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LONG TIME SOLUTIONS FOR QUASI-LINEAR HAMILTONIAN PERTURBATIONS OF
SCHRODINGER AND KLEIN-GORDON EQUATIONS ON TORI

ROBERTO FEOLA, BENOIT GREBERT, AND FELICE IANDOLI

ABSTRACT. We consider quasi-linear, Hamiltonian perturbations of the cubic Schrédinger and of the cubic
(derivative) Klein-Gordon equations on the d dimensional torus. If € « 1 is the size of the initial datum,
we prove that the lifespan of solutions is strictly larger than the local existence time 2. More precisely,
concerning the Schrédinger equation we show that the lifespan is at least of order O(¢~#) while in the Klein-
Gordon case, we prove that the solutions exist at least for a time of order O(e 8/ 3")assoonasd = 3. Regard-
ing the Klein-Gordon equation, our result presents novelties also in the case of semi-linear perturbations:
we show that the lifespan is at least of order 0(8_10/ 3" ), improving, for cubic non-linearities and d = 4, the
general result in [I7], where the time of existence is decreasing with respect to the dimension.
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1. INTRODUCTION

This paper is concerned with the study of the lifespan of solutions of two classes of quasi-linear,
Hamiltonian equations on the d-dimensional torus T := (R/272)%, d = 1. We study quasi-linear per-
turbations of the Schrédinger and Klein-Gordon equations.

The Schrédinger equation we consider is the following

{iatu+Au— Vi u+ [Ar(u)] R (P u—ulPu=0,

(NLS)
u(0, x) = up(x)
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where C 3 u:= u(t,x), x € T4 d = 1, V(x) is a real valued potential even with respect to x, h(x) is a
function in C*®(R;R) such that h(x) = O(x?) as x — 0. The initial datum u, has small size and belongs to
the Sobolev space H5(T%) (see 2.2)) with s > 1.
We examine also the Klein-Gordon equation
0y —Av+my+ f(y)+gw) =0,
1//(0) x) = 1//0 ’ (KG)
0:yw(0,x) =y,
where ¥ = w(t,x), x € T4, d = 1 and m > 0. The initial data (yg,w;) have small size and belong to the
Sobolev space HS(T% x H~1(T%), for some s > 1. The nonlinearity f(y) has the form

d
f@):==2 0x,(0y, Fy, Vi) + 0y F)(y, V) (1.1)
j=1

where F(yo, Y1,.--,»Yd) € C*®(R4*1 R), has a zero of order at least 6 at the origin. The non linear term g(y)
has the form

1 1 1
) = 0y, YWY, ALy) + AL @y, G W, ALy) (1.2)
where G(yp, 1) € C®(R?;R) is a homogeneous polynomial of degree 4 and A, is the operator
Ay 1= (_A"'m)%; (1.3)
defined by linearity as
Al = A (DET™, AN =\/IjP+m, ¥jez?. (1.4)

Historical introduction for (NLS). Quasi-linear Schrodinger equations of the specific form (NLS) ap-
pear in many domains of physics like plasma physics and fluid mechanics [40} 32], quantum mechanics
[33], condensed matter theory [41]. They are also important in the study of Kelvin waves in the superfluid
turbulence [39]. Equations of the form (NLS) posed in the Euclidean space have received the attention
of many mathematicians. The first result, concerning the local well-posedness, is due to Poppenberg
[43] in the one dimensional case. This has been generalized by Colin to any dimension [12]. A more
general class of equations is considered in the pioneering work by Kenig-Ponce-Vega [38]. These re-
sults of local well-posedness have been recently optimized, in terms of regularity of the initial condition,
by Marzuola-Metcalfe-Tataru [42] (see also references therein). Existence of standing waves has been
studied by Colin [13] and Colin-Jeanjean [14]. The global well-posedness has been established by de
Bouard-Hayashi-Saut [15] in dimension two and three for small data. This proof is based on dispersive
estimates and energy method. New ideas have been introduced in studying the global well-posedness
for other quasi-linear equations on the Euclidean space. Here the aforementioned tools are combined
with normal form reductions. We quote Ionescu-Pusateri [35, 36] for the water-waves equation in two
dimensions.

Very little is known when the equation is posed on a compact manifold. The firsts local well-
posedness results on the circle are given in the work by Baldi-Haus-Montalto [I] and in the paper [27].
Recently these results have been generalized to the case of tori of any dimension in [28]. Except these
local existence results, nothing is known concerning the long time behavior of the solutions. The prob-
lem of global existence/blow-up is completely opened. In the aforementioned paper [15] it is exploited
the dispersive character of the flow of the linear Schrédinger equation. This property is not present on
compact manifolds: the solutions of the linear Schrédinger equation do not decay when the time goes
to infinity. However in the one dimensional case in [29] [26] it is proven that small solutions of quasi-
linear Schrodinger equations exist for long, but finite, times. In these works two of us exploit the fact that
quasi-linear Schrédinger equations may be reduced to constant coefficients trough a para-composition
generated by a diffeomorphism of the circle. This powerful tool has been used for the same purpose
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by other authors in the context of water-waves equations, firstly by Berti-Delort in [6] in a non reso-
nant regime, secondly by Berti-Feola-Pusateri in [8, 9] and Berti-Feola-Franzoi [7] in the resonant case.
We also mention that this feature has been used in other contexts for the same equations, for instance
Feola-Procesi [30] prove the existence of a large set of quasi-periodic (and hence globally defined) solu-
tions when the problem is posed on the circle. This “reduction to constant coefficients” is a peculiarity
of one dimensional problems, in higher dimensions new ideas have to be introduced. For quasi-linear
equations on tori of dimension two we quote the paper about long-time solutions for water-waves prob-
lem by Ionescu-Pusateri [34], where a different normal form analysis has been presented.

Historical introduction for (KG). The local existence for is classical and we refer to Kato [37].
Many analysis have been done for global/long time existence.

When the equation is posed on the Euclidean space we have global existence for small and localized
data Delort [16] and Stingo [44], here the authors use dispersive estimates on the linear flow combined
with quasi-linear normal forms.

For on compact manifolds we quote Delort [18] 19] on S$4 and Delort-Szeftel [20] on T%. The
results obtained, in terms of length of the lifespan of solutions, are stronger in the case of the spheres.
More precisely in the case of spheres the authors show the following. If m in is chosen outside of
a set of zero Lebesgue measure, then for any natural number N, any initial condition of size € (small
depending on N) produces a solution whose lifespan is at least of magnitude e V. In the case of tori
in [20] they consider a quasi-linear equation, vanishing quadratically at the origin and they prove that
the lifespan of solutions is of order £~2 if the initial condition has size £ small enough. The differences
between the two results are due to the different behaviors of the eigenvalues of the square root of the
Laplace-Beltrami operator on $¢ and T¢. The difficulty on the tori is a consequence of the fact that the
set of differences of eigenvalues of \/—Aya is dense in R if d = 2, this does not happen in the case of
spheres. A more general set of manifolds where this does not happen is the Zoll manifolds, in this case
we quote the paper by Delort-Szeftel [21] and Bambusi-Delort-Grébert-Szeftel [3] for semi-linear Klein-
Gordon equations. For semi-linear Klein-Gordon equations on tori we have the result by Delort [17]. In
this paper the author proves that if the non-linearity is vanishing at order k at zero then any initial datum
of small size € produces a solution whose lifespan is at least of magnitude gka+d)
loss. We improve this result, see Theorem[4} when k=2 and d = 4.

Statement of the main results. The aim of this paper is to prove, in the spirit of [34], that we may go
beyond the trivial time of existence, given by the local well-posedness theorem which is 2 since we are
considering equations vanishing cubically at the origin and initial conditions of size «.

In order to state our main theorem for we need to make some hypotheses on the potential V.
We consider potentials having the following form

, up to a logarithmic

X

o . 11
V=Y VEe, VE=—, x e[——,— cR, Nam>1. 1.5
(x) Egd ©) O=1em €| 33 (1.5)
We endow the set @ := [-1/2,1/ Z]Zd with the standard probability measure on product spaces. Our main

theorem is the following.

Theorem 1. (Long time existence for NLS). Consider the (NLS) with d = 2. There exists /' < @ hav-
ing zero Lebesgue measure such that if xg in (L.5) is in @\ A&, we have the following. There exists sy =
So(d, m) > 1 such that for any s = sy there are constants cy > 0 and €y > 0 such that for any 0 < € < g9 we
have the following. If | upll gs < co€, there exists a unique solution of the Cauchy problem (NLS) such that
u(t,x) € C°([0, T); HS(TY), sup llu(t,)lgs<e, T=coe ™. (1.6)
t€[0,T)

In the one dimensional case the potential V may be disregarded and we obtain the following.

Theorem 2. Consider (NLS) with V =0 and d = 1. There exists sy > 1 such that for any s = sq there are
constants ¢y > 0 and gy > 0 such that for any 0 < € < gy we have the following. If llugll s < co€, there exists
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a unique solution of the Cauchy problem such that

u(t,x) € C°[0, T); HS(TY),  sup llu(t, )l <e, T=coe ™. 1.7)
1€[0,T)
This is, to the best of our knowledge, the first result of this kind for quasi-linear Schrédinger equations
posed on compact manifolds of dimension greater than one.
Our main theorem regarding the problem is the following.

Theorem 3. (Long time existence for KG). Consider the with d = 2. There exists & < [1,2] having
zero Lebesgue measure such that if m € [1,2]\ A we have the following. There exists sy = so(d, m) > 1 such
that for any s = s there are constants ¢y > 0 and gy > 0 such that for any 0 < € < gy we have the following.
For any initial data (o, y1) € HSV2(T%) x HS"Y2(T%) such that

HU/O”H”UZ + ||’(,U1 ||Hs-1/2 < (€,

there exists a unique solution of the Cauchy problem such that

w(t,x) € CO(10, T); H* 2 (TH) (O C (10, T); HS 2 (TH),

L (1.8)
sup (ly () 1 +10:p() 1] <€, T=ce?,
t(—:[O,T)( Y H*2 34 H z)

wherea=3 ifd =2 anda=28/3 ifd = 3.

We remark that long time existence for quasi-linear Klein-Gordon equations in dimension one are
nowadays well known, see for instance [18]. The theorem improves the general result in [17] in the
particular case of cubic non-linearities in the following sense. First of all we can consider more general
equations containing derivatives in the non-linearity (with “small” quasi-linear term), moreover our time
of existence does not depend on the dimension. Furthermore, adapting our proof to the semi-linear case
(i.e. when f=0in and and G in does not depend on y;), we obtain the better time of
existence £ 103" for any d = 4. In the cases d = 2,3 we recover the time of existence in [I7]. This is the
content of the next Theorem.

Theorem 4. Consider with f =0 and g independent of y\. Then the same results of Theorem|3 holds
true forT = coe® , witha=4 ifd=2,anda=10/3 ifd = 3.

Comments on the results. We begin by discussing the case. We remark that, beside the math-
ematical interest, it would be very interesting, from a physical point of view, to be able to deal with the
case h(tr) ~ 7 . Indeed, for instance, if we chose h(r) = v1+ 1 —1; the respective equation models
the self-channeling of a high power, ultra-short laser pulse in matter, see [11]. Unfortunately we need in
our estimates 1(7) ~ 7'*° with § > 0, and since & has to be smooth this leads to h(t) ~ 72.

Our method covers also more general cubic terms. For instance we could replace the term |u|?u with
g(|ul®)u, where g(-) is any analytic function vanishing at least linearly at the origin and having a primitive
G' = g. We preferred not to write the paper in the most general case since the non-linearity | «|>u is a good
representative for the aforementioned class and allows us to avoid to complicate the notation furtherly.
We also remark that we consider a class of potentials V' more general than the one we used in [29) [26]
and more similar to the one used in [4] in a semi-linear context.

We now make some comments on the result concerning (KG). In this case we use normal forms (the
same strategy is used for as well) and therefore small divisors’ problems arise. The small divisors,
coming from the four waves interaction, are of the form

A& =1—=0) = A () + Ax () — Aga(€) (1.9)
with Ay defined in (T.4). In this case we prove the lower bound (see (2.26))
Ak (€ =1 =) = A () + Ao Q) — A (@] 2 maxp{lé —n =1, Inl, 11 N max{lé —n =1, Inl, 1K P, (1.10)
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for almost any value of the mass m in the interval [1,2] and where f is any real number in the open in-
terval (3,4). The second factor in the r.h.s. of the above inequality represents a loss of derivatives when
dividing by the quantity which may be transformed in a loss of length of the lifespan through parti-
tion of frequencies. This is an extra difficulty, compared with the case, which makes the problem
challenging already in a semi-linear setting. The novelty in isthat f doesnot depend on the dimen-
sion d. This is why we can improve the result of [17]. We also quote [5] where Bernier-Faou-Grébert use
a control of the small divisors involving only the largest index (and not max; as in (I.I0)). They obtained,
in the semi-linear case, the control of the Sobolev norm as in (I.8), with a arbitrary large, but assuming
that the initial datum satisfies [l ;o172 + @11l gyo-12 < co€ for some s'=s'(a) > s, i.e. allowing a loss of
regularity.

We notice that also in the case we are not able to deal with the interesting case of cubic quasi-
linear term.

Ideas of the proof. In our proof we shall use a quasi-linear normal forms/modified energies approach,
this seems to be the only successful one in order to improve the time of existence implied by the lo-
cal theory. We recall, indeed, that on T¢ the dispersive character of the solutions is absent. Moreover,
the lack of conservation laws and the quasi-linear nature of the equation prevent the use of semi-linear
techniques as done by Bambusi-Grébert [4] and Bambusi-Delort-Grébert-Szeftel [3].

The most important feature of equation and (KG), for our purposes, is their Hamiltonian struc-
ture. This property guarantees some key cancellations in the energy-estimates that will be explained later
on in this introduction.

The equation may be indeed rewritten as follows:

oru= _ivﬁ‘}fNLS(u)m = i(Au -V*xu- P(u)),
where Vg := (VRe(w) +1Vim@y)/2, V denote the Lz-gradient, the Hamiltonian function /4,5 and the non-
linearity p are
Hs(U, ) !=fd IVul?> + (V * wu+ P(u, Vu)dx,
T
1 , d (1.11)
P(u,Vu):= E(|Vh(|u|2)| +lul),  p(u):=©@zP)w,Vu) -} dx,(9z, P)(u, Vu).
j=1

The equation (KG) is Hamiltonian as well. Thanks to the (I.I), we have that also the nonlinear

Klein-Gordon in can be written as

atw=0¢=7fm(1//,¢) :(,b, (1.12)
0:1p = =0y Soc(W, ) = — Aoy — fFy) — g, '
where (W, ¢) is the Hamiltonian
2 A2 1
Fs(W, d) wa%‘F%"‘F(W’VW”G(W’A&W‘U- (1.13)

We describe below our strategy in the case of the (NLS) equation. The strategy for (KG) is similar.

In [28] we prove an energy estimate, without any assumption of smallness on the initial condition, for
a more general class of equations. This energy estimate, on the equation (NLS) with small initial datum,
would read

t
E(t)—E(O)S,f lu(z, )3E@adr, (1.14)
0

where E(#) ~ |u(t,")|%,.. An estimate of this kind implies, by a standard bootstrap argument, that the
lifespan of the solutions is of order at least O(¢~2), where ¢ is the size of the initial condition. To increase
the time to O(¢~*) one would like to show the improved inequality

t
E(t) - E(0) gf lu(z, )1, E()dr. (1.15)
0
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Our main goal is to obtain such an estimate.

PARA-LINEARIZATION OF THE EQUATION (NLS). The first step is the para-linearization, a la Bony [10],
of the equation as a system of the variables (u, u), see Prop. We rewrite as a system of the form
(compare with (3.4))

0:U=—E((-A+V#)U+sb(U+e(NU) + Xy, )+ RWU), E:=[} Y] U:=[%]

where <, (U) is a 2 x 2 self-adjoint matrix of para-differential operators of order two (see (3.3), (3.2)),
</ (U) is a self-adjoint, diagonal matrix of para-differential operators of order one (see (3.4), (3.2)). These
algebraic configuration of the matrices (in particular the fact that </ (U) is diagonal) is a consequence
of the Hamiltonian structure of the equation. The summand Xp, is the cubic term (coming from the
para-linearization of |u|?u, see (3.5)) and || R(U) | g+ is bounded from above by || U IIL,. for s large enough.
Both the matrices o, (U) and <) (U) vanish when U goes to 0. Since we assume that the function h,
appearing in (NLS), vanishes quadratically at zero, as a consequence of (3.2), we have that

st (DDl oo g5: 1152y, Iy WD L s g1y SNU NGy,

where by Z(X;Y) we denoted the space of linear operators from X to Y. We also remark that the sum-
mand Xp, is an Hamiltonian vector field with Hamiltonian function Hy (w) = [qa lul*dx.

DIAGONALIZATION OF THE SECOND ORDER OPERATOR. The matrix of para-differential operators <, (U)
is not diagonal, therefore the first step, in order to be able to get at least the weak estimate (1.14), is
to diagonalize the system at the maximum order. This is possible since, because of the smallness as-
sumption, the operator E(—A + o> (U)) is locally elliptic. In section[4.1.1]we introduce a new unknown
W = @y s(U)U, where @y (V) is a parametrix built from the matrix of the eigenvectors of E(—A + o> (U)),
see ([4.4), [@.2). The system in the new coordinates reads

0 W = —iE((-A+ V) U+ ()W + LD W) W) + X, (W) + RV (),

where both «/," (1), /" (U) are diagonal, see and where [|RD (U) || s S I1UII,; for s large enough.
We note also that the cubic vector field Xy, remains the same because the map ®y;5(U) is equal to the
identity plus a term vanishing at order six at zero, see (4.5).

DIAGONALIZATION OF THE CUBIC VECTOR-FIELD. In the second step, in section[4.1.2] we diagonalize
the cubic vector-field Xg,. It is fundamental for our purposes to preserve the Hamiltonian structure of
this cubic vector-field in this diagonalization procedure. In view of this we perform a (approximatively)
symplectic change of coordinates generated from the Hamiltonian in and (note that this is
not the case for the diagonalization at order two). Actually the simplecticity of this change of coordi-
nates is one of the most delicate points in our paper. The entire Appendix[A]is devoted to this. This
diagonalization is implemented in order to simplify a low-high frequencies analysis. More precisely we
prove that the cubic vector field may be conjugated to a diagonal one modulo a smoothing remainder.
The diagonal part shall cancel out in the energy estimate due to a symmetrization argument based on its
Hamiltonian character. As a consequence the time of existence shall be completely determined by the
smoothing reminder. Being this remainder smoothing the contribution coming from high frequencies is
already “small”, therefore the normal form analysis involves only the low modes. This will be explained
later on in this introduction.

We explain the result of this diagonalization. We define a new variable Z = @4, (W), see (4.23), and
we obtain the new diagonal system (compare with (4.26))

0.Z=—-1E((-A+V®) Z+ N Z + 4" () Z) + X, (2) + RO (),

where the new vector-field X, (Z) is still Hamiltonian, with Hamiltonian function defined in (4.29), and
it is equal to a skew-selfadjoint and diagonal matrix of bounded para-differential operators modulo
smoothing reminders, see (4.27). Here Réz) (U) satisfies the quintic estimates (4.28).

INTRODUCTION OF THE ENERGY-NORM. Once achieved the diagonalization of the system we introduce
an energy norm which is equivalent to the Sobolev one. Assume for simplicity s = 2n with n a natural
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number. Thanks to the smallness condition on the initial datum we prove in Section that [|(-AT +
ol (U) + ,Qfl(U))S/ZfIILz ~ || fll s for any function f in H*(T%). Therefore by setting

Zp = [E(=A1 + s (U) + o, (U2 Z,

we are reduced to study the L? norm of the function Z,. This has been done in Lemma Since the
system is now diagonalized, we write the scalar equation, see Lemmal5.3} solved by z,

012n = —iTgzy —iV * 2, — A" Xy (Z) + R, (U),

where we have denoted by T« the element on the diagonal of the self-adjoint operator —Al + o, (U) +
<1 (U), see (B.1), 2.6); Xﬁ; (Z2) is the first component of the Hamiltonian vector-field Xy, (Z) and R, (U) is
a bounded remainder satisfying the quintic estimate (5.12).

CANCELLATIONS AND NORMAL-FORMS. At this point, always in Lemma|5.3] we split the Hamiltonian
vector-field X = X" + X L where Xy" is the resonant part, see and Definition Z‘TEI The
first important fact, which is an effect of the Hamiltonian and Gauge preserving structure, is that the
resonant term A”X;4 "'®S does not give any contribution to the energy estimates. This key cancellation
may be interpreted as a consequence of the fact that the super actions

I,:= Y 1Z)F, peN, Z:=[Z],
jez4jl=p

where Z is defined in (2.I), are prime integrals of the resonant Hamiltonian vector field X;; 1887y in the

same spiritﬂ of [24]. This is the content of Lemma more specifically equation (5.16).
We are left with the study of the term —A”XIL’L. In Lemmawe prove that —A"ng =BY(2)+B? (2),

where B’ (Z) does not contribute to energy estimates and B (Z) is smoothing, gaining one space deriv-
ative, see and Lemma The cancellation for B,(}) (Z) is again a consequence of the Hamiltonian
structure and it is proven in Lemmal5.4} more specifically equation (5.17).

Summarizing we obtain the following energy estimate (see (2.3))

1d , .

577 1#n () 17, =Re (—iTzn, 2p) 2 + Re (—iV * 24, 2) 12 (1.16)
+Re (R, (U), z) 12 (1.17)
+Re (A" Xy " (2), 2) 2 (1.18)
+Re(BP(2),2,) 12 (1.19)
+Re (BP(2), zp) 2. (1.20)

The r.h.s. in equals to zero because iT« is skew-self-adjoint and the Fourier coefficients of V in
are real valued. The term is bounded from above by | z,, IIi2 1U8,; equals to zero thanks
to (5.16), the summand equals to zero as well because of (5.17). Setting E(t) = ||z, (¢) II%z, the only
term which is still not good in order to obtain an estimate of the form is the (1.20).

In order to improve the time of existence we need to reduce the size of this new term B (Z) by means
of normal forms/integration by parts. We note immediately that, thanks to all the reductions we have
performed, the term B presents two advantages: it is non-resonant and smoothing. Thanks to the fact
that it is smoothing we shall need to perform a normal form only for the low frequencies of B” (Z). More
precisely, thanks to and (5.11), we prove in Lemma5.8} see (5.34), that the high frequency part of
this vector-field is already small, if IV therein is chosen large enough inversely proportional to a power

7o be precise the definition of Z; = (z5;,z5) inis slightly different than the one presented here, but they coincide mod-
ulo smoothing corrections. For simplicity of notation, and in order to avoid technicalities, in this introduction we presented it
in this way.

2More generally, this cancellation can be viewed as a consequence of the commutation of the linear flow with the resonant
part of the nonlinear perturbation which is a key of the Birkhoff normal form theory (see for instance [31]).



8 ROBERTO FEOLA, BENOIT GREBERT, AND FELICE IANDOLI

of the size of the initial condition. The normal form on the non-resonant term, restricted to the low
frequencies, is performed in Proposition[5.7} Here we use the lower bound on the small divisor in
given by Proposition|5.6]

As said before the strategy for is similar except for the control of the small divisor which
implies some extra difficulties that we already talk about. Let us just describe how the paper is organized
concerning (KG): In Section 3.2 we paralinearize the equation obtaining, passing to the complex vari-
ables (3.11), the system of equations of order one (8:31). In Section [4.2] we diagonalize the system: the
operator of order one is treated in Prop. [4.11]and the order zero in Prop. As done for (NLS) in the di-
agonalization of the operator of order zero we preserve its Hamiltonian structure. The energy estimates
are given in Section[5.2] The non degeneracy of the linear frequencies is studied in Appendix[B}

ACKNOWLEDGEMENTS. We would like to warmly thank prof. Fabio Pusateri for the inspiring discus-
sions.

2. PRELIMINARIES

We denote by H*(T%;C) (respectively H*(T%;C?)) the usual Sobolev space of functions T% 3 x — u(x) €
C (resp. C?). We expand a function u(x), x € T4 , in Fourier series as

1 1nx ~ 1 f —in-x
ux)= ——— un)e un):=——— u(x)e dx. 2.1
(x) (2”)d/2nezzd i(n) (n) oma2 Jya (x) (2.1)
We set () := \/1+|j[? for j € Z%. We endow H*(T;C) with the norm
luC) 5= Y GO lujl>. 2.2)
jezd

For U = (u, up) € HS(T%,C?) we set |Ullgys = lluillgs + luzll gs. Moreover, for r € R*, we denote by
B, (H*(T%;C)) (resp. B,(H*(T%;C?))) the ball of H*(T%;C)) (resp. H*(T%;C?))) with radius r centered
at the origin. We shall also write the norm in (2.2) as || ul?, = (DYSu, (D)’ u) ;2, where (D)Yeli* = (])elf x,
for any j € Z4, and (-,) ;2 denotes the standard complex L2-scalar product

(u, V)2 ::fdu-vdx, Yu,vel2T%0). 2.3)
T

Notation. We shall use the notation A < B to denote A < CB where C is a positive constant depending on
parameters fixed once for all, for instance d and s. We will emphasize by writing <, when the constant
C depends on some other parameter q.
Basic Paradifferential calculus. We follow the notation of [28]. We introduce the symbols we shall use
in this paper. We shall consider symbols T x R? 3 (x, &) — a(x, &) in the spaces N, m, s €R, defined by
the norms

lalgn:= sup sup & " F0lo% a(x, )l . (2.4)

lal+|fl=sI¢l>1/2

The constant m € R indicates the order of the symbols, while s denotes its differentiability. Let 0 <€ < 1/2
and consider a smooth function y : R — [0, 1]

1 if |€]<5/4

0 if €] =8/5 and define ¥e©) = x(El/e). 2.5)

For a symbol a(x,¢) in A" we define its (Weyl) quantization as

k j+ &~
Y 6T Y g ('J ') (]—k,%)h(k) 2.6)

(2 )d jEZd kezd J +k>
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where a(n,¢) denotes the Fourier transform of a(x,¢) in the variable x € T9. Thanks to the choice of
Xe in we have that, if j =0 then y.(|j — k|/{j + k)) =0 for any k € 7%\ {0}. Moreover, the function
T,h— m(O) depends only on the values of a(x,¢) for || = 1. In view of this fact, if a(x, &) = b(x,¢) for
|| > 1/2 then T, — Ty is a finite rank operator. Therefore, without loss of generality, we write a = b if
a(x,&) = b(x,§) for [{| > 1/2. Moreover the definition of the operator T, is independent of the choice of
the cut-off function y. up to smoothing terms, see, for instance, Lemma 2.1 in [28].

Notation. Given a symbol a(x, &) we shall also write
Tyl := Op™(a(x, )], 2.7

to denote the associated para-differential operator.
We now collects some fundamental properties of para-differential operators. For details we refer the
reader to section 2 in [28].

Lemma2.1. (Lemma?2.1 in [28]) The following holds.
(i) Let m;,my €R, s> d/2 and ae N, be N™. One has

|ab|%m1+m2 + |{a, b}|¢/‘/rjlll+n1271+ S |a|‘/‘/sml |b|t/‘/xm2 (28)
where
d
(@ bh:=) (O, @)@ b) - 0, @, b)) (2.9)
=1

(ii) LetN>sy>d, meRandac Q/VS(’]” Then, for any s € R, one has
I Tahllgs-m Slal g lbllgs,  Yhe H(T0), (2.10)

Proposition 2.2. (Prop. 2.4 in[28]). FixN 3 so > d and my, my € R, then we have the following.
Forae JV 42 andb e N we have (recall 2.9))

So+2
1
TaoTp=Tap+Ri(a,b), TogoTp=Tap+ ET{a’b} +Ry(a,b), (2.11)
1

where Rj(a, b) are remainders satisfying, for any s € R,

1R; (@ DYl eom-ms=s S WRlszslal ym 1By (2.12)

so+J
Moreover; if a,b € H?*%(T%;C) are functions (independent of ¢ € R") then, Vs € R,
I(TaTp = Tap) hll grs+e S WAl s ll@ll go+so 1D1l go+so - (2.13)
Lemma 2.3. Fixsy>d/2 andlet f,g,he H*(T;C) fors=sy. Then

f8h=Trgh+Tenf+Trng+%(f,8h), (2.14)
where
R(f, 8 h)©) = Y aEnOfE-n-0gmhQ),

n )d i

maxz (€ - — {1, I, [IK)°
<
12Ol e s (e =n =, I, 1KDP

Proof. We start by proving the following claim: the term

Trgh— Y. &% Y ye( S5 Fe - - 0gophc)
tezd n,(ez4

is a remainder of the form (2.15). By this is actually true with coefficients a(¢,n,{) of the form

a(&,n,¢): xe(<|§+g) XG(W)

(2.15)
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In order to prove this, we consider the following partition of the unity:

- [S—n—CI+IC] [nl+1¢| IE=n—C1+In]
1=0c(6 1,0 + e S+ e fallls ) + e[S (2.16)

Then we can write
— l€=¢l) _ [s—n—Cl+nl lc—<l [$—n—CI+I¢1
at&,n 0= xe( 585 - e ™) + e (1658 e ()
€<l [n1+1¢] lc—<l
+ et e (@) + xe( 565 @m0
Using one can prove that each summand in the r.h.s. of the equation above is non-zero only if

maxy (I —n =1, I, [I¢]) ~ max; (I —n—l,|n,11¢]). This implies that each summand defines a smoothing
remainder as in (2.15). A similar property holds also for Ty, f and Trj,g. At this point we write

fgh: Z eif~x Z [66(6»17’()—}_%5(%)

éezd n,(ez4
+ e )+ e (B | Fe - n - g R(©).

One concludes by using the claim at the beginning of the proof. O

Matrices of symbols and operators. Let us consider the subspace % defined as
U :={u,u) e 2(T40) x L2(T40) - ut =u}. 2.17)

Along the paper we shall deal with matrices of linear operators acting on H*(T%;C?) preserving the
subspace %. Consider two operators R;, R, acting on C®°(T%;C). We define the operator § acting on
Co(T%;C?) as

mE, (2.18)

§=ln
where the linear operators R;[-], i = 1,2 are defined by the relation R;[v] := R;[v]. We say that an oper-
ator of the form is real-to-real. Tt is easy to note that real-to-real operators preserves % in (2.17).
Consider now a symbol a(x,¢) of order m and set A := T,. Using one can check that

Alh] = Alhl, = A=T,, a(x,$) = a(x,=&); (2.19)
Ajdoint) (AR, V)2 = (h,A* V)2, = A*=Ty. (2.20)

By we deduce that the operator A is self-adjoint with respect to the scalar product if and only
if the symbol a(x,¢) is real valued. We need the following definition. Consider two symbols a,b € A"
and the matrix

Ao AG0) ::( a(x,&)  b(x,¢) )

b(x,-¢) a(x,-¢)
Define the operator (recall 2.7))

M :=0p""(A(x,$)) := (2.21)

Op™(a(x,¢))  Op™(b(x,$))
Op™ (b(x,~{) Op™(a(x,~¢)))
The matrix of paradifferential operators defined above have the following properties:

¢ Reality: by ([2.19) we have that the operator M in (2.21) has the form (2.18), hence it is real-to-real;
 Self-adjointeness: using (2.20) the operator M in (2.21) is self-adjoint with respect to the scalar

product on (2.17)
(U,V)Lz::de-l_/dx, Uu=1[%], v=1[Y]. (2.22)
'I]',

if and only if
a(x,¢) = a(x,s), b(x,-&) = b(x,¢). (2.23)
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Non-homogeneous symbols. In this paper we deal with symbols satisfying which depends nonlin-
early on an extra function u(t, x) (which in the application will be a solution either of or a solution
of (KG)). We are interested in providing estimates of the semi-norms in terms of the Sobolev norms
of the function u.

Consider a function F(yy, y1,-.., Yq) in C®(C%*1:R) in the real sense, i.e. F is C* as function of Re(y;),
Im(y;). Assume that F has a zero of order at least p +2 € N at the origin. Consider a symbol f(¢), inde-
pendent of x € T4, such that | f| m = C < +oo, for some constant C. Let us define the symbol

a(x,8):= (0,0 s F) e, Vi) f©), 25 = 05,u” 2 = 0f u” (2.24)
7

for some j,k=1,...,d, a,f €{0,1} and 0,0’ € {+} where we used the notation u* = v and u~ = u. The
following lemma is proved in section 2 of [28].

Lemma 2.4. Fix sy > d/2. For u € BR(H*t%*1(T4;C)) with0< R < 1, we have

p

lal gy SNl

where a is the symbol in [2.24). Moreover, for any h € H stso+l the map h — (0,a)(u; x,&)h extends as a
linear form on HS***! and satisfies

1@ua@ g SRl gssson Nl -

The same holds for 0y;a. Moreover if the symbol a does not depend on Vu, then the same results are true

with so+ 1~ sp.

Trilinear operators. Along the paper we shall deal with trilinear operators on the Sobolev spaces. We
shall adopt a combination of notation introduced in [6] and [34]. In particular we are interested in study-
ing properties of operators of the form

Q = Qluy, u, us] : (C*(T%0))% — c°(T4%0),

~ 1
QO=——= Y q&n0mE-n-0hmusQ), viez?,
@m?, fha

(2.25)

where the coefficients g(&,1,¢) € C for any &,1,{ € Z%. We introduce the following notation: given
Jir..0 jp ERT, p =2 we define

max;{jy,..., jp} = i—thlargestamong ji,..., jp. (2.26)

We now prove that, under certain conditions on the coefficients, the operators of the form (2.25) extend
as continuous maps on the Sobolev spaces.

Lemma 2.5. Let >0 and m € R. Assume that for any &,1,( € Z% one has

max {(¢ -1 — ), m, O
max; {(§ — 1), M, N"

Then, for s = sy > d/2 + u, the map Q in (2.25) with coefficients satisfying [2.27) extends as a continuous
map form (H*(T%;C))3 to H+"™(T%;C). Moreover one has

lg&,n,01S (2.27)

3
1Qur, uz, ug)  gsem D Nuill s [ Mokl o - (2.28)
i=1 iZk
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Proof. By we have

2
1Q(u1, uz, us) 1 3sem < Y <5>2“+’")( Y |q(é,n,o|ml(é—n—()||ﬁ2(n)|m3(o|)

gez? n(ezd

27 2 (2.29)
< 2 ( > <€>Sm2ax{<€—n—(>,<n>,<C>}“Iﬁ1(€—n—()llﬁz(n)llﬁs(ol)

Eezd \n,Lez4
=I1+11+111,

where I,11, 111 are the terms in (2.29) which are supported respectively on indexes such that max; {({ —

=0, m, (O} =& —n—0), max; {(§—n—0), (), (O} = () and max; {(& —n— ), (), ()} = (). Consider for
instance the term I11. By using the Young inequality for sequences we deduce

TSI an(p) * pF i m) * (O U@z S N ll ol o luz i s,
which is the (2.28). The bounds of I and IT are similar. O

In the following lemma we shall prove that a class of “para-differential” trilinear operators, having
some decay on the coefficients, satisfies the hypothesis of the previous lemma.

Lemma 2.6. Let 1= 0 and m € R. Consider a trilinear map Q as in with coefficients satisfying
q(f,n,()=f(€,n,()xe(ﬂ), If(é,n,()|<M (2.30)
€+ ~oAOm

forany &, € Z% and 0 < € < 1. Then the coefficients q(&,n,{) satisfy the with L~ p+ m.
Proof. First of all we write q(¢,n,{) = g1(£,1n,{) + g2(&,7,{) with

Q&m0 = f(é,n,C)xe(l:Z;g)xe(lf_nzgl i Inl), 2.31)
G2(&,1,0) = f(é,n,()xe(g;g)[ e(lf—n<—n§“| . ICI) + e(<!7_|;|f|0) +O.En0], @3

where 0, (¢,1,{) is defined in (2.16). Recalling one can check thatif ¢, (¢,1,{) # 0 then |E—n—{|+|n| <
I¢] ~ |€]. Together with the bound on f(&,7,{) in we deduce that the coefficients in satisfy
the (2.27). The coefficients in satisfy the because of the support of the cut off function in
2.5). O

Hamiltonian formalism in complex variables. Given a Hamiltonian function H : H LT14:C%) > R, its
Hamiltonian vector field has the form

Xp(U) := ~1JVH(U) = —i(_vv"fﬁg;)) =[98, u=1[Y. (2.33)
Indeed one has
dHU)[V] = -QXx(U),V), vUu=[4],v=[y], (2.34)
where Q is the non-degenerate symplectic form
Q(U,V)z—f U-i]de:—f i(uv-uv)ydx. (2.35)
T4 T4

The Poisson brackets between two Hamiltonians H, G are defined as
(G, H} := Q(X¢, Xp) —fi]VG .VHdx = —if V., HV+G — V= HV ,Gdx. (2.36)

The nonlinear commutator between two Hamiltonian vector fields is given by

(X6, Xpl(U) = dXe(U) [ Xu ()] - dXg(U)[Xe(U)] = —Xi6,m (U). (2.37)
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Hamiltonian formalism in real variables. Given a Hamiltonian function Hg : H! (T4;R?) — R, its hamil-
tonian vector field has the form

. _[ VoHr(y,¢) )
Xpp (W, ) := JVHr(w, ) = (_VUIH[R(W,(P) ) (2.38)
where J is in (2.33). Indeed one has

dHg(y,¢)[h] = -QXp (w, @), ), Y[y], k=[], (2.39)

where Q is the non-degenerate symplectic form
A 1[5 D —f (o177 (e :Ad_(WIQbZ_(Ple)dX, (2.40)

We introduce the complex symplectlc varlables
(ﬁ) :cg("’) N AKGWHA , (W) — ¢! (E) - L A et ) , 2.41)

u ¢) V2 AZW—IA 2¢ ¢ W V2\SAL (u-w)

where Ay is in (I:3). The symplectic form in (2:40) transforms, for U = [%], V =[], into Q(U, V) where
Qs in (2.35). In these coordinates the vector ﬁeld Xp, in (2.38) assumes the form Xp as in (2.33) with
H:= Hpo € 1.

We now study some algebraic properties enjoyed by the Hamiltonian functions previously defined.
Let us consider a homogeneous Hamiltonian H: H' (T%;C?) — R of degree four of the form

HU)=em™ Y hEnda¢-n-0umaQu-o, U=[%], (2.42)
¢miez?

for some coefficients hy(¢,n,{) € C such that

h4(5)77)() = h4(—77,—f,() = h4(5,77»5—77—(),

hy(&,n,0) =hs(,n+( &),  VEN{ez?.

By (2.43) one can check that the Hamiltonian H is real valued and symmetric in its entries. Recalling
(2.33) we have that its Hamiltonian vector field can be written as

(2.43)

_(~iVgHW)\ _ [X;M©)
XHO©=en" Y fEnQuE-n-0uma), (2.45)
n,(ez
where the coefficients f(£,n,{) have the form
fEnQ=2inEn0),  &nlez?. (2.46)
We need the following definition.
Definition 2.7. (Resonant set). We define the following set of resonant indexes:
Z:={En0 e’ 18 =11, Inl =1 -n -1} 047
u{En0 ez 1 1E=1E—n =Ll Inl=1¢1} '
Consider the vector field in (2:45). We define the field X;;"**(U) by
7RO =0 Y ¢ 0a¢-n-Oumag), (2.48)
n.gezd
where
OO = FENO12E .0, (2.49)

where 14 is the characteristic function of the set .
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In the next lemma we prove a fundamental cancellation.
Lemma 2.8. For n =0 one has (recall )
Re((D)" X" (U),(D)"u);2 = 0. (2.50)
Proof. Using (2.47)-(2.49) one can check that
XSO =em™ Y FEn0aE-n-0umaw,

n,0)eZ(S)
with Z(&) = {,) € 224 : |E| = 1{1,Inl = 1E —=n = {1}, for é € 24, and
g(g:n:() ::f(é,an)+f(€rn!f_n_{) (251)

By an explicit computation we have

Re(D* X" (U),D°u) 2 =

=em™ Y RF|FEn0+FCIn -8 0| a¢ -n - DU AOU-0).
&ez,(n,0)eR ()

By (2.51), and using the symmetries we have Z (&,n,)+F({(,{+1n-¢,8) =0. O

Remark 2.9. We remark that along the paper we shall deal with general Hamiltonian functions of the
form

HwWy=em™ Y n%v%%%En,0uor (¢ —n-)uozm)u’s (O u’ (—¢),

01,02,03,04€{%}
&mlez?

where we used the notation
W@ =), fo=+, and u%@E=u@), fo=-. (2.52)

However, by the definition of the resonant set (2.47), we can note that the resonant vector field has still the
form ([2.48) and it depends only on the monomials in the Hamiltonian H(U) which are gauge invariant,

i.e. of the form (2.42).

3. PARA-DIFFERENTIAL FORMULATION OF THE PROBLEMS

In this section we rewrite the equations in a para-differential form by means of the para-linearization
formula (a la Bony see [10]). In subsection [3.1]we deal with the problem and in the 3.2 we deal
with (KG).

3.1. Para-linearization of the NLS. In the following proposition we para-linearize (NLS), with respect
to the variables (u, u). We shall use the following notation throughout the rest of the paper

U:=[%], E:=[}9%] 1:=[}Y], diagh):=b1, beC. 3.1
Define the following real symbols
a ()= (W (ud)) 1w, ba(o = (W (u?) o,

. P _ (3.2)
a1 (x)-&:= [W(u®)]” Y Imut)E;, &=(E1..nnéa).
j=1

We define also the matrix of functions

Az (x):= A2 (U; x) = |

ax(U;x) bz(U;x)] _ [az(x) bz(x)]
by (U;x) az(U;x) by(x) ax(x)

with ay (x) and by (x) defined in (3.2). We have the following.

(3.3)
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Proposition 3.1. (Paralinearization of NLS). The equation (NLS) is equivalent to the following system:
U = —iEOp™ ((1 + A2(x)IE)U —1iEV * U —i0p"" (diag(d; (x) - &)U + X e (D) + RV, (3.4)
NL!

where V is the convolution potential in (L), the matrix A;(x) is the one in (3.3), the symbol d, (x) - & is in
and the vector field X ,,« (U) is defined as follows
NLS

s sw(2lul® u?
X 0 (U) = =iE[Op™ ([ 1L 1)U+ Qs ], (3.5)
The semi-norms of the symbols satisfy the following estimates
a2 yo +1b2) o St sy Vp+soss, peN, 56
1€y SNulllppesgrn, Vp+so+lss, peN, '
where we have chosen sy > d. The remainder Q3(U) has the form (Q3 (U), QF (U))T and
@(f)=(2ﬂ)_d > q&n.Ou¢ -n-OumuQ), 3.7
n,{ez?
for someq(&,n,{) € C. The coefficients of Q3 satisfy
maxz {{(¢ —n—{), (), (P
1, n OIS 2l =n-0), ), & , Vp=0. 3.8)

max{(¢ -1 —0), (m,(O}P
The remainder R(U) has the form (R* (U), R*(U))T. Moreover, for any s > 2d + 2, we have the estimates
IR SNUNGs, 1Q3@)pgse2 S MU N5 3.9)

Proof. By Proposition 3.3 in [28] we obtain that at the positive orders the symbols are given by

d d
aU;x,0) = Y, O, PVjék, b2Ux,O= ) Ompa; Pk,

Jk=1 jk=1
i d d
@ (U3 x)-£ =3 Y (O, P) =~ Oum, P))Ej = 3 Im @, P
=1 =

then one obtains formulae by direct inspection by using the second line in (I.1I). The estimates
are obtained as consequence of the fact that #'(s) ~ s when s goes to 0 and using Lemma The
estimate on R(U) in may be deduced from @2.10), (2.3), and (3.6), for more details one can
follow Proposition 3.3 in [28]. Formula is obtained by using Lemma applied to |ul?u. U

Remark 3.2. « The cubic term X j,w (U) in (3.5) is the Hamiltonian vector field of the Hamiltonian func-
NLS
tion )
4) - 4 127U
FOg(U) := Efwm dx, Xz (U)=-ilu (%] (3.10)

o The operators Op™ ((1 + A2 (x))|¢[%), Op®™ (diag (@1 (x)-&)) and OpBW( 2|Eu2|2 2|”u2|2 ]) are self-adjoint thanks
to (2.23) and (3.2).

3.2. Para-linearization of the KG. In this section we rewrite the equation as a paradifferential sys-
tem. This is the content of Proposition Before stating this result we need some preliminaries. In

particular in Lemma|3.3|below we analyze some properties of the cubic terms in the equation (KG). De-
fine the following real symbols

d .|
05,8 = a0 = Y Oy, v, )W VW, v="% @+,
Jrk=1 (3.11)

ao(x,€) := ag(u; x,€) := 30y, y, O W, AZy) + By, 5, G W, ALY AL (©).
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We define also the matrices of symbols

o (x,8) 1= oy (u; x,8) := L[ 1A O ap(u; %, ), (3.12)
o (x,8) := oAy (u; x,8) := [1 1] ao(u; x,8), (3.13)

and the Hamiltonian function
AP (U) = fv ) G(u/,AéGu/)dx, (3.14)

with G the function appearing in (I.13). First of all we study some properties of the vector field of the
Hamiltonian JKK%) .

Lemma 3.3. We have that
Xz (U) = =1V.76) (U) = —IEOP™ (e (x,))U + Q3 (1), (3.15)

with oy in B.13). The remainder Qs (u) has the form (Q3 (u), Q;(u))T and (recall 2.52))

U@O=—= Y QRENQUTE - - QUTmUTIQ), (3.16)
(27m) 01,02, 03€{+}
nLez?

for some q”17273(¢,n,{) € C. The coefficients of Q5 satisfy
max{( —n—0), (), (D}

Iq7t 7273 (&, O (3.17)
4 PO max(@—n =0, a0
foranyoi,02,03 € {+}. Finally, for s >2d + 1, we have
laolyo SNulfp, PH+sos<s, so>d, (3.18)
1X g0 @)z SNullypss Qs lgrses < ey, (3.19)
IIdUXJfI%) @) Ml as S Nullgell Bl s, Vhe H (T C?). (3.20)
Proof. By and explicit computation and using we get
T A
+ + :
Xjfgtc)(U) X 4)(U) Xt (4)(U) ) Xﬁég(U):_l%g(W)'
The function g is a homogeneous polynomial of degree three. Hence, by using Lemma|2.3} we obtain
1X+ o (U)= Ap+ A1+ A +Q 7 (W) (3.21)
where
1
Ag:= EOpBW(aylylG(l//,Auzt//))[u+ ul, (3.22)
1
A1 1= 20p™(@y,, Gy, AL2y)) Ay AKGZOBWa Gly, Ay 3.23
-1=50p 0y, Gy, I (u+u)]+ P 0y, Gy, YN lu+ul, (3.23)
a6 AL? U 3.24
-1 .= 2 p ( YoYo (u/, W))[ (u+u)]» ( ° )

and Q" is a cubic smoothing remainder of the form whose coefficients satisfy the bound (3.17).
The symbols of the the paradifferential operators have the form (using that G is a polynomial)

0GB ) )0 5 Y 010 - i) 525
tezd nezd

where k, j € {0, y1} and where the coefficients gk‘ 92(&,m) € C satisfy |g‘71 2| < 1.



LONG TIME SOLUTIONS FOR QUASI-LINEAR NLS AND KG ON TORI 17

We claim that the term in (3.24) is a cubic remainder of the form (3:16) with coefficients satisfying (3.17).
By (2.6) we have

I§ =<l
€+0

6z 1 01,0 1§l
= v Ay Ay
2(2m)4 mya;e{ﬂgyo Yo C-om (E) ({)Xe( €+0

n,(ez?

— 1
@=L GO OAE OAF Oxe( e r

u?(¢)
2(2m) (ezd,0e{+} ) ¢

J@ ¢ -n- 0w mu ),

which implies that A_; has the form (3.16) with coefficients

a%L 71,00 = S €~ C AL OAL Oxe( 55). (3.26)

By Lemma [2.6|we have that the coefficients in (3.26) satisfy (3.17). This prove the claim for the operator
A_1. We now study the term in (3.23). We remark that, by Proposition[2.2] (see the composition formula

(2.11)), we have that A_;,2 = OpBW(A (f)ayo 1 G) up to a smoothing operator of order —3/2. Actually to
prove that such a remainder has the form (3:16) with coefficients (3.17) it is more convenient to compute
the composition operator explicitly. In particular, recalling (2.6), we get

A= OpBW(A;G% (€)0yyy,G) + R_1, (3.27)
where
Ra@=en™ " Y 7 E-n-{n0un € -n-0urmu’Q),
al,r;ré,eazed{i}
7O~ =0, 0) = JE € - e )[ JOHALO-20 GO,
We note that

—

_1 _1 1 3
A @) = A2 (Y - fOAKGZ(‘f v hdr.

N |

Then we deduce
O AL - 20 (59| Sl E.

Again by Lemma 2.6/ one can conclude that r?727 (¢ —n —{,n,{) satisfies the (3.17). By (3.27), (3.22),
(3.24) and recalling the definition of ay(x,¢) in (3.11), we obtain the (3.15). The bound (8.19) for Q3
follows by (3.17) and Lemmal2.5| Moreover the bound (3-18) follows by Lemma 2.12 in [28] recalling that
1
Gy, A%y) ~ O(u*). Then the bound B19) for X .« follows by Lemma Let us prove the (3.20). By
KG
differentiating (3.15) we get

UXJfI(é) () [h] = —iEOp"" (oo (x,E))h —iEOP"" (dysty(x,E)M)U + dyQs(u) [h] . (3.28)
The first summand in (3:28) satisfies (3:20) by Lemma [2.1]and (3:18). Moreover using (3.25) and (3
one can check that

ldysto(x, )Rl yo S Nullppeso Nl reso,  p+so<ss.

Then the second summand in [3:28) verify the bound (3:20) again by Lemma 2.1} The estimate on the
third summand in (3:28) follows by (8:16), (3.17) and Lemmal2.5] O



18 ROBERTO FEOLA, BENOIT GREBERT, AND FELICE IANDOLI

Remark 3.4. We remark that the symbol ay(x,¢) in (3.11) is homogenenous of degree two in the variables
u,u. In particular, by (3.25), we have

d DX~ =~ - u u’
ao(x,f) = @2n) 4 Z elp'xao(P»'f)r aO(P»é-) =(2m) d Z aglytfz (P,ﬂ,f) uU1(P_77) u02(77)
ot 01,02€{+}
nezd (3.29)
1 _1
ag" " (p,1,€) 1= g (1) + g5 (B A (©).

Moreover one has Iag 192(p,n,&)| < 1. Since the symbol ay(x, &) is real-valued one can check that

al(pn,d) =a,’" "% (-p,-n,¢), VEpmezZ?, 01,006 (). (3.30)

Remark 3.5. Consider the special case when the function G in is independent of y,. Following the
proof of Lemma 3.3 one could obtain the formula with symbol ay(x,&) of order —1 given by (see
(3.24))

ag(x,8) 1= 30,5, G A ().
The remainder Qs would satisfy the with better denominator max{(¢ —n — ), ), ()}

The main result of this section is the following.
Proposition 3.6. (Paralinearization of KG). The system is equivalent to
U = —iEOp"™" ((1 + o4, (x, ) Axe(©)) U + X 0 (U) + R(w), (3.31)

whereU := 4] := ‘g[g] (see 241)), o (x,¢) is in B12), X ,,w (U) is the Hamiltonian vector field of (3.14).
KG

The operator R(u) has the form (R* (u), R* (u)) T Moreover we have that

1l yo +1azl g2+ Sl fpegn, Yp+so+lss, peN, (3.32)
where we have chosen sy > d. Finally there is u > 0 such that, for any s > 2d + u, the remainder R>5(u)
satisfy

IR s Slull3ye. (3.33)

Proof. First of all we note that system (1.12) in the complex coordinates (2.41) reads

1 1
AKG (u+u)

2
0= —ifu-itS (f@) +gy),  y="e2 (3.34)

with f(y), gw) in (LI), (L2). The term —i/v2A/?g(y) is the first component of the vector field
X ;@ (U) which has been studied in Lemma By using the Bony para-linearization formula (see [10]),
KG

passing to the Weyl quantization and (1.1I) we get

d

Fa ==Y 05,000™ ((Oy, u,, ), Vi) 00 (3.35)
k=1

d
+) [OpBW((anj F)(y,Vy)),0x, | @ + Op™ ((0yy F) (W, Vi) )y + RP (y), (3.36)
j=1

where R™P (y) satisfies [|R™° (¥) || gs+o < ||1l/||?{s for any s = sp > d + p. By Lemma 2.12 in [28], and recalling
that F(y, Vi) ~ O(y®), we have that
10y, Flae + 10y, FlLys + 104y FlLys SIWI e, pHso+1<s, (3.37)

where sp > d. Recall that 8., = Op®" (¢ ;). Then, by Proposition we have

OPBW(OWij F)’axj] = OPBW(—i{aWU/ij’éj}) +Q(y)



LONG TIME SOLUTIONS FOR QUASI-LINEAR NLS AND KG ON TORI 19

with (see @I2) 1QW) g1 S 10y, Flyo Iyl gs. Then by @8), 837) and @.I0) (see Lem and
So+

Proposition[2.2) we deduce that the terms in (3.36) can be absorbed in a remainder satisfying (3.33) with

s> 2d large enough. We now consider the first term in the r.h.s. of (3.35). We have

~05;00p™((0y. v, F) W, V)| 00, = Op™ (£ )OP™ ((0y., ., F) w, V)| Op™ (1)
By using again Lemma[2.1]and Proposition[2.2we get that
f) =0p™ (ax(x, )y + R(y), (3.38)

where a, is in (3.11) and ﬁ(w) is a remainder satisfying (3.33). The symbol a,(x,¢) satisfies (3.32) by
(3.37). Moreover

G = LA plele "”” ) B2 L0p™ (ap (e, )AL ) u+ T (3.39)
up to remainders satlsfylng - Here we used Proposition E 2.2| to study the composition operator
OpBW(az(x &))A,Z . By the discussion above and formula (3.34) we deduce the (3.31). O

Remark 3.7. In the semi-linear case, i.e. when f =0 and g does not depend on y, (see (L1), (1.2)) , the
equation (3.31) reads
U = —iEOp™ (1A () U + X 0 (U),
KG

and where the vector field X ,,» has the particular structure described in Remark
KG

4. DIAGONALIZATION

4.1. Diagonalization of the NLS. In this section we diagonalize the system (3.4). We first diagonalize
the matrix E(1 + A2(x)) in by means of a change of coordinates as the ones made in the papers
28] 29]. After that we diagonalize the matrix of symbols of order 0 at homogeneity 3, by means of an
approximatively symplectic change of coordinates. Throughout the rest of the section we shall assume
the following.

Hypothesis 4.1. We restrict the solution of on the interval of times [0, T), with T such that

sup lu(t, ) lgs <€, lNupgX)llas < co(sde k1,
tel0,T)

for some0 < ¢y(s) < 1.
Note that such a time T > 0 exists thanks to the local existence theorem in [28].

4.1.1. Diagonalization at order 2. We consider the matrix E(1 + A, (x)) in (3.4). We define

Aas (0) 1= Aas(U3 ) := V I+ 2[uPR ()12, al’(x) = das(x) - 1, 4.1)

and we note that +Ay5(x) are the eigenvalues of the matrix E(1 + A2(x)). We denote by S matrix of the
eigenvectors of E(1 + A2(x)), more explicitly

NI s 1= S1 —$2
S s1)’ -5 s1)’

P 175 R C 2 (1 (|uf?))? .2
1 = » 2 = .
\/Z}LNLS(X) I+ |L£|2 + Anis (X)) \/ZA’NLS(X) 1+ |u|2 + Aais (X))
Since +Ay5(x) are the eigenvalues and S(x) is the matrix eigenvectors of E(1 + Ay (x)) we have that
STYE( + Ax(x))S = Ediag(Ays(x)), s5—1Is2®=1, 4.3)

where we have used the notation (3.I). In the following lemma we estimate the semi-norms of the sym-
bols defined above.
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Lemma 4.2. Let N 3 sg > d. The symbols aél) defined in (.1), s; — 1 and s, defined in (4.2) satisfy the
following estimate

1 6
las” o +1s1 =10 + 152040 Sullpeg,  pHsoss, peN.

Proof. The proof follows by using the estimate (3-6) on the symbols in (3-2), the fact that h'(s) ~ s when
s~0, |lulls < 1, and the explicit expression {4.1), (4.2). O

We now study how the system transforms under the maps
Dyys 1= Dy (U) 1= Op™ (S (U %)), Vs = Ws(U) := Op”" (S(U; 1)) (4.4)

Lemma 4.3. Let U = [3] be a solution of (8:4) and assume Hyp. Then forany s = 2sy+2,N > so > d,
we have the following.
(i) One has the upper bound

1P DW g5 + [Wrais Wl s < IW s (14 Cllul ).

1(@yis (V) = DW s + 1 (Ppas (@) = D Wl gs SIW s lull Sy, YW e HI(TY0),

(4.5)

where the constant C depends on s;
(ii) one has ¥y s(U) o @y s(U) = 1 + R(u) where R is a real-to-real remainder of the form (2.18) satisfying

IR Wl ggsvz S IW sl S gz - (4.6)
The map 1 + R(u) is invertible with inverse (1 + R(u)) ™! := (1 + R(u)) with R(u) of the form and

IR@W) Wl gsvz S W | gs | u||?_12s0+2» (4.7)
as a consequence the map Dy is invertible and <I>§L15 = (14 R) W, with estimates

DLW s < IW s (L+ Cllul Sy i2) (4.8)

where the constant C depends on s;
(iii) forany t € [0, T), one has 0,;®ys(U)[-] = Op*" (8,S~1(U; x)) and

0.7 U0y SNulSpigizr 10 Pus@VIlzs SUW lpslull gz - (4.9)

Proof. (i) The bounds follow by and Lemmal[4.2]

(i) We apply Proposition[2.2|to the maps in (#.4), in particular the first part of the item follows by using
the expansion and recalling that symbols s; (x) and s»(x) do not depend on ¢. The is obtained
by Neumann series by using that (see Hyp. el s < 1.

(iii) We note that 0,51 (x,&) = (0,51) (1 x, &) [12] + (051) (w; x, ) [w) . Since u solves and satisfies Hy-
pothesis[4.1} then using Lemmal[2.1]and we deduce that ||| s < || ull gs+2. Hence the estimates
follow by direct inspection by using the explicit structure of the symbols sy, s, in (.2), Lemma 2.4 and
(2.10). ]

We are now in position to state the following proposition.
Proposition 4.4 (Diagonalization at order 2). Consider the system and set
W=o,(U)U, (4.10)
with ®s defined in [@.4). Then W solves the equation
W =—iEOp™ (diag(1+ al" (U; 1)) 1YW —iEV * W

(4.11)
. s =)yt
—i0p™ (diag(@\" (U; x) - €))W + X g (W) + RV,
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where the vector field X ,,w is defined in (3.5). The symbols aél) and ﬁ;l) -& arereal valued and satisfy the
NLS
following estimates

1
a5 1yo Sl » Vp+so<s, peN,
! (4.12)
=(1) <6 :
lay”-clyr Sullgppisgn,  Yptsotlss, peN,

where we have chosen sy > d. The remainder RY has the form (RY", RO T Moreover, for any s > 2d +2,
it satisfies the estimate
IRV @) ks SNUN s (4.13)

Proof. The function W defined in satisfies
W = [atq)NLs(U)] U+ q)NLS(U)U

= — Dy (DIEOP™ ((1 + Az (U))IE1?) Wris (W — Oy (DIEV * Wy s W (4.14)
_iq)NLs(U)OPBW(diag(al(U) 'f))\PNLs(U)W (4.15)
+ Oy (U) X]g&)s ) (4.16)
+ Dy (DRWU) + Op™ (0,8 (U)U 4.17)

- fDNLs(U)i[EOpBW((ll + A2 (U))IE17) + Op™™ (diag (@) - €)) + Py (DEV * | RU) P yi5(U), (4.18)

here we have used items (ii) and (iii) of Lemmal4.3

We are going to analyze each term in the r.h.s. of the equation above. Because of estimates (4.7),
(applied for the map ®y,g), Lemma (applied for the symbols a,, b, and d; -¢) and finally item (ii) of
Lemmawe may absorb term in the remainder RV (U) verifying (@.13). The term in may
be absorbed in RY (U) as well because of and for the first addendum, because of and item
(ii) of Lemmal|2.1]for the second one.

We study the first addendum in (@.14). We recall and (4.2), we apply Proposition [2.2]and we get, by
direct inspection, that the new term, modulo contribution that may be absorbed in RY(U), is given by

~iEOp™ (diag(y.o)|W - 2i0p™ (diag(Im {(s252) V1 + (51 b2 + 52(1 + @2))VSa}-£) | W,

where by Im {b}, with b = (by,...,bs), we denoted the vector (Im (by),...,Im (b;)). The second addendum
in is equal to —iEV * W modulo contributions to RV (U) thanks to and ([@5).
Reasoning analogously one can prove that the term in equals to —iOp™ (diag(d; (U)-¢))W , modulo
contributions to R (U). We are left with studying (@.16). First of all we note that X e (U) = —iE| ul*U,
then we write \

X%&)S ) = XjflglL)S(W) + Xﬂﬁ)s (U) - Xﬂﬁﬁs (w).

Lemmaand item (i7) of Lemma (recall also (@.2)), imply | Oy s(NU - Ul gs < | U|l”.., therefore it
is a contribution to R (U). We have obtained @y (U)X 0 (U) = X @ (W) modulo RP (V).
LS NLS

N

Summarizing we obtained the (4.11) with symbols ag) defined in (4.1) and
a\V = dy +2Im{(s2b2)Vsy + (5102 + 52 (1 + @2)) Vo } € R, (4.19)
with d@; in (3.2). O

4.1.2. Diagonalization of cubic terms at order 0. The aim of this section is to diagonalize the cubic vector
field X 700 in (see also (3.5)) up to smoothing remainder. In order to do this we will consider
a change of coordinates which is symplectic up to high degree of homogeneity. We reason as follows.
Define the following frequency localization:

—~ |k| ik-x d
S:w = K)Ye|l — , e’Z”, 4.20
cw kédw( V¥ (@)e £ (4.20)
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for some 0 <€ < 1, where y. is defined in (2.5). Consider the matrix of symbols

0 byis(x,€) , 1
Bays(W; x,8) := Bys(x,8) i= |[———— ,  bys(x,8) =w—, 4.21
NLS( 6) NLS( 6) (bNLS (x’ _é—) 0 NLS( é) 2|€|2 ( )
and the Hamiltonian function
1 __
Brs(W) = Efw iEOpBW(BNLS(S(gW;x,g‘))W-de, (4.22)

where S;W := (S;w, S;w)” . The presence of truncation on the high modes (S;) will be decisive in ob-
taining LemmalA.1| (see comments in the proof of this Lemma).
Let

Z:=[2] = Oz (W) :i= W+ Xg,, (W) (4.23)

where Xg,, is the Hamiltonian vector field of (4.22). We note that ® g, . is not symplectic, nevertheless
itis close to the flow of %,;s(W) which is symplectic. The properties of Xg, , and the estimates of ®g
are discussed in LemmalA.I|and in Proposition[A.2]

Remark 4.5. Recall (£10) and @:23). One can note that, owing to Hypothesis[4.1} for s > 2d + 2, we have
MU as ~s IWlgs ~s 121 s - (4.24)
This is a consequence of the estimates (4.5), (4.8), (A.7), (A.4), (A.9).

We introduce the following notation. We define the operator Ay as the Fourier multiplier acting on
periodic functions as follows:

ANLseiE'x = Anis($) eif-x, R> Ays(§) := |€|2 + ‘7(5) , C€ Zd , (4.25)

where V(E ) are the real Fourier coefficients of the convolution potential V(x) given in (1.5). We prove the
following.

Proposition 4.6 (Diagonalization at order 0). Let U = (u, u) be a solution of and assume Hyp.
Define W := Oy (U)U where Oy s(U) is the map in (4.4) given in Lemma Then the function Z = [g]
defined in (4.23) satisfies (recall (4.25))

0.7 = ~iEAysZ ~iEOp™ (diag(af’ (0I¢?)) 2
(4.26)
- iOpBW(diag(ﬁgn (x) -é))Z + Xy (2)+ RP (),

where aél)(x), Zzil)(x) are the real valued symbols appearing in Proposition the cubic vector field
XH(4)S (Z) has the form (see (A.16))
NL!

21z2 0

s BW
Xy (#):=—1EOp (0 2|z|?

) Z+ QHSﬂs 2), (4.27)

the remainder Q is given by Lemma and satisfies (A.17)-(A.18). The remainder Réz) (U) has the form
NLS
(REY, RE*NT. Moreover, for any s > 2d +4,
IR (@)l s SNUNs. (4.28)

The vector field Xy (Z) in (4.27) is Hamiltonian, i.e. (see (2.33), (2.36)) Xy (Z) := —i]Vng‘i)s(Z) with
NLS NLS
HO(2) 1= F0UZ) ~ 1 Bus(2), H0RUZ)), - FERUZ) = fr [ Mwisz-Zdx (4.29)

where 7€) is in B.10), and By.s is in &22), @21).
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Proof. Recalling and we set
FEGD (W) i= ZE (W) + ZE (W) (4.30)
Then we have that the equation (4.11) reads
0:W = X jizo (W) - i0p™ (AU; x,&))W + RV (U)

where we set

A(U; x,8) := Ediag(al’ (U; )|¢[?) + diag(a\” (U; x) - €). (4.31)
Hence by we get
0,7 = (dw gz (W) [ —-iop™ (A(U; x,0)) W] + (dw Dy ) (W) [ X 7 W)] 32
+ (dw Pz, ) (W) [RD (WD)
We study each summand separately. First of all we have that
A3 @13 @29
ldw @y s MRV )]l < Nl (1 + 1wl Fe) ? el - (4.33)
Let us now analyze the first summand in the r.h.s. of (4.32). We write
(dw @epe (W) [10P™ (AU; x, D)W | =10p™ (AWU; ,0) Z+ Py + Py,
Py :=i0p™ (AWU; x,8))[W - Z], (4.34)
Py 1= ((dw ®eay (W) - 1) [i10p™ (AWU; x, ) W]
Fix sy > d, we have that, for s > 2sy + 4,
ED 9 @.ene62m
1P2llgs S NwllflOp™ (AWU; X, )W | gys-2 S 2l gys - (4.35)

By @.23), (A.4) we get |[W — Z| gs < ||w||HS ,. Therefore, by (@.34), (4.31), @.12), 2.10) and (4.24) we get

6 6 3 9
IP1l s SNl f s IW = Zll gsve S Null sy lwllgps S el s - (4.36)

The estimates (4.33), (4.35), (4.36) imply that the term P, P2 and dw ®g,, (W) [R(U (U)] can be absorbed
in a remainder satisfying (4.28). Finally we consider the second summand in #32). By Lemma[A.3]we
deduce

dw Pz (W) [X 0 w)| = X o0 (Z) + [ngms (2), X 70 (Z)] +Rs5(2)
where Rjs is a remainder satisfying the quintic estimate ( . By Lemma[A.4]we also have that
Xﬂ;ﬁ;} (2) + [X@NLS (Z)’Xjflglzlis (Z)] =—iEAqsZ + XHKI‘I{S 2,

with X @ as in (@.27). Moreover it is Hamiltonian with Hamiltonian as in (4.29) by formulea (Z and
. This concludes the proof. O

Remark 4.7. The Hamiltonian functlon in (4.29) may be rewritten, up to symmetrizations, as in (2.42)
with coefficients hy(¢,n,() satisfying ([2.43). The coefficients of its Hamiltonian vector field have the form

(2.46) (see also ([2.45)). Moreover, by lb 26, (A:16), (A17), we deduce that

2iha(§,1,0) = 2ixe(§55) + aye €0 (4.37)
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4.2. Diagonalization of the KG. In this section we diagonalize the system up to a smoothing re-
mainder. This will be done into two steps. We first diagonalize the matrix E(1 + «f; (x,{)) in by
means of a change of coordinates similar to the one made in the previous section for the (NLS) case.
After that we diagonalize the matrix of symbols of order 0 at homogeneity 3, by means of an approxima-
tively symplectic change of coordinates. Consider the Cauchy problem associated to (KG). Throughout
the rest of the section we shall assume the following.

Hypothesis 4.8. We restrict the solution of on the interval of times [0, T), with T such that

Sup, (I () ey + 10 @y ) <es IpoOl g +1Y1 O,y < c0(e< 1,

forsome 0 < co(s) <1 withy(0,x) =wo(x) and 0,v)(0,x) =y (x).
Note that such a T exists thanks to the local well-posedness proved in [37].

1~ llull gs.

Remark 4.9. Recall the (2.41). Then one can note that ||1//||HS+% + ||6t1//||HS,§

4.2.1. Diagonalization at order 1. Consider the matrix of symbols (see (3.11), (3.12))

Ed+e(x,8), ohxd:=[11axd, @ :=iNOalxd). (4.38)
Define

A (%, 8) 1= \/(1+ﬁz(x,f))2—(ﬁz(x,f))z, Gy (%,6) = Ao (%,6) — 1. (4.39)

Notice that the symbol A,;(x, &) is well-defined by taking ||« ;s <« 1 small enough. The matrix of eigen-
vectors associated to the eigenvalues of E(1 + </ (x,&)) is

s1(x, S2(x, _ S1(X, —S2(X,
S(x,f)::( 1(x,6)  s2( 5))’ S 1(x’6)::( 1(%,¢) 2(x,6) ,
$2(x,6)  s1(x,8) -5,  s1(x,¢)
1+adp+ Ay —ay (4.40)
S1 = , $o = .
V2 (1 + 8+ Arc) V2 (1 + 2 + )
By a direct computation one can check that
ST, OE + s (x,6))S(x, €) = Ediag(Ae(x,6)), s —Isal* =1. (4.41)
We shall study how the system transforms under the maps
Dy = Dy (U)[] := OPBW(S_I(X, E)) ) Yie = Yio(O)[] := OPBW(S(X;é)) . (4.42)
We prove the following result.
Lemma 4.10. Assume Hypothesis[4.8 We have the following:
(i) ifso>d, then
|5 |0 + 121y + 151 =1 g0 + 152l yo SNttllpprgger, PHSo+1SS; (4.43)
(ii) foranyseR one has
@ (V= Vg + Vi (DDV = Vigs S ||V||HX||u||A;{250+1» VVeH(T%CH); (4.44)
(iii) onehas ¥V (U)o ®(U) =1+ Q(U) where Q is a real-to-real remainder satisfying
QN Vi gser SV las ||u||§,230+3; (4.45)

(iv) foranyte[0,T), one has 0Dy (U)[] = OpBW(atS_l(x,f)) and
10657 Oy Slullfges,  10: @@ VIlms SNV s Nul g - (4.46)
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Proof. (i) The follows by using the explicit formulee (4.40), (4.39).
(i7) It follows by using and item (i7) in Lemmal2.1]

(iii) By formula (2.11) in Proposition[2.2Jone gets

0 i{s1, $o}
—i{sy, s2} 0
for some remainder satisfying (2.12) with a ~» s; and b ~~ s,. Therefore the (@.45) follows by using (2.8),
(2.10) and (4.43).

(iv) It is similar to the proof of item (iii) of Lemmal}4.3 O

Wi (U) 0 Dy (U) :]1+OPBW + R(s1, $2),

Proposition 4.11 (Diagonalization at order 1). Consider the system (3.31) and set

W=, (U)U, (4.47)
with Oy defined in [@.42). Then W solves the equation (recall )
W =—iEOp™ (diag(1 + @ (4,§)) A EDW + X 0 (W) + RYw), (4.48)

where the vector field X ;) is defined in 8.15). The symbol &, is defined in @39). The remainder RW has
the form (RY, RANT | Moreover, for any s > 2d + u, for some i > 0, it satisfies the estimate
IRY @)l s S Nl (4.49)

Proof. By and we get
0;W = O (D) U + (0, P (D)) U]
= —i0 (D) Op™ (E(1 + o1 (x,6)) Axs (§)) Wi ()W
+ (I)KG(U)X]&OISS ) (4.50)
+ O (U) R (1) + (0, Py (U)) [U]
+1®y (V) Op™ (E(L + 24 (x,6) () QUNU,
where we used items (i), (iii) in Lemma We study the first summand in the r.h.s of @.50). By direct
inspection, using Lemmal2.1)and Proposition 2.2 we get
—iDy(U)OP™ (B(L+ 1 (x, ) Aso () Wio(U) = —i0p™ (ST ECl + 41 (x, ) + Rw)

B2 £op™ (diag(A (x, ) + R(w)

where R(u) is a remainder satisfying (4.49). Thanks to the discussion above and ({4.39) we obtain the
highest order term in (4.48). All the other summands in the r.h.s. of (4.50) may be analyzed as done in

the proof of Prop. [4.4]by using Lemmal[4.10} O

4.2.2. Diagonalization of cubic terms at order 0. In the previous section we showed that if the function U
solves then W in solves (4.48). The cubic terms in the system are the same appearing
in and have the form (3.15). The aim of this section is to diagonalize the matrix of symbols of order
zero <£y(x,¢). We must preserve the Hamiltonian structure of the cubic terms in performing this step. In
order to do this, in analogy with the case, we reason as follows. Consider the matrix of symbols

0 bKG(xyf) . _ a()(x)é)
bKG(x, _é-) 0 ) bKG(Wr X, 6) - 2AKG(€) )

with ay(x,{) in (3.11), and define the Hamiltonian function

Bio(W;x,&) := By (x,8) := ( (4.51)

1 —
BaW)i= 5 [ IEOP™ BualSe Wi )W - Wlx, .52
T
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where S; W := (Sew, S;w) T where S; is in (@:20). Let us define
Z:= (2] 1= @ops W) 1= W + Xog (W) (4.53)

where Xg, . is the Hamiltonian vector field of (4.52) and W is the function in (4.47). The properties of
X, and the estimates of ®g,, are discussed in Lemma[A.I]and in Proposition[A.2}

Remark 4.12. Recall (£.47) and (£53). One can note that, owing to Hypothesis[4.8, for s > 2d + 3, we have
Ul gs ~s IWllgs ~s 1 Z1 s - (4.54)
This is a consequence of the estimates (4.44), (4.45) (A7), (A5), (A.9).

Proposition 4.13 (Diagonalization at order 0). Let U be a solution of (3.31) and assume Hyp. (see
also Remark[4.9). Then the function Z defined in (4.53), with W given in (&.47), satisfies

0,2 = ~iEOp"™ (diag(1 +a@; (x, &) Aw(§) Z + Xy (2) + R (w), (4.55)

where d, (x,&) is the real valued symbol in (.39), the cubic vector field XH?& (Z) has the form
XH% (Z2):= —iEOp"" (diag(ao(x,8)) Z + QH;% (2) (4.56)
the symbol ay(x,¢) is in (3.11), the remainder QH% (Z) is the cubic remainder given in Lemma@ The

remainder Réz) (1) has the form (Réz’” (), Réz'” (w) . Moreover, forany s >2d+p, for some u >0, we have
the estimate
IR )l s Sluell3ys - (4.57)

Finally the vector field X, (Z) in is Hamiltonian, i.e. Xy (Z) := —i ]VH,((? (2) with
KG KG

HY (2):= #9(2) - 1B (2), 7220, 2 (Z) = f Az Zdx (4.58)

T
where 7% is in B14), and By is in @52), @51).
Proof. Recalling and (the second equation in) we define
FEED (W) = L W) + 6L (W), (4.59)

and we rewrite the equation as

0:W = X jie (W) —iEOp™ (a3 (x,) Ao ()W + RY(w).
Then, using (4.53), we get

0/Z = dw®gp, (W)[0,W]

= dyw @z, (W)[X 7 W)] (4.60)
+dw @z, (W) —1EOp™ (diag(a; (x,&) A () W] (4.61)
+dw @z, (W) [RV (w)]. (4.62)

By estimates (A.5) and (4.49) we have that the term in can be absorbed in a remainder satisfying
the [@.57). Consider the term in (@.61). We write

[@61) = —iEOp®" (diag(d, (x,&) Axe(€))Z + P1 + P,
Py := —iEOp®"(diag(a, (x,&) A (€)W - Z], (4.63)
Py = ((dw epy (W) — 1) - IEOp™ (dliag(@ (x,&) Asc(€)) W].

We have that, for s = 2sy + 2,

L D en.ad
1Pollis S Nl lOp™ (@5 (x,) Ak (@) wll ot < Ml
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which implies the (4.57). By in Lemma and estimate (A5) we deduce [|W — Z|| s < [ull3;,.
Hence using again (4.43), (2.10), (4.54) we get P; satisfies (4.57). It remains to discuss the structure of the
term in (4.60). By Lemma[A.3|we obtain

dw Dz (W) [ X iz (W)] = X i (2) + [ Xin (2), X 0 (2)], (4.64)

modulo remainders that can be absorbed in Réz) satisfying (4.57). The (4.64), (4.60)-(4.62) and the dis-
cussion above imply the (4.55) where the cubic vector field has the form

Xy (2) = X 0 (Z) + (X2 (2), X 72 (2)]. (4.65)

Using (2.37), (2.36), we conclude that X « is the Hamiltonian vector field of Hl(:é) in (4.58). The (4.56)
KG

follows by LemmalA.5] O

Remark 4.14. In view of Remarks[3.5,[3.7, following the same proof of Proposition[4.13, in the semi-linear
case we obtain that equation (4.55) reads

0:Z = —iEOp™™ (diag(Ax () Z + X (2) + R® w),

where X, has the form (4.56) with ay(x,§) a symbol of order —1 and Qu« a remainder of the form (A.23)
KG KG
with coefficients satisfying (A.24) with the better denominator max{(¢ —n — ), (n),({)}%.

5. ENERGY ESTIMATES

5.1. Estimates for the NLS. In this section we prove a priori energy estimates on the Sobolev norms of
the variable Z in (4.23). In subsectionwe introduce a convenient energy norm on H*(T%;C) which
is equivalent to the classic H*-norm. This is the content of Lemma In subsection[5.1.2} using the
non-resonance conditions of Proposition 5.6} we provide bounds on the non-resonant terms appearing
in the energy estimates. We deal with resonant interactions in Lemma/|5.4

5.1.1. Energy norm. Let us define the symbol
L=Lx=EP+2, =20 :=a’ WP +al (x)-¢, (5.1)
where the symbols aél) (x), ﬁgl) (x) are given in Proposition We have the following.

Lemma 5.1. Assume the Hypothesis[4.1land let’y > 0. Then for € > 0 small enough we have the following.
(i) One has

6
1L yz +I$Y|Ws§y <1+ Cllullppsg

. iy . (5.2)
IZIW_% +1ZL7 =€l |LA/S(2)Y5 el 72501
for some C > 0 depending on sy.
(ii) For any s € R and any h € H*(T%;C), one has
I T hll gs—2 + 1 Tepy Bl grs—2v < 1Rl gs (1 + C| uIIZzsoﬂ), 5.3)
I Tshll g2 + | Topr—jger Bl gs2r S RN sl ullji,zw ) '
for some C > 0 depending on s.
(iii) Forany t€ [0, T) one has |6tZ|WSg < ||u”?—1250+3 . Moreover
I(To, e Al ey SR gslulCpogea, ¥ he HY(THC). (5.4)

(iv) The operators Te, Ty are self-adjoint with respect to the L?-scalar product 2.3).
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Proof. Ttems (i)-(ii). The follows by using (5.1), the bounds on the symbols aél) and &gl) £

The follows by Lemma 2.1}
Item (iii). The bound on d,X follows by reasoning as initem (iii) of Lemmausing the explicit formula

of aén in (4.I) and the formula for ail) -&in (4.19) (see also (4.2)). Then the (2.10) implies the (5.4).
Item (iv). This follows by (2.20) since the symbol £ in is real-valued. O

In the following we shall construct the energy norm. By using this norm we are able to achieve the
energy estimates on the previously diagonalized system. For s € R we define

zni=Tognz, Zn=|o|=TelZ, Z=[%], n:=s/2. (5.5)
Lemma 5.2. (Equivalence of the energy norm). Assume Hypothesis[4.1jwith s > 2d + 4. Then, fore >0

small enough enough, one has
Izllz2 + 1znll 2 ~ 2l s - (5.6)

Proof. Let s =2n. Then by (5.3) and (5.5) we have ||z, |l;2 < [zl gs (1 + C|| ull?{hoﬂ) , with sg > d. Moreover

6
lzles ~ Izl + 1 Tigpnzlizz = 2l + zall 2 + Cllzl sl ul g 0

which implies (1 - C|| ullipsw) lzll s < llzllz2 + |zl 12, for some constant C depending on s. The discus-

sion above implies the (5.6) by taking € > 0 in Hyp. |4.1|small enough. U
Recalling (4.26), (4.25) and (5.1) we have
O +iAws)z=-iTsz+ X}, (D +REVW),  Z=[2], (5.7)

NLS

where X« is given in (4.27) (see also Remark and Réz’” is the remainder satisfying (4.28).
4
Lemma5.3. Fixs>2d+4 and recall (5.7). One has that the function z, defined in (5.5) solves the problem
02n=—iTpzy—iV * 2, + Tlflmxlzges(m +BY(2)+ BP(2) + Rs ,(U), (5.8)

NLS
where X;(;fes is defined as in Def.

NLS

T 1 ~ =
BP 2@ =— Y. bVEn02¢-n-0Zmz.0),
(27[) nycezd
_ 1 R (5.9)
B2 O =— Y bPEn02E-n-0ZmzQ),
@m® ) ez
with
&m0 1= ~2ixe( et 1 €, 0), (5.10)
(€)*" maxa{|§ —n =<, Inl, 1¢1*
IZRIGURSIPS 1520 (&,1,0), (5.11)
GOS0, @ e
and where the remainder Rs ;, satisfies
I1Rs, (W2 S Nl s (5.12)
Proof. Recalling we define
X' (2):= Xy (2) =X 0(2). (5.13)
NLS NLS NLS
By differentiating and using the and we get
ath = Tfﬂatz + Tatgnz
(5.14)

= ~iTgzn—iTen(V *2) + Ten Xy (2)+ TonRE T (U) + Ty, oz~ il Tepn, Ter) 2.

NLS
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By using Lemmata and Proposition and the (5.6), (@:24) one proves that the last summand
gives a contribution to R ,(U) satisfying (5.12). By using (5.4), (4.24), (4.28) we deduce that

1 Ten R (U2 + 1 Tp, en 2zl 2 S Nl s
Secondly we write
iTen(Vxz)=1iV*z,+iV * (Tmzn_znz) +iT$n_‘f|2n(V * Z).

By (5.3), (4.24), and recalling (T.5) we conclude || Ton (V * 2) = V * z, |l 12 < [l ull%,, . We now study the third
summand in (5.14). We have (see (5.13))

Topn X (Z) = T X0 (2) + Tiepn X5 (2) + Topn_ygen X fy (2).
NLS NLS NLS

(4)
NLS
By (6.3), (:27), (2.10), Lemma[2.5|and using the estimate (A.18), one obtains

1 Tepnyepn X (D2 S Nulys.
NLS
Recalling (4.37) and (5.13) we write

lgpn X (D) =614+ 6, GO =gm ), cilénOZE-n- HZMZQ),
NLS ﬂ,(EZ

1m0 1= —2ixe (1) 10 1o (€. 0)
c2(&m0) = =2ixe( 58 [16P" - 112" | 10 €10, 00
cs(&m.0) =gy (€101 e (€,1,0)

(5.15)

We now consider the operator 4 with coefficients c; (¢,1n, (). First of all we remark that it can be written
as 61 = M(z,z,z) where M is a trilinear operator of the form (2.25). Moreover, setting

zZn=Tepnz+hy, hp:=Ten_genz,

we can write € = B,%l) (Z) - M(z,z, hy), where B,(ql) has the form with coefficients as in (5.10). Using
that [c1(&,n, )1 <1, Lemma (with m =0) and we deduce that | M(z,Z, hp)l 2 S u||%,, . Therefore
this is a contribution to Rs ,(U) satisfying (5.12). The discussion above implies formula by setting
Bﬁlz) as the operator of the form with coefficients bg) &,n,0) :=c2(&,n,0) +c3(,1n,0). The coefficient

c3(é,n,{) satisfies the by (A.18). For the coefficient c,(¢,7,{) one has to apply Lemma with
p=m=1and f(,n,{):= (I€1?™ = 1¢)?™)|€]72". This concludes the proof. O

In the following lemma we prove a key cancellation due to the fact that the super actions are prime
integrals of the resonant Hamiltonian vector field XI;; "% (Z) in the same spirit of [24]. We also prove an

important algebraic property of the operator Bén in (5.8).

Lemma 5.4. For any n =0 we have

Re(TwX;g;zS(Z), Tiemz) 2 =0, (5.16)
Re(BY(Z),2,)12 =0, (5.17)

where X};ges is defined in Lemma and BY in (5.9), (6.10).

NLS
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Proof. The (5.16) follows by Lemma[2.8] Let us check the (5.17). By an explicit computation using (2:3),
we get

Re(BY (2),21) 2 = > BYENZE - -DZMZZn ()

( 7[) d 5»17,(€Zd

+—— Y bIENDZE+n+OEZn(- )20 (O)
(27'[) fﬂ]y(EZd
1 =~ o~
=— 3 [b(” EnO+bVC L +n—E8)|ZE-1-02ZM)Z2n({)Zn(=E).
(27[) f,T].(EZd
By we have
Y& m,0) + bV, 08,8 = 2ixe (154 ) [1a: €00 ~ 1 €.+ = £,9)] =0,
where we used the form of the resonant set Z in (2.47). This proves the lemma. O

We conclude the section with the following proposition.

Proposition 5.5. Let u(t, x) be a solution of (NLS) satisfying Hypothesis[4.1 and consider the function z,

in (5.5) (see also (4.23), (@.10)). Then, setting s =2n > 2d +4 we have ||z, ()|l ;2 ~ lu(t) | gs and
atnzn(t)”iz =B(1) + B>5(1), tef0,7), (5.18)

where

o the term %(t) has the form

2 = ~ =
B =—— Y EPBENOZE -0 - DZmEQZ(=E),
@m® reza (5.19)

b(&,n,0) =b2En0+bP((+n-E8,  &nlez?,

where bﬁf) (&,n,{) are the coefficients in (5.9), (5.11);
o the term %B-5(t) satisfies

|B5(O] S ulys, £€10,T). (5.20)
Proof. The norm |z, ;2 is equivalent to ||« s by using Lemmal5.2Jand Remark[4.5] By using we get
1
=0¢llzn (1) ”iz =Re(Tjeen X3 (2), 2n) 12 (5.21)
2 Hnis
+Re(=iTwzpn, zn) 12 + Re(BY (Z), 2,) 12 + Re(=iV * 2y, 2) 12 (5.22)
+Re(BY (Z2), 2p) 12 (5.23)
+Re(Rsn(2), 2n);z2. (5.24)

Recall that T« is self-adjoint (see item (iv) in Lemma and the convolution potential V' has real
Fourier coefficients. Then by using also Lemma (see (6.17)) we deduce = 0. Moreover by
Cauchy-Schwarz inequality, estimates (5.12), and we obtain that the term in is bounded
form above by ||u|/%,,. Consider the terms in and (5.23). Recalling and we write

Re(Tjepn X () (2), 2n) 12 = Re(Tigpen X3 (2), Tiepn2) 12 + Re(Tigan X0 (2), Tepn_ign 212,
NLS NLS NLS
E2Re(Tigpen X17(2), Tepn_ iz
NLS
Moreover we write

Re(B?(Z),2n) 12 = Re(BP (Z), Tigpn 2) 12 + Re(BP(2), Tepn_je2n2) 2.
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Using the bound (5.3) in Lemmato estimate the operator Tyn_¢2n, Lemmaf2.5and (5.11) to estimate
the operator B(z) (2), we get

|Re(T|5|an(4) S(2), Tgn_igpn @) 2| + Re(BE(Z), Tepn_jezn2) 2 S Nl e,

which means that these remainders can be absorbed in the term %-5(t). Then we set

B(1) :=2Re(BP(2), Ty 2) 2.
Formulae follow by an explicit computation using (5.9), (5.11). O
5.1.2. Estimates of non-resonant terms. In this subsection we provide estimates on the term Z4(f) ap-
pearing in (5.18).
Proposition 5.6. (Non-resonance conditions). Consider the phase wys(¢,n,() defined as

wis (€, 17,0) := Anis (& - n- O — Awis (M) + Anis Q) — Anis(©), ¢, mn, Qe Z3d (5.25)

where Ay is in and the potential V is in (1.5). We have the following.
(i) Letd = 2. There exists & < O with zero Lebesgue measure such that, for any (x;) ;cza € O\ N, there exist
Y >0, Ny := No(d, m) > 0 such that for any (&,1,() ¢ X (see (2.47)) one has

s (€0, )1 = ymax{|g —n =, Inl, 1. (5.26)

(ii) Letd = 1 and assume that V = 0. Then one has |wys(&,n,0)| 2 1 unless
¢=¢ n=&-n=C, or {=¢-n=(, n=(, ¢ (5.27)
Proof. Ttem (i) follows by Proposition 2.8 in [25]. Item (ii) is classical. [l

We are now in position to state the main result of this section.

Proposition 5.7. Let N > 0. Then there is sy = so(No), where Ny > 0 is given by Proposition[5.6, such that,
if Hypothesis[4.1 holds with s = sy, one has

f %(a)do‘ Sl z% s TN + 16l S0 pge T+ 12l Foo ggs TN+ 11l Joo s (5.28)

where (1) is in (6.19).

We need some preliminary results. We consider the following trilinear maps:

‘%i:@i[zl»ZZ)zE}]) @(6)

Y biEn0z2E-1-02m2Q), i=1,2, (5.29)

2 )d niezd
Te=Tla,z,2], Te@)=—= Y tEn02E-n-02MEWO, (5.30)
(2 ) ncezd
where
b1(&,7,0) =S, 10, Q) Limaxjé—n-¢1InlICH<N} » (5.31)
b2(¢,1m,0) = b(rf,n O L imax(ie-n-¢LinlIKh>N} » (5.32)
t<(§rn)() leLS(fno 1(6 n, ()» (5.33)

where b(¢,n,() are the coefficients in (5.19), and wy; is the phase in (5.25). We remark that if (¢,7,{) € Z
then the coefficients b(¢,n,{) are equal to zero (see (5.19), (6.9), (5.11)). Therefore, since wy is non-
resonant (see Proposition[5.6), the coefficients in are well-defined. We now prove an abstract re-
sults on the trilinear maps introduced in -(5.30).
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Lemma 5.8. One has that, for s=2n>d/2 +4,

3
1B221, 22, 23 12 SNT'Y Nzillps [] N2kl garesase, — Ve>0. (5.34)
i=1 i#k
There is so(INg) > 0 (Ny > 0 given by Proposition such that for s = so(Ny) one has
3
1T<z1,22, 23]l P S NZ | z; |l pys+p-2 1_[ lzkllgso, peEN, (5.35)
i=1 i#k
3
19<(z1,22, 23]l 12 S Z I z; |l s H |zl 5o - (5.36)
i=1 i#k

Proof. Using (5.32), (5.19), (5.11) we get that
2
1ol21, 22,2015 < Y (X 102 mOlIZ1E =0 - OlIZ2m)]125(0))

&ezd n,lezd
2
SNZY (X @ max(ic-n -l L K2 € - - OlIZmIZ @) -
&ezd ezt 2

Then, by reasoning as in the proof of Lemma 2.5} one obtains the (5.34). Let us prove the bound (5.35)
for p =0, the others are similar. Using (5.33), (5.26), (5.19), (5.11) we have

2
17<l21, 22,2015 S Y (X [6<@m0lIZ1€ - n-0lIZmIZO)l)

tezd n,(ezd
2
2n o No+4 N . N
’SYNzgzzd( z e |z1(<f—n—onzZ(n)nzs(m) .
€ n,(e

Again, by reasoning as in the proof of Lemmal[2.5} one obtains the (5.35). The (5.36) follows similarly. [
Proof of Proposition By (5.29), (5.31), (5.32), and recalling the definition of 28 in (5.19), we can write

r r r
f ,%(a)dazf (@l[z,z,z],ﬂg|znz)dea+f (B2z,z, 2], Tigpn 2) 12doO (5.37)
0 0 0

By Lemma5.8|we have

t
f (%2 [Z,Z, Z]) T|g|2nZ)L2 da’
0

t t
< N! fo Izl}do < N7 fo 2l s - (5.38)

Consider now the first summand in the r.h.s. of (5.37). We claim that we have the following identity:

t t
f (%112,z, 2], Tigpn2) 2 do :f (T<lz,z, 2], ’T|€|2n(at +iA)2) 2 do
0 0

t
+f (I< [(at + iANLS)Z,E, zl, T|,f|2n Z)Lz do
o (5.39)
+f (tgj—< [Z,E, (6l’+iANLS)Z]; T|5|2nZ)L2d0'
0

t
¥ f (T-l2,@; + Tha)z, 2], Tigen 2) 2dor + Ol ulley)
0

We use the claim, postponing its proof. Consider the first summand in the r.h.s. of (5.39). Using the
self-adjointness of Tj:2 and the we write
(T<lz,z, 2], T|E|2n (0 +iAns) 22 = (T|5|23~< lz,Zz, z],— T|5|2n—ziT):z)L2

+(9<12,Z,2), Tygen (X ) (2)+ R W) o
NLS
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We estimate the first summand in the r.h.s. by means of the Cauchy-Schwarz inequality, the (5.35) with
p =2 and the (5.3); analogously we estimate the second summand by means of the Cauchy-Schwarz
inequality, (5.36), the (4.27) and the (4.28), obtaining

t
f I<lz,z,z], T|§|2ﬂ (0; +iAws)2) 2 do
0

t
sfo lu@)}3N + [u0)|%do.

The other terms in (5.39) are estimated in a similar way. We eventually obtain the (5.28).
We now prove the claim (5.39). Recalling (5.7) we have that

0:2) = ~iAns (2O +2(0),  ¢ez?,  2:=-iTzz+ X}, (D+RSV D).

NLS

We define g(&) := eltAnis ) z(6),Vée Z4%. One can note that g(&) satisfies

0,:8(6) = ™M) = ™MD 9, +iA2E),  VEez? (5.40)
According to this notation and using (5.29) and (5.25) we have

t _ t ) ~ ~ )
f (B1[2,2,2), Tgapdo = | Y. ZabiEn,0e 7 C10gE —n-DgmEQZ(-OIE* do.
0 0 fynycezd
By integrating by parts in o and using (5.40) one gets the (5.39) with
Olullys) = (T<l2(0),2(1), 2(1)], Tigen2() 12 — (T<[2(0),2(0), 2(0)], Ti¢12n 2(0) 2 -

The remainder above is bounded from above by || ull%oo s using Cauchy-Schwarz and the (5.36). O
5.2. Estimates for the KG. In this section we provide a priori energy estimates on the variable Z solving
(4.55). This implies similar estimates on the solution U of the system (3.31) thanks to the equivalence
(4.54). In subsection we introduce an equivalent energy norm and we provide a first energy in-

equality. This is the content of Proposition Then in subsection we give improved bounds on
the non-resonant terms.

5.2.1. First energy inequality. We recall that the system (4.55) is diagonal up to smoothing terms plus

some higher degree of homogeneity remainder. Hence, for simplicity, we pass to the scalar equation

012 +1Az = —10p™ (@3 (x,6) A ()2 + X1y (2) + R () (5.41)
KG
where (recall (2.56) XH+(4) (Z) =—-i0p™ (ap(x,&)z + Q;M) (Z). For n € Rwe define
KG KG

zni=Akz,  Zn=|2]:=1ALZ, Z=[%]. (5.42)

KG

We have the following.

Lemma 5.9. Fix n:= n(d) > 1 large enough and recall (56.41). One has that the function z, defined in
(5.42) solves the problem

012y = —10p™ ((1+ @ (x,8)) Ao () 20 + AQGX;(geS(Z) +BW(2)+ B (Z) + Rs ,(U), (5.43)

KG

where the resonant vector field X')* is defined as in Def. (see also Rmk. , the cubic terms B,

HKG
i =1,2, have the form

ST 1 — —
B(2D)©=—— Y b"En027E-n-0Z2 ME.), (5.44)
(Zﬂ:) 0'1,0'2€{i}
n{ez?
B2 (Z2)() = Y BTN, OZE -0 - OO, (5.45)

(Zﬂ)d 01,02,03€{+}
niez?
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with (recall Rmk.

BT 6,0 1= —iag (= m 59 xe (g 1 €, 00, (5.46)
o
151,72 (€, 0 S Sl 1 e 61, ), (5.47)

for some > 1. The remainder satisfies
I1Rs, (W2 S el 3y - (5.48)

Proof. Recalling the definition of resonant vector fields in Def. [2.7]we set

(4)
K(;

Xy (2)1= Xl (2) = X 5™ (2), (5.49)
KG

which represents the non resonant terms in the cubic vector field of (5.41). By differentiating in ¢ the
(5.42) and using the (5.41) we get

012n = —10p™" (L + a3 (x,)) Ao (©)) zn + AL X +(4§ES(Z)

—i[AL, Op™ (1 + @ (x,8)) A ()] 2 (5.50)
+ Ao X <;> (2) (5.51)
+ALR 2+)(u), (5.52)

We analyse each summand above separately. First of all we remark that we have the equivalence between
the two norms (see 2.2)) llul?,, ~ (A u, A" u)Lz By estimate we deduce [|(552) 2 < lull3,,. Let
us now consider the commutator term in ( . By Lemmal2.1} Proposmonm 2|and the estimate on the
semi-norm of the symbol ¥ (x, f) in , we obtain that ||||L2 < Jlul* ,,IIleHn<||u||5 ., we have
used also the (@.54). The term in ( is the most delicate. By (4.56) and (5.49) - ) (recall also Rmk. [3.4)and
(2.6))

ALX b (2) = BR(Z) + 61+ 6, (5.53)

KG H(4)

with B (Z) as in (5.44) and coefficients as in (5.46), the term %, has the form

GO =G L < ENOZEE -0 MEQ),
01,02€{%}
niez! (5.54)

P70 = —mg’"”z(f o, SO x5 [ A © - AL ©] 12e @m0,
and the term %> has the form (5.45) with coefficients (see (A:23))
c2 "m0 = gy G DAL O €, ). (5.55)

In order to conclude the proof we need to show that the coefficients in (5.54), (5.55) satisfy the bound
(5.47). This is true for the coefficients in (5.55) thanks to the bound (A-24). Moreover notice that

A% @) = AGOI S 1€ = ¢lmax{(§), 3"
Then the coefficients in satisfy by using Remark[3.4]and Lemma 2.6} O

Remark 5.10. In view of Remarks|3.5 . if (RG) is semi-linear then the symbol a; in is
equal to zero, the coefficients bgf"” 73 (5 n,{) in (5.45) sattsﬁes the bound (5.47) the the better denommator

maX1{<f -n- ()7 <n>) <(>}2-

In view of Lemmal5.9|we deduce the following.
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Proposition 5.11. Lety (¢, x) be a solution of satisfying Hypothesis[4.8 and consider the function z,
in (5.42) (see also (4.53), (4.47)). Then, setting s = n = n(d) > 1 we have |zl ;2 ~ W gs+v2 + ||| gs—12 and

0l zn (D)5, = B(1) + B>5(r),  t€(0,T), (5.56)
where
o the term 98(t) has the form

BWH= Y AZOVTTEDOZTE - -2 M) (Z(-E),

01,02,03€{%} (5.57)
¢miez?
whereb?192%3 (¢ n, () € C satisfy, for&,n,( € z4,
|b01v02ra3 (9(’77,()| < max, {|§—n—Cl,InLI¢1H 1gpe (5,77»() (5.58)

~ max; {{-n-0),{m, (O}
forsome > 1;
o the term %B-5(t) satisfies

|B55 (0] S llulllys, t€00,T). (5.59)
Proof. By using we get
20:lza (D112, = Re(—10p™ (1 + @3 (x, ) Ae (&) 2, 2n) 12 (5.60)
+ Re(AQGXI:éEeS(Z), Zn)p2 (5.61)
+Re(BY(2), z,) 12 (5.62)
+Re(B?(Z), zp) 12 (5.63)
+Re(Rs 1 (2), zn) 12 - (5.64)

By (4.39), (4.38) and (3.11) we have that the symbol (1 +a; (x, £)) A (¢) is real-valued. Hence the operator
iOpBW((l + ﬁ; (x, ) Axq (6)) is skew-self-adjoint. We deduce (6.60)= 0. By Lemma (see also Remark
we also have that (5.61)= 0. We also have that = 0, to see this one can reason as done in the
proof of Prop. by using Remark 3.4} in particular (3:30). By formula and estimates we
have that the term in has the form with coefficients satisfying (5.58). By Cauchy-Schwarz
inequality and estimate we get that the term in satisfies the bound (5.59). d

Remark 5.12. In view of Remark|[5.10, if (KG) is semi-linear, then the coefficients b?27>73(&,n,{) of the
energy in satisfy the bound with the better denominator maxi {{¢ —n — (), (n), ()2

5.2.2. Estimates of non-resonant terms. In Proposition [5.11|we provide a precise structure of the term
9(t) of degree 4 in (5.56). In this section we show that, actually, 98(¢) satisfies better bounds with respect
to a general quartic multilinear maps by using that it is non-resonant. We need the following.

Proposition 5.13. (Non-resonance conditions). Consider the phase w%,(¢,n,{) defined as

wZ (0,0 =01 MG E =N =) + T2 A () + 03AG () = Ao (), (&n,0) €z, (5.65)

where & = (01,02,03) € {+}3, Ac isin (L4). LetO<o < landsetf:=2+0 ifd=2,and f:=3+0
ifd = 3. There exists 6p < [1,2] with Lebesgue measure 1 such that, for any m € €, there exist’y > 0,
Ny := Ny(d, m) > 0 such that for any ({,n,() ¢ Z (see (2.47)) one has

wac(é,n,f)l = ymzalx{lf—n—CI, Il 11N max{|E —n =1, Inl, 1P (5.66)

Proof. The case d = 2 follows by Theorem 2.1.1 in [17]. We postpone the proof for d = 3 to the Appendix
O

We are now in position to state the main result of this section.
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Proposition 5.14. Let N > 0 and let B be as in Proposition[5.13, Then there is so = so(No), where Ny > 0 is
given by Proposition[5.13, such that, if Hypothesis[4.8 holds with s = sy, one has

t
f @(a)da‘ Sl e TNPT 4wl 8o e NPT+ Nt F oo s TN+ NP Ul o e (5.67)
0
where B(t) is in (6.57).

We firstly introduce some notation. Let G := (01,02,03) € {+13 and consider the following trilinear maps:

B =B (21,20,28), BIO =5 ¥ wIEn 0z € -n-0z O, (5.68)

n,(ezd
T =9%1a,2,2), TZO=Ggm 2t TEn,02 E -0 MO, (5.69)

n,{ez4

where

by (€,7,0) =777, 0, ) L imaxtié-n—Cl il IKH=N) » (5.70)
b (£,7,0) =777, 0, ) L imaxtié—n—Clnl1Kh>N) » (5.71)
€m0 = le(fn()b 1m0, (5.72)

where b?17293(¢,n,() are the coefficients in (5.57), and ng is the phase in (5.65). We remark that if
(5 17 {) € X then the coefficients b(¢, 7, () are equal to zero (see (5.57), (5.45), (6.47)). Therefore, since

wy, is non-resonant (see Proposmon , the coefﬁc1ents in - are well-defined. We now state an
abstract results on the trilinear maps 1ntroduced in ( -(5.69).

Lemma 5.15. Letu > 1 as in (5.58). One has that, fors >dl2+y,

1983 (21, 22, 23]l ;2 S N Z lzill s T Nzl prarzsnse (5.73)
i=1 iZk

foranyd € {+}3 and anye > 0. Thereis so(No) > 0 (Ny > 0 given byProposition such that for s = so(INp)
one has

1T (21, 22, 23) | 1 < NP Z Izill oot [T Izllmso, PEN, (5.74)
i=1 ik
1T<121, 2, 23] Il 12 S NP! Z lzillgs [T Nzich o - (5.75)
i=1 iZk

where f3 is defined in Proposition
Proof. The proofis similar to the one of Lemma g
Remark 5.16. In view of Remark[5.12, if (KG) is semi-linear we may improve (5.75) with
IT<ter, 22250 S NP2 S Nzl [ Dl (5.76)
i=1 iZk

We are now in position to prove the main Proposition|5.14

Proof of Proposition[5.14} By (5.68), (5.70), (5.71), and recalling the definition of 28 in (5.57), we can
write

t r
/ Br)dr= ) (38‘7 (z,2,2], A{,2)2dT + ) (B [2,2,2], A\, 2) 2 dT . (5.77)
0 Fefxp3 0 Fef+p3 70
By Lemmal(5.15|we have

r (.73 t
U (B (2,2,2), ASy2) pdo| < N‘lf ||z||‘,§sdr 5 N~ f lullysdr. (5.78)
0 0
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Consider now the first summand in the r.h.s. of (5.77). Integrating by parts as done in the proof of Prop.
5. 7Zlwe have

t t .
f (%f[z,E,z],Aicz)deT:[ (T2l z,2,2), Ai,(0r +1Ae) 2) [2dT
0 0

t -
+f (T2 +1Mk) 2, 2, 2), A§,2) 2 dT
0 (5.79)
+f (T2 12,7, (0 +1M) 2], Ay, 2) 12dT
0

t -
+ [[TF 10+ iz 21 A 2+ R,
0
where ) i
R=(T7z(0),2(1), z2(D], Ajz(1) 12 — (T2 [2(0), 2(0), 2(0)], A3, 2(0)) 12 .

The remainder R above is bounded from above by NV p I ull‘ioo s using Cauchy-Schwarz and the (5.74). Let
us now consider the first summand in the r.h.s. of (5.79). Using that the operator A is self-adjoint and
recalling the equation (5.41) we have

(T212,2,21, A3, (0; + M) 2) 12 = (M T 2,2, 2, A3 () + i) 2) 12

= (Mo T2, 2,20, AL O™ (=i (x, &) Ao () 2) 12 (5.80)
+ (T3 12,2,20, Ao (X0 (2) + RS ) 2. (5.81)
KG -

By Cauchy-Schwarz inequality, estimate (5.74) with p = 1, estimate (4.43) on the semi-norm of the sym-

bol a; (x,¢) Lemma and the equivalence (@.54), we get |(5.80)| < |u|®,NP. Consider the term in

(5.81). First of all notice that, by (3.18) and Lemma and by (A.24) and Lemma ‘ the field X, (Z) in
KG

(4.56) satisfies the same estimates (3.19) as the field X PYOR Therefore, using (5.75) and (4.57), we obtain
KG

|E.81)| < llull®,, NP1, Using that (see Hyp. ) lull s < 1, we conclude that the first summand in the

rh.s. of (5.79) is bounded from above by N [; llu(r)18dt + NP~ [} |lu(r)|%d. The other terms in (5.79)

are estimated in a similar way. We eventually obtain the (5.67). O

Remark 5.17. In view of Remarks|[3.5, [4.14,[5.10,[5.12 and|5.16, if is semi-linear we have the
better (w.r.t. (5.67)) estimate

t
f B(0) da‘ SNl s TNP 2 4 |l oo e TN ™2+ NP2 |3 1. (5.82)
0

6. PROOF OF THE MAIN RESULTS

In this section we conclude the proof of our main theorems.

Proof of Theorem Consider (NLS) and let 1 as in the statement of Theorem By the result in [28]
we have that there is T > 0 and a unique solution u(t, x) of (NLS) with V = 0 such that Hypothesis[4.1]is
satisfied. To recover the result when V # 0 one can argue as done in [27]. Consider a potential V as in
with X € 6\ A with .4 is the zero measure set given in Proposition[5.6] We claim that we have the
following a priori estimate: fix any 0 < N, then for any ¢ € [0, T'), with T as in Hyp. one has

2 2 10 6 4 -1 4
TN S Nuolizys + Nl oo s TN + 1l joo s T+ 1t poops TN+ tall oo s - (6.1)

To prove the claim we reason as follows. By Proposition we have that (NLS) is equivalent to the
system (3.4). By Propositions and Lemma [5.3|we can construct a function z, with 2n = s such
that if u(¢, x) solves the then z, solves the equation (5.8). Moreover by Lemma and Remark
we also have that |zl ;2 + 1z, ;2 ~ | ull gs. By Propositionwe get

2 2 2 2
lu s SN2@N172 + 1za(ON172 S luollgys + +

t
f B(o)do
0

t
f 98>5(U)d0‘. (6.2)
0



38 ROBERTO FEOLA, BENOIT GREBERT, AND FELICE IANDOLI

Propositions[5.5/and[5.7|apply, therefore, by and (5.20), we obtain the (6.1). The thesis of Theorem
[1]follows from the following lemma.

Lemma 6.1. (Main Bootstrap). Ler u(t,x) be a solution of with t € [0, T) and initial condition
uy € H5(T%;C). Then, for s > 1 large enough, there exist £y, ¢ > 0 such that, for any0 < € < €, if

lluoll = < coe, sup llu(dllgs<e, T<ce™®, (6.3)
te[0,T)

then we have the improved bound sup (o ) lu(f)llgs < €/2.

Proof. For € small enough the bound holds true, and we fix N := £ 3. Therefore, there is C = C(s) > 0
such that, for any ¢ € [0, T),

()5 < C(Iltto g + el oo g + 11l [0 pps TE ™ + Nl o0 s T+ Nt Foo s TEY)
6.3)
gC(cgaz +et+26"T+€°T) (6.4)

< C‘€4—2(4c§ +4¢° +5¢p) < £%/4

where in the last inequality we have chosen ¢y and ¢ sufficiently small. This implies the thesis. U

Proof of Theorem[2] One has to follow almost word by word the proof of Theorem[I] The only difference
relies on the estimates on the small divisors which in this case are given by item (ii) of Proposition

Proof of Theorem Consider and let (yo,v,) as in the statement of Theorem Let w(t, x) be
a solution of satisfying the condition in Hyp. By Proplosition recall (2.41), the function
U := [4] solves with initial condition uy = \/LQ(AEGUJO +iA2w1). Moreover, by Hyp. one has
Sup;epo,1) lullgs < €. By Remark in order to get the (1.8), we have to show that the bound on the
function u above holds for a longer time T 2, e ifd=2and T > g8 3" if d = 3. Fix B as in Proposition

and let m € €. By Propositions and Lemmawe can construct a function z, with n =s
such that if y/(¢, x) solves the (KG) then z, solves the equation (5.43). By Proposition we get

t t
@1 SN2O1%, + 1200172 S NuolFys + fo B(o)do|+ fo B>5(0)do|. (6.5)

Propositions and/5.14|apply, therefore, by (5.67) and (5.59), we obtain the following a priori estimate:
fixany 0 < N, then for any ¢ € [0, T), with T as in Hyp. one has

N S Mol s + 120l Goo s TNP Tt oo s TNP 4 120l G s T+ 280 o0 gy TN+ NP7 10l s
(6.6)
The thesis of Theorem Bfollows from the following lemma.

Lemma 6.2. (Main bootstrap). Let u(t,x) be a solution of (3.31) with t € [0, T) and initial condition
up € H5(T%;C). Definea =3 ifd =2 anda=8/3 ifd = 3. Then, for s > 1 large enough, there exist €y, cy >0
such that, forany0 < € < g9, if

luoll s < coe, sup llu()llgs <e, T<cee™, (6.7)
tel0,T)

then we have the improved bound sup (o ) | u(8) | gs < €/2.

Proof. We start with d = 3.For € small enough the bound holds true. Let 0 < 0 <« 1. Define
f:=3+0, Ni=g . 6.8)

By (6.6), (6.7), (6.8), there is C = C(s) > 0 such that, for any ¢ € [0, T),

lu(t)I2s < Ce2(e37 + @) + 2CTeX (e + €21 347) < £2/4 6.9)
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where in the last inequality we have chosen ¢y and ¢ sufficiently small and we used the choice of T in
and that o is arbitrary small. This implies the thesis. In the case d = 2 the proof is similar setting
B=2+0and N =g 2/@+9), O

Proof of Theorem[4] Using the Remarks [4.14] [5.10, [5.12] [5.16} [5.17] one deduces the result by
reasoning as in the proof of Theorem[3|and using in particular the estimate (5.82).

APPENDIX A. APPROXIMATELY SYMPLECTIC MAPS

A.1. Para-differential Hamiltonian vector fields. In this section we study some properties of the maps
generated by the Hamiltonians %,,s(W) in and % (W) in ([@.52). In the next lemma we show that
their Hamiltonian vector fields are given by Op™" (Bys(W; x, £)) W and Op®" (B (W;; x, £)) W respectively,
modulo smoothing remainders. More precisely we have the following.

Lemma A.1. Consider the Hamiltonian function 8(W) equals to By.s in (4.22) or By in (4.52). One has
that the Hamiltonian vector field of (W) has the form

Xg(W)=—-iJVB(W) = Op™ (B(W;x,{)W + Qz(W), (A.1)
where Qi (W) is a smoothing remainder of the form (Q, (W), Q%(W))T and the symbol B(W; x,¢) is re-

spectively equal to By s(W; x, &) in (4.21) or Bys(W; x,¢) in (4.51). In particular the cubic remainder Qg (W)
has the form

—— 1 — —_—
(W — 01,02,03 ., O1(& —m — o2 g3 , Zd,
QL W) (© (Zn)dm,g;,age{i}q@ EnOWIE-n-DwrRmuwo(Q), &e "2
n,(ez?

where q)°>%* (£,1,() € C satisfy, for any &,1,{ € 2%, a bound like 2.15). In the case that 8 = By, we have

thato, =+,02 = —,03 = +. Moreover, for s > d/2 + p, we have the following
k kT d
iy Qa(W)hy, ..., il seo STwlg [T Mhillms, ¥V hie HT%C), i=1,2,3, (A.3)
i=1

fork =0,1,2,3. Moreover, for any s > 2d + 2, one has

k
NdS) Xaps W R, o, il sz STWIRE [T Rl s, Ve HS(T%CH,i=1,2,3, (A4)
i=1
k 3kk d.~2
Id; X W)Lha, .., hidl s STwI3EE [T 1 Rills,  Vhie HST4CH,i=1,2,3, (A5)
i=1

withk=0,1,2,3.

Proof. We prove the statement in the case 9 = %y, the other case is similar. Using the formulae (4.21),
(4.22) we obtain By, (W) = —G; (W) — G (W) with

i _ i N
G (W) := _Efw Op™ (bys(Sew)wwdx, — G2(W):= Efw Op™ (bns(Sew) wwdx,
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where we recall (4.20). By we obtain that V3G (W) = —iOp®" (bys(S¢ w))w. We compute the gra-
dient with respect w of the term G, (W). We have

dGy(W)(h) = 4 f Op™ (Se(@)S¢ () ) w wlx
%(27‘[)‘1 Z SE+((_)(€ n- {)S&((}’l)(n)W({) (+5|2X€( £+(>)W( 6)
Engezd *

@20). g 2E-n~{| 2In| TN
= 1(2_’1’)dfcz |¢+5|2X€(<¢+c>)7f( oo )Xe(@fw)w(f_”_{)h(")w(C)W(_‘t)
1,6 E

£
2igg é hi-n) Z |(+5|2X€(<3+c>)
n

8 Xf(mf;n(;n)Xe(é'fg)w(f +n=-0WQ)w(=L).

Recalling (2.33) and the computations above, after some changes of variables in the summations, we
obtain
Xaps (W) = OPBW(BNLS(85W; X, &)W + Ry (W)

where the remainder R; (W) has the form (RIr Wy, R1+ (W) T where (recall 2.5)

nENODE-n-Qwmnw), ez,

n.{ez4

11,0 = et e (g e (e e (e )

One can check, for 0 < € < 1 small enough, [¢| + |n| < [ —n—{| ~ |{]. Therefore the coefficients r;(¢,1,{)
satisfies the (2.15). Here we really need the truncation operator S;: if you don't insert it in the definition
of By.s (see ([4.22) then R, is not a regularizing operator. Furthermore this truncation does not affect the
leading term: define the operator

R (W)

Ry(W) = :
2 (W) RIW)

= OpBW(BNLs(S.f W; x, f) — Bais (W x, f)) w

we are going to prove that R; is also a regularizing operator. By an explicit computation using (2.6), (4.20)
and (4.21) one can check that

B WO =547 Y nEnaE-n-0uwmaw, 29,
n.{ez4

r2(6,n,0) = |§+(|2X€(<|§+g) (1 Xe( <s+(f‘)xe(%)) ’

We write 1-1r2(¢,7,{) and we use the partition of the unity in (2.16). Hence using the (2.5) one can check
that each summand satisfies the bound in (2.15). Therefore the operator Qg := Ry + Ry has the form
and is proved. The estimates follow by Lemmal2.5 We note that

dW(OpBW(BNLs(W; X, 6))W) [h] = OPBW(BNLS(W; x,ENh+ OPBW(dWBNLs(W; x,EhW.

Then the estimates with k = 0, 1, follow by using (A.3), the explicit formula of B(W;x,¢) in (4.21)
and Lemma[2.1] Reasoning similarly one can prove the with k=2,3. O

In the next proposition we define the changes of coordinates generated by the Hamiltonian vector
fields X4, and Xg, . and we study their properties as maps on Sobolev spaces.

Proposition A.2. Forany s = sy >2d + 2 thereis ro > 0 such that for 0 < r < ry, the following holds. Define
Z:=0g (W):=W+ Xg, (W), (A.6)
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where x € {NLS,KG} (recall (:22), (4:52)) and assume, respectively, Hypothesis[4.1 or Hypothesis[4.8 Then
one has

1Z 1 s < 2l wll s, (A7)
and
W=2-Xag (Z)+r(w), (A.8)
where
@)l S Iwlys. (A.9)

Proof. By we can write
W=Z-Xg (W)=Z-Xg, (2)+[Xa, (W) - Xg, (2)].

By using estimates or one can deduce that Xg, (W) — Xg, (Z) satisfies the bound (A.9). The
bound follows by LemmalA.1} O

A.2. Conjugations. In the following lemma we study how the Hamiltonian vector fields X <1 (W), see
NLS

(4.30), and X =0 (W), see (4.59), transform under the change of variables given by the previous lemma.
KG

Lemma A.3. Let sy > 2d +4. Then for any s = sy there is ry > 0 such that for all0 <r <ry and Z = [g] €
B, (H s(re :C2)) the following holds. Consider the Hamiltonian 98, with x € {NLS,KG} (recall (4.22), (4.52))
and the Hamiltonian 7= (see @30), @59)). Then

dw Dz, W)X 0 W)] = X o0 (2) + [ X9, (2), X 0 (2)] + R5(2), (A.10)
where Jfff) isin (4.29) or (4.58) and where the remainder Rs satisfies
IRs (D)l s S M2l (A.11)
and [-,] is the nonlinear commutator defined in (2.37).

Proof. We prove the statement in the case 98, = %,,s and Jfff‘l) = Jflﬁf;l), the KG-case is similar. One can
check that (A.10) follows by setting

Rs = dw X s (W) [X 7 W)-X 7 2] (A.12)
+ (dw Xaas (W) = dw Xz (D) [ X g0 (2)] (A.13)
+ X =0 (W) = X gz (2) + dw X i (2) [ Xy (2))], (A.14)
+ [ Xays(2), X 70, 2)]. (A.15)

We are left to prove that R5 satisfies (A.11). We start from the term in (A.12). First of all we note that
X gt (W) = X jpie(2) = —iEAsis(W = 2)+ X 0 (W) = X 0 (2),
where we used that X ) (W) = —1EAysW. By Proposition the (3.10) and (A.4) we deduce that
NLS
< - < s < 3.
1X 70 W) = X it (D)l e S NIy
Hence using again the bounds we obtain
5

Reasoning in the same way, using also (A.8), one can check that the terms in (A.13), (A.14), (A.T15) satisfies
the same quintic estimates. O

In the next lemma we study the structure of the the cubic terms in the vector field in (A.10) in the NLS
case.
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Lemma A.4. Consider the Hamiltonian %By.s(W) in (4.22) and recall (3.10), (4.29). Then we have that

21z2 0

X(]flﬁf‘L)S (Z2)+ [X%NLS (Z)»Xjfgﬁs (Z)] = _iEOpBW ( 0 2|Z|2

)Z+QH§£S(Z), (A.16)

where the remainder QH<4)‘ has the form QH(4) ) (Z2) =(Q, @ (2), Q W Q*, (2)7 and

NLS NLS
(QH(4 (Z))(f) (271)"’ > qH4) &n02E-n-DzMZWO, cez?, (A.17)
NLS n(
with symbol satisfying

maxz{(¢ —n— ), (m), (O
max; {(€ —n -0, ), (O}

Proof We start by considering the commutator between Xg,; and X e . First of all notice that (see

NLS
@A.J), @.21))

g (60,015 (A.18)

+
X 7 X%NLS(Z) x* 7):= Op™" 22 \i= + VA
s D)=\ | K= 0 (550 ) 21+ Q4 (@),
and hence (recall (2.6)), for ¢ € 24
(G DN =Gha Y 2E-1-0Zm20Q | i xe( ) + ds €10 (A.19)

n,(EZ

where gg,,,((,7n,{) satisfies the bound in (2.15). Hence, by using formulee (4.25), (A-19), (2.37), one ob-
tains

X o0 (2) + [ Xepgs (2), X 0 (2)] = e ,
NLS NLS €t (2)
CVAGER =T sz ic(&,1,0)2(E —n-DZMZQ)
where "
o€ =1+ |2 te (18] + Ao €1 O] [ A€ 1= 0 = Ao ) + Avis@ — Ais@] . (4.20)
We need to prove that this can be written as the r.h.s. of (A.16). First we note that the term in
G5 €10 [ Anis (€ =1 = 0) = s ) + Avis (@) = Ais (O (A21)

can be absorbed in R; since the (A.21) satisfy the same bound as in (A.18). Moreover, using the (4.25) and
the (L.5), we have that the coefficients

Zrre({5g)[Ve-n-0-Tm+ 70 -7

satisfy the bound in (A.18) by using also Lemma[2.6] Therefore the corresponding operator contributes
to R;. The same holds for the operator corresponding to the coefficients

|g+ﬂ|2xe(<|§+?]|>)['6_17_('2"’- |(|2] .

We are left with the most relevant terms in (A.20) containing the highest frequencies  and ¢. We have
that

—20&P+In?) [ 1&-nl €7l =7l
() = —xef) - neno, neno = Ehre(i).
Again we note that the coefficients r;(¢,7,(), using Lemma 2.6} satisfy (A.18). Then it remains to study
the operator Z*(Z) with

(& (2))(&) = =

—
—
)_4
><
o™
—
J‘rx

%))2E-n-0zm2@).
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By formula and we get 27 (Z) = —i0p™ (2|z|*)z + Q (U), where Qs satisfies (8.7), (8:8). This
concludes the proof. O

In the next lemma we study the structure of the the cubic terms in the vector field in (A.I0) in the KG
case.

Lemma A.5. Consider the Hamiltonian %y, (W) in (4.52) and recall (3.14), (4.58). Then we have that

X 70 (Z) + (X (D), X 72 (Z2)] = —iEOp®" (diag(ao(x,£))) Z + Qo (2) (A.22)
the symbol ay(x, &) = ap(u, x,¢) is in (3.11), the remainder QH(4) (Z) has the form (Q @ (), QH(4) (Z))T with

QH@) ©=en? Y q w €, 02716 =1 =0z (), (A.23)
01,02,03€{t}
niez?

for someq 1o293(& n, ) € C satisfying
max, {(§ —n =0, (), (O

q yw < A24
G OIS e =0 O (A24
forsome > 1.
Proof. Using (with 28 = %) we can note that
(X2 (2), XJ%) (2)] = [Op™" (B (Z; x,6)), XJ%) (2)] +Ra(2) (A.25)

where Ry (Z) = (R;(Z),R;(Z))T with

RO =em ™ Y IEn0P (E-n-0z M)z (), ez,
01,02,03€{+}

n.ezd (A.26)

ry "6 m,0) =g 7 (€m,0) [alAKG(é—n—C) +02 A () + 03 Ak6(0) = Axa(©) |,

where the coefficients are defined in (A.2). The remainder R, has the form (A.23) and we have that the
coefficients ra1 0293(& 1, () satisfy the bound (A.24). On the other hand, recalling (4.51), (2.37), we have

RY(2)
[OpBW(BKG(Z;x,f)),X]g%(Z)] =R3(Z) + R4(2), R;i(Z) = R]+(Z) , j=3,4, (A.27)
J
where
R;(Z) = Op™ (byo(Z; %, ) [iAeZ) + 1A Op™ (b (Z; X, ©)) 2], (A.28)
RI(Z) = OPBW((dszc,)(Z; x,¢) [Xjfég (Z)])[E] . (A.29)

By Remark[3.4]and we get

1 - . .
Ro=en 3 dqre-tnshs (ﬂ)xe(lgg)[—wlAm(é—n—o—szm(n) x
01,0261% KG\ ™D
(eZd

x 271 (& =0 -2 Z(Q).
Using the explicit form of the coefficients of R and Lemma one can conclude that the operator R,
has the form with coefficients satisfying (A.24). To summarize, by (4.65), (A.25) and (A.27), we have
obtained (recall also (3.15), (3.13))

iap(x,¢) 0

Lh.s. of (&22) = Op™™ |~ 0 g, &) | 2 H D+ Qo) + Rl 2) + Ra(2) (A.30)
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where Ry is in (A.29), Ry is in (A.26), Q3(Z) isin (3.15) and
F;(Z)

Fi(Z) = )
3(Z) )

Fy(Z) = —10p™ (ap(x, ) [2] + Ry (2) (A.31)

where R is in (A.28). By the discussion above and by Lemmawe have that the remainders R», R4 and
Qs have the form (A.23) with coefficients satisfying (A.24). To conclude the prove we need to show that
F3 has the same property. This will be a consequence of the choice of the symbol by (W; x,¢) in (4.51).

Indeed, by @.51), Remark[3.4} (A:31), (A228), we have
Fo=en® Y 277020 -n-02mzQ)

01,02€{#}
nLez?

where

0102, & n,0) _aolyaz(é 4, 5+() AK(, 4'({\5(3(()_ ]Xe(lzf;g)

By Taylor expanding the symbol Ay () in ) (see also Remark one deduces that

(A.32)

A A
a0, 550 Kc(f)}f{c)(o ”N(@'ié)')s/z-

Therefore, using Lemma we have that the coefficients £3"77(¢,7,{) in (A:32) satisfy the (A:24). This
implies the (A.22). O

APPENDIX B. NON-RESONANCE CONDITIONS FOR (KG)

In this section we prove Proposition providing lower bounds on the phase in (5.25). Recall the
symbol Ay (j) in (I.4). Throughout this subsection, in order to lighten the notation, we shall write
Axs(j) ~ Ajforany je Z%. The main result of this section is the following.

Proposition B.1. Ler4 > 3> 3, there exist « > 0 and € < [1,2] a set of Lebesgue measure 1 and for m € 6p
there exists x(m) > 0 such that

x(m)
lj31%] 1P
forall 01,02,03,04 € {~1,1}, j1, jo, j3, ja € Z% satisfying | j1] = |j2| = |j3| = |jal and 011 + 02 j2 + 033 +
041 =0, except when oy =04=—-0y =—03 and|j1| =|j2| = |j3| =jal.

|0’1A]‘1+O'2Aj2+0'31\j3+0'41\j4|2 (B.1)

The Proposition [B.I|will implies Proposition[5.6] Its proof is done in three steps.

Step 1: control with respect to the highest index.

Lemma B.2. There existv >0 and 4, < [1,2] a set of Lebesgue measure 1 and for m € ., there exists
y(m) > 0 such that
IalAj1 +02A]~2+03Aj3 +U4A]~4| zy(m)ljll_v (B.2)

for all 01,0,03,04 € {~=1,1}, j1, jo, j3, ja € Z% satisfying |j1| = |jo| = |j3l = |jal, except when o) = 04 =
—02 =—0osand|ji1| =|j21 = 1j3l =1jal.

The proof of this Lemma is standard and follows the line of Theorem 6.5 in [2], see also [4] or [23]. We
briefly repeat the steps.
Let us assume that ji, j2, ja, ja € Z% satisfy | j1| > | j2| > | j3| > | jal. First of all, by reasoning as in Lemma 3.2
in [23], one can deduce the following.

Lemma B.3. Consider the matrix D whose entry at place (p, q) is given by dd—n:,,qu, p,q=1,...,4. The
modulus of the determinant of D is bounded from below: one has |det(D)| = C|j;|™* where C > 0 and
1> 0 are universal constants.
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From Lemma 3.3 in [23] we learn

Lemma B.4. Let uV, ..., u® be4 independent vectors in R* with || u® ln<1. Letw € R* be an arbitrary
vector, then there existi € [1,---,4], such that |u"® - w| = C|| wl det(u®@,...,u").

Let us define
Wie(m) =01Aj (m)+02Aj,(m)+03Aj,(m)+04Aj,(m).
Combining Lemmata[B.3|and[B.4we deduce the following.

Corollary B.5. For any m € [1,2] there exists an index i € [1,---,4] such that|%(m)’ = CljI7~.

Now we need the following result (see Lemma B.1 in [22]):

Lemma B.6. Let g(x) be a C""" -smooth function on the segment [1,2] such that

lg'lcr =B and max minlakg(JCN =0.
1<ksn X
Then i 1/
n
meas({x||g(x)| < p}) < Cy, (— + 1) (E) .
o o
Define

&) :={me (1,21 lo1A}, +02A ), +03Aj, +0ahj,| < x|}
By combining Corollary[B.5land Lemma [B.6|we get

5u-v

meas (&;(x)) < Clj1 [* (x| j11*)"* < Cx a5 (B.3)

Define
&) = U &),
[j11>1j21>1j31>1 jal

and set v =5u+4(d +1). Then the implies meas(&(x)) < CKi. Then taking m € Uxso ([1,2] \ &(x))
we obtain for any |j1| > |j2| > |j3] > |jal. Furthermore Uy¢ ([1,2] \ &(x)) has measure 1. Now if for
instance | j1| = | j2| then we are left with a small divisor of the type [2Aj, + 03Aj, + 04\ j, | or [Aj, + 04|,
i.e. involving 2 or 3 frequencies. So following the same line we can also manage this case.

Step 2: control with respect to the third highest index. In this subsection we show that small dividers
can be controlled by a smaller power of | j; | even if it means transferring part of the weight to | j3|.

Proposition B.7. Let4 > f§ > 3, there exists Ng < [1,2] a set of Lebesgue measure 1 and for m € N there
exists x(m) > 0 such that
A —Aj,+ 03 + 0 | = ——)
i — A\ 34\ ahjy| 22—
J J2 J3 Ja |]3|2d+3|]1|ﬁ
forall 63,04 € {=1,+1}, for all j1, jo, j3, ja € Z% satisfying | j1| > |j2| = | j3| > |jal, the momentum condition

J1—J2+03j3+04js=0and »

Ll = T, 1jah) = (£) 5 | js| 4+

where C is an universal constant.
We begin with two elementary lemmas

Lemma B.8. Let o = +1, j,k € 2%, with |j| > |k| > 0 and |j| = 8, and [1,2] 3 m — g(m) a C' function
satisfying |g'(m)| < ﬁ for m € [1,2]. For all x > 0 there exists 2 = 9(j, k,0,x,9) < [1,2] such that for
me9p
IAj+UAk—g(m)| >K
and
meas([1,2]\ €) < 101<|j|3.
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Proof. Let f(m) = Aj+0A;—g(m). Inthe case o = —1, which is the worst, we have
1 1 1
flim) = -(— -
2 \1jl2+m k2 +m
_ |k|%—1j1? —g'(m)
2112+ m+V1k12 +m)y/1j12 + my/1k12+m
We want to estimate | f'(m)| from above. By using that 4(|j|? +2)% < 5|13 for |j| = 8 we get

1o
5j1 1011 10113

)—g'(m)

|f'(m)| =
In the case o = 1, the same bound holds true. Then we conclude by a standard argument that
meas{m e [1,2] | |f(m)| <} < 10x|jI3,
which is the thesis. U

LemmaB.9. Let j, ke Z% with|j| = |kl and|j - k| < IjI% then

s . |j— kP
|A;— Ag—g(ljl,1j = kI, G, j - k), m)| < C ’W (B.4)
for some explicit rational function g and some universal constant C > 0.
Furthermore one has
10ma(jl,1j—kl,(j,j—k),m)| < Tk
Proof. By Taylor expansion we have for | j| large
Aj =1+ —5)E =11+ oL
;= —)2 = _— JR—
e T T TV TR TF LR FTE
and
: 2(k—j, ) +1j—kI*+m 1
Ag=jl+ 22— Ijlg )}
:|j|+2(k—j,j)+|j—k|2+m_(2(k—j,j)+|j—k|2+m)2
2(jl 8l jI®
L3 @k=j, )+1j—kPP+m)?*® 151 (2(k—j,j)+|j—k|2+m)4+O(|j—k|5)
48 1j1® 16 4! il jl*
which leads to where with (we use that |[(k—j, /)| <|j—klljland |j — k| < |j|%)
2z+y? Qz+y*+m)?-m? 3 8z28+12z%(y*+m) 11516z*
g(x,y,2,m) = - 3 +— - ————
2x 8x 48 x 4116 x
O

We are now in position to prove the main result of this subsection.

Proof of Proposition[B.7] Let g be the rational function introduced in Lemma[B.9} We write, with o =
0304,

Aj, = Aj, +03Aj, +04\j| ZINj + o Aj, +03g(j1l,1j1 = J2l, (J1, 1 = j2), m)|
=N, = Aj, =gl 1j1 = Jzl, (1, j1 — J2), m)l.
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By assumption j; — j» + 03j3 +04js = 0 and thus | j; — j2| < 2]j3|. Choosing x = m in Lemma
. . .1
and assuming 2| j3| < |j;|2 we have by Lemma and Lemma

Y s Y
|j3l24H31 1P 1alt T 20 jal24%3) jy 1P

|Aj1 —Aj2+0'3Aj3+0'4Aj4|2

as soon as
2d+8

1= (S)78 13l 7 =2 Ty, s = 101 3P
and m € 2(js, ja,0,%,039(j11,1j1 — jal, (1, 1 = j2),)) (the set 2 is defined in Lemma|B.8). Then denoting

_r
2|j3[24+3|jy |’
Y (j1, jo) such that | ji| = max(| jol, J(y,1j31)), j1— jo +03j3+04js =0}

(Y, j3, ja,03,04) :={m e [1,2] 1 |Aj, = Aj, + 03N}, + 04\ j,| =

we have

cg(Y’ j3)j4y0'3,0'4) = ﬂ@(jsvj‘ho-; |2‘1+|j|[5»039(|j1|; |]1 _j2|r (jlrjl _j2))'))
g 1

j3
where the intersection is taken over all functions g generated by (j1, j») € (7?2 such that
|11 = max(| j21, J (v, j3))
and j; — jo +03j3+04j4 =0. Thus by Lemma|B.§
meas ([1,2]1\6(y, js, ja,03,04)) <

10y

#1103 s+ 04 jal, (1,033 +0aj)) | j1e 2%, | j1l* = n}.
n=1 |j3|2d+3n5

But, the scalar product (j;, 073 js +04 js)) takes only integer values no larger in modulus than 2| j; || js] thus
. 207 1 Y
meas € (Y, js, j4,03,04) < P > —57=Cp PECE

n=lnp 2

Then it remains to define

Np=Uyso [ €1, ]3j0,0504)
(ja,ja)e(@h?
[Kkal <kl
03,04€{—1,1}

to conclude the proof. O

Step 3: proof of Proposition[B.1]We are now in position to prove Proposition[B.1} Let 01,02,03,04 €
{-1,1}, jl,jz,jg,j4 € Zd satisfying |]1| = |]2| = |]3| = |]4| and 01j1 +0'2j2 +03j3 +0'4j4 =0. If 01 = 0>y,
then, since |ji| = |j2| = |3l = | j4l, we conclude that the associated small divisor cannot be small except
if |j1l = j21 = 1j3| = |jal and 01 = 02 = —03 = —04 but this case is excluded in Proposition Thus
we can assume 0] = —0>, and we can apply Propositionwhich implies the control for me Ap
with a = 2d + 3 under the additional constrain | j;| = J(x (m), | j3|). Now if | j;| < J(x(m), | j3]) we can apply
Lemmato obtain that there exists v > 0 and full measure set .4, such that for m € .4, N Np := € we
have

ym) _ ym) Cy(m)K(m)“‘ﬁ

lo1Ai +02A;, +03ANi, +04A;,| = — > - = -
PR TR ISR AR 5 T T sl k()Y |j3l

with a = v /3 8 which, of course, implies (B.1).



48

(1]

(2]
(3]

(4]

[5

(6

(7]

[8

191

(10]

(11]

[12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]
(24]

(25]

(26]

(27]

(28]

(29]

ROBERTO FEOLA, BENOIT GREBERT, AND FELICE IANDOLI

REFERENCES

P Baldi, E. Haus, and R. Montalto. Controllability of quasi-linear Hamiltonian NLS equations. J. Differential Equations,
264(3):1789-1840, 2018.

D. Bambusi. Birkhoff normal form for some nonlinear PDEs, Comm. Math. Physics 234, 253-283, 2003.

D. Bambusi, J. M. Delort, B. Grébert, and J. Szeftel. Almost global existence for Hamiltonian semi-linear Klein-Gordon
equations with small Cauchy data on Zoll manifolds. Comm. Pure Appl. Math., 60:1665-1690, 2007.

D. Bambusi and B. Grébert. Birkhoff normal form for partial differential equations with tame modulus. Duke Math. J., 135
n. 3:507-567, 2006.

J. Bernier, E. Faou and B. Grébert. Long time behavior of the solutions of NLW on the d-dimensional torus. Forum of
Mathematics, Sigma, 8:12, 2020.

M. Berti and J.M. Delort. Almost global solutions of capillary-gravity water waves equations on the circle. UMI Lecture
Notes, 2017.

M. Berti, R. Feola, and L. Franzoi. Quadratic life span of periodic gravity-capillary water waves. Water Waves,
https://doi.org/10.1007/s42286-020-00036-8, 2020.

M. Berti, R. Feola, and E Pusateri. Birkhoff normal form and long time existence for periodic gravity water waves. preprint
arXiv:1810.11549, 2018.

M. Bertii, R. Feola, and E Pusateri. Birkhoff normal form for gravity water waves. Water waves,
https://doi.org/10.1007/s42286-020-00024-y, 2020.

J. M. Bony. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielle non linéaire. Ann.
Sci. Ecole Norm. Sup., 14:209-246, 1981.

A. V. Borovskii and A.L. Galkin. Dynamical Modulation of an Ultrashort High-Intensity Laser Pulse in Matter. JETP,
77(4):209-246, 1993.

M. Colin. On the local well-posedness of quasilinear Schréodinger equations in arbitrary space dimension. Communica-
tions in Partial Differential Equations, 27:325-354, 2002.

M. Colin. Stability of stationary waves for a quasilinear Schrodinger equation in space dimension 2. Adv. Differential Equa-
tions, 8(1):1-28, 2003.

M. Colin and L. Jeanjean. Solutions for a quasilinear Schrédinger equation: a dual approach. Nonlinear Analysis, vol.
56(2), 213-226, 2004.

N. de Bouard, A. Hayashi and J.C. Saut. Global existence of small solutions to a relativistic nonlinear Schrédinger equation.
Comm. Math. Phys., 189:73-105, 1997.

J.M. Delort. Semiclassical microlocal normal forms and global solutions of modified one-dimensional KG equations An-
nales de U'Institut Fourier, 66:4, 1451-1528, 2016.

J.M. Delort. On long time existence for small solutions of semi-linear Klein-Gordon equations on the torus. Journal
d’Analyse Mathematique, 107, 161-194, 2009.

J. M. Delort. A quasi-linear Birkhoff normal forms method. Application to the quasi-linear Klein-Gordon equation on $!.
Astérisque, 341, 2012.

J.M. Delort. Quasi-Linear Perturbations of Hamiltonian Klein-Gordon Equations on Spheres. American Mathematical So-
ciety, 10.1090/memo/1103, 2015.

J. M. Delort and J. Szeftel. Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres.
Internat. Math. Res. Notices, 37, 10.1155/S107379280413332, 2004.

J. M. Delort and J. Szeftel. Long-time existence for semi-linear Klein—-Gordon equations with small cauchy data on Zoll
manifolds. Amer. J. Math., 128, 10.1353/ajm.2006.0038, 2006.

H. Eliasson. Perturbations of linear quasi-periodic systems. Dynamical Systems and Small Divisors (Cetraro, Italy, 1998),
1-60, Lect. Notes Math. 1784, Springer, 2002.

H. Eliasson, B. Grébert and S. Kuksin. KAM for nonlinear beam equation, Geom. Funct. Anal., 26 : 1588-1715, 2016.

E. Faou, L. Gauckler, and C. Lubich. Sobolev stability of plane wave solutions to the cubic nonlinear Schrodinger equation
on a torus. Comm. Partial Differential Equations, 38:1123-1140, 2013.

E. Faou and B. Grébert. A Nekhoroshev-type theorem for the nonlinear Schrédinger equation on the torus. Analysis & PDE,
6(6), 2013.

R. Feola and E Iandoli. A non-linear Egorov theorem and Poincaré-Birkhoff normal forms for quasi-linear pdes on the
circle. preprint, arXiv:2002.12448, 2020.

R. Feola and E Iandoli. Local well-posedness for quasi-linear NLS with large Cauchy data on the circle. Annales de l'Institut
Henri Poincare (C) Analyse non linéaire, 36(1):119-164, 2018.

R. Feola and E Iandoli. Local well-posedness for the Hamiltonian quasi-linear Schrédinger equation on tori. preprint,
arXiv:2003.04815, 2020.

R. Feola and E Iandoli. Long time existence for fully nonlinear NLS with small Cauchy data on the circle. Annali della
Scuola Normale Superiore di Pisa (Classe di Scienze) to appear: 10.2422/2036-2145.201811-003, 2019.



LONG TIME SOLUTIONS FOR QUASI-LINEAR NLS AND KG ON TORI 49

[30] R. Feola and M. Procesi. Quasi-periodic solutions for fully nonlinear forced reversible Schrédinger equations. Journal of
Differential Equations, 2014.

[31] B. Grébert. Birkhoff normal form and Hamiltonian PDEs. Séminaires et Congres 15, 1-46, 2007.

[32] M. Goldman and M.V. Porkolab. Upper hybrid solitons and oscillating two-stream instabilities. Physics of Fluids, 19:872—
881, 1976.

[33] R.W. Hasse. A general method for the solution of nonlinear soliton and kink Schrédinger equations. Z. Physik B, 3:83-87,
1980.

[34] A.D. Ionescu and E Pusateri. Long-time existence for multi-dimensional periodic water waves. Geom. Funct. Anal., 29,
811-870, 2019.

[35] A.Ionescu and E Pusateri. Global solutions for the gravity water waves system in 2d. Invent. Math., 199(3):653-804, 2015.

[36] A.Ionescu and E Pusateri. Global regularity for 2d water waves with surface tension. Mem. Amer. Math. Soc., 2017.

[37] T.Kato. Spectral Theory and Differential Equations. Lecture Notes in Mathematics, (eds.) Everitt, W. N., volume 448, chap-
ter “Quasi-linear equations evolutions, with applications to partial differential equations”. Springer, Berlin, Heidelberg,
1975.

[38] C.E. Kenig, G. Ponce, and L. Vega. The Cauchy problem for quasi-linear Schrédinger equations. Invent. Math., 158:343—
388, 2004.

[39] J. Laurie, V.S. L'Vov, S.V. Nazarenko, and O. Rudenko. Interaction of kelvin waves and nonlocality of energy transfer in
superfluids. Phys. Rev. B, 81, 2010.

[40] A.M. Litvak and A.G. Sergeev. One dimensional collapse of plasma waves. JETR Letters, 194:517-520, 1978.

[41] VK. Makhankov and V.G. Fedyanin. Non-linear effects in quasi-one- dimensional models of condensed matter theory.
Physics reports, 104: 1-86, 1984.

[42] J. Marzuola, J. Metcalfe, and D. Tataru. Quasilinear Schrodinger equations III: large data and short time. preprint,
arXiv:2001.01014, 2020.

[43] M. Poppenberg. Smooth solutions for a class of fully nonlinear Schrédinger type equations. Nonlinear Anal., Theory Meth-
ods Appl., 45(6):723-741, 2001.

[44] A. Stingo. Global existence and asymptotics for quasi-linear one-dimensional Klein-Gordon equations with mildly decay-
ing Cauchy data. Bulletin de la SMF 146, 1: 155-213, 2018.

LABORATOIRE DE MATHEMATIQUES JEAN LERAY, UNIVERSITE DE NANTES, UMR CNRS 6629, 2, RUE DE LA HOUSSINIERE, 44322 NANTES
CEDEX 03, FRANCE
Email address: roberto.feola@univ-nantes.fr

LABORATOIRE DE MATHEMATIQUES JEAN LERAY, UNIVERSITE DE NANTES, UMR CNRS 6629, 2, RUE DE LA HOUSSINIERE, 44322 NANTES
CEDEX 03, FRANCE
Email address: benoit.grebert@univ-nantes.fr

LABORATOIRE JACQUES-LOUIS LIONS, SORBONNE UNIVERSITE, UMR CNRS 7598, 4, PLACE JUSSIEU, 75005 PARIS CEDEX 05, FRANCE
Email address: felice.iandoli@sorbonne-universite.fr



	1. Introduction
	2. Preliminaries
	3. Para-differential formulation of the problems
	3.1. Para-linearization of the NLS
	3.2. Para-linearization of the KG

	4. Diagonalization
	4.1. Diagonalization of the NLS
	4.2. Diagonalization of the KG

	5. Energy estimates
	5.1. Estimates for the NLS
	5.2. Estimates for the KG

	6. Proof of the main results
	Appendix A. Approximately symplectic maps
	A.1. Para-differential Hamiltonian vector fields
	A.2. Conjugations

	Appendix B. Non-resonance conditions for (KG)
	References

