., Gutwin C., Deleris Y. & Desert-Legendre L. Brace Touch: A

Dependable, Turbulence-Tolerant, Multi-Touch Interaction Technique for Interactive Cock-

pits. In: International Conference on Computer Safety, Reliability, and Security 2019

(SAFECOMP). Springer, Verlag (2019).

25. Pezzè, M., Rondena, P., Zuddas, D.: Automatic GUI Testing of Desktop Applications: An

Empirical Assessment of the State of the Art. In: Companion Proceedings for the

ISSTA/ECOOP 2018 Workshops. pp. 54–62. ACM, New York, NY, USA (2018).

26. RTCA. DO-178C Software Considerations in Airborne Systems and Equipment Certifica-

tion. 2011.

27. RTCA. DO-333 Formal Methods Supplement to DO-178C and DO-278A. 2011.

28. Shneiderman, B.: Direct Manipulation: A Step Beyond Programming Languages. Computer.

16, 57–69 (1983). https://doi.org/10.1109/MC.1983.1654471.

29. Spivey, J.M., Abrial, J.: The Z notation. Prentice Hall Hemel Hempstead (1992).

30. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing approaches.

Softw. Test. Verif. Reliab. 22, 297–312 (2012).

31. Van Dam, A.: Post-WIMP user interfaces. Communications of the ACM. 40.2, 63-67

(1997).

32. Ye, X., Zhou, J., Song, X.: On reachability graphs of Petri nets. Computers & Electrical

Engineering. 29, 263–272 (2003). https://doi.org/10.1016/S0045-7906(01)00034-9.

