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Abstract

This paper is devoted to the numerical analysis of a numerical scheme dedicated to the simulation of
front advection. The latter has been recently proposed and it is based on the ideas used for the Glimm’s
scheme. It relies on a two-step approach: a convection step is followed by a projection step which is based
on a random choice. The main advantage of this scheme is that it applies to multi-dimensional problems. In
the present paper a convergence result for this scheme is provided for a particular class of multi-dimensional
problems. Glimm’s scheme, front propagation, multidimensional problem, random choice.

1 Introduction

In [8], a scheme based on the idea of [5, 1, 2, 3, 6] has been introduced in order to deal with the advection
of indicator functions. The whole algorithm is very simple and it relies on a two-step approach for which a
convection step is followed by a projection step. For the convection step, the approximated solution is updated
using a classical scheme. In the present work, the Upwind scheme has been chosen but it should be noted that
the convection step may be performed with other schemes, as shown in [8]. The front of the approximated
function is smeared by the numerical diffusion associated with the convection scheme. Therefore, a second step
is introduced for stiffening this smeared profile. Its aim is indeed to recover an approximated solution which
corresponds to the approximation of an indicator function (i.e. that for each cell of the mesh can only take two
values). This second step, or Glimm Random Update (GRU), is performed on the basis of a random choice.

The whole scheme proposed in [8], and studied in details here, relies on the analysis of the Upwind scheme
that has been carried out in [4] or in [10]. In these references, a probabilistic analysis of the classical finite-
volume Upwind scheme is performed. The approximated solution of the latter can be built as the expectation
of a stochastic process, where the characteristics are stochastic and follow a Markov chain. It arises from this
analysis that the effective rate of convergence of 1/2 of the Upwind scheme can be associated to the fluctuations
of the stochastic characteristics around the average characteristic, and to the expectation operator applied to
recover the Upwind scheme. Following Glimm’s idea, only one sample of this stochastic process is selected by the
GRU step, which avoids to apply for an expectation operator. Doing so, we could also expect to get an effective
convergence rate higher than 1/2 and we might expect a better accuracy for the approximated solutions. The
GRU step can thus be seen as the random choice of one sample of an underlying stochastic process for the
characteristics, whose transition probabilities are obtained by the scheme used for the convection step. This
scheme has been tested in [8] on several two-dimensional test cases, considering structured and unstructured
meshes. Actually, for all these test cases, an effective rate of convergence around 0.8 has been observed for the
Upwind-GRU scheme, whereas a classical first-order scheme has an effective rate of convergence of 1/2 on such
test cases. Beyond this, it has also been shown that the GRU step improves the accuracy of the approximated
solutions on coarse meshes. It seems that it allows to get for two-dimensional cases the same efficiency than the
classical Glimm’s scheme in the one-dimensional setting.

Unlike for the Glimm’s scheme, the GRU step is dedicated to a limited class of problems. But the main
advantage of the GRU step is that it can be applied to multi-dimensional advection problems, as shown in [8].
Although the method can be applied in a three-dimensional framework, we focus here on the advection of a
scalar quantity Φ in a two-dimensional space whose coordinates are x and y. We assume that Φ can only take
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two different values at time t and point (x, y), say 0 and 1, so that it represents an indicator function of a
sub-domain of R2. Even if the GRU step can handle more complex advection problems, we restrict our study
here to the simple case with a constant and uniform advection velocity field (Ux, Uy). Hence, the system of
equations we are concerned with can be written:{

∂tΦ(t, x, y) + Ux∂xΦ(t, x, y) + Uy∂yΦ(t, x, y) = 0,
Φ(t = 0, x, y) = Φ0(x, y),

(1)

where the initial condition Φ0(x, y) is an indicator function for which the domain with value 1 and the domain
with the value 0 are separated by a planar front. The scheme examined in this paper is based on the GRU step
and on the Upwind scheme for the convection step. It is denoted herein by Upwind-GRU.

As mentioned in [8], for the one-dimensional counterpart of the advection problem described above, the
Upwind-GRU scheme and the Glimm’s scheme give the same update formulae. Hence, in this case, the proof
of convergence for the Glimm’s scheme is sufficient to prove the convergence of the Upwind-GRU scheme.
Therefore, we focus in this work on the two-dimensional case which is more specific to the GRU step. Indeed,
for the particular two-dimensional problem described above, some theoretical results can be exhibited. In
particular a proof that the approximated solutions statistically converge towards the exact solution is proposed.

In [5] - when considering the Glimm’s scheme or in [9] for the deterministic version of the Glimm’s scheme -,
the convergence results are obtained in 1D for systems of non-linear equations with solutions that are supposed
close to constant states. The non-linearity of the systems is then crucial in order to get BV estimates since
the initial conditions are not assumed to be BV in [5]. It allows to recover a strong convergence result thanks
to compactness arguments based on the Helly’s theorem. In the present paper we are concerned in a more
simple situation so we can focus on more simple mathematical tools. Since the velocity field is constant and
uniform, we are dealing with a linear equation so that it is not necessary to assume that the solutions are close to
constant states. Moreover, the considered solutions only take two values. Therefore, the convergence between
an approximated solution and the exact solution can be examined by estimating the distance between the
approximated fronts and the exact fronts. With the Upwind-GRU scheme, the displacement of the approximated
front is governed by a random choice and its location is then associated with a stochastic process. Therefore,
the proofs of convergence proposed here rely on the estimation of probabilities (or transitional probabilities),
which is a different framework than the one used in [5].

From that point of view, the analysis proposed here is close to the analysis carried out in [4] or [10]. In these
references, the Upwind (deterministic) scheme is analyzed by the mean of stochastic processes whose average
gives the Upwind scheme, then the key point for obtaining the estimation of the convergence rate is the central
limit theorem. An important point to be quoted is that, thanks to general results of probability, the analysis
in these references is not restricted to uniform cartesian meshes or to uniform and constant velocity fields. The
proofs of sections 4.2, 4.3 and 4.4 are based on exact computations and they are therefore affordable for simple
situations. The use of general results, as in [4] or [10], has been shortly addressed in section 4.5 and it should
be considered in order to extend the present results to more complex situations.

The paper is organized as follows. In Section 2 the whole Upwind-GRU scheme is described. Then, in
Section 3 some useful properties of the Upwind-GRU scheme are exhibited. Actually, these first results allow
to understand the way the scheme behaves and provide some preliminary results for the next sections. The
convergence results of Section 4 are based on these preliminary results. In this section, a proof of convergence
for the one-dimensional case (i.e. the one-dimensional counterpart of system (1)) is first proposed. It helps to
understand the proof of convergence for the two-dimensional case. Then, the result of convergence established
for the two-dimensional case is briefly extended to the three-dimensional case. Eventually, an other proof is
proposed for the two-dimensional case. It relies on general results and it is thus much shorter than the proof of
Section 4.3.

2 The Upwind-GRU scheme

We recall here the basis of the Upwind-GRU scheme initially proposed in [8]. The latter is a two-step scheme
based on the Upwind scheme and on an update that sharpens the approximated solutions. In order to describe
this scheme we introduce here some (classical) notations.

For the sake of simplicity, we consider uniform and cartesian meshes composed of square cells. Here again,
we insist on the fact that the scheme can be applied to any kind of meshes, as shown in [8]. The spatial domain
is then discretized using cells of size h× h, see Fig. 1 for a sketch of the notations. The center of gravity of cell
(i, j) is denoted by (Xi, Yj) and we obviously have: Xi+1 = Xi + h and Yj+1 = Yj + h. The four faces of the
cell (i, j) are denoted in a classical manner by the indices: (i− 1/2, j) for the left face, (i+ 1/2, j) for the right
face, (i, j − 1/2) for the lower face and (i, j + 1/2) for the upper face.

We recall that the analysis is restricted here to uniform and constant velocity fields. Hence, let us introduce
an angle θ so that we can write the components of the velocity in the form: Ux = U cos(θ) and Uy = U sin(θ),
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where U ≥ 0 is the norm of the velocity field. Obviously, θ and U are uniform and constant. Moreover, thanks
to the symmetry of the considered meshes, we can choose θ ∈ [0,Π/2] without any loss of generality. The other
cases θ ∈ [Π/2,Π], θ ∈ [Π, 3Π/2] and θ ∈ [3Π/2, 2Π] can be treated in the same manner.
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Figure 1: Some notations and definitions for the mesh and the velocity field.

2.1 First step: update according to the Upwind scheme

Considering the approximated value of Φ in cell (i, j) at time tn, the Upwind scheme applied to (1) gives the
updated value Φn+1,∗

i,j at time tn+1 = tn + ∆t in cell (i, j):

Φn+1,∗
i,j = Φni,j −

∆t

h

(
Fni+1/2,j − F

n
i−1/2,j

)
− ∆t

h

(
Fni,j+1/2 − F

n
i,j−1/2

)
. (2)

The fluxes Fni+1/2,j , F
n
i−1/2,j , F

n
i,j+1/2 and Fni,j−1/2 respectively denote the fluxes through the right, left, lower

and upper faces of cell (i, j). Due to the specific case we are interested in, and in particular since θ ∈ [0,Π/2],
we have:

Fni−1/2,j = Ux Φni−1,j , and Fni,j−1/2 = Uy Φni,j−1.

Thus, the update formula (2) gives for our specific configurations:

Φn+1,∗
i,j = Φni,j −

U∆t

h

(
(Φni,j − Φni−1,j) cos(θ) + (Φni,j − Φni,j−1) sin(θ)

)
. (3)

It can thus be seen that the value Φn+1,∗
i,j is a linear combination of the values Φni,j , Φni−1,j and Φni,j−1:

Φn+1,∗
i,j = Φni−1,j

U∆t

h
cos(θ) + Φni,j

(
1− U∆t

h
(cos(θ) + sin(θ))

)
+ Φni,j−1

U∆t

h
sin(θ). (4)

Obviously, equation (4) is a consequence of the choice θ ∈ [0,Π/2]. Assuming that at time tn the values Φni,j
lie in [0, 1] for all the cells (i, j), it can be deduced from equation (4) a sufficient CFL condition (for Courant-
Friedrichs-Lewy condition) which guarantees that Φn+1,∗

i,j also lies in [0, 1] in all cells (i, j). Indeed, for a given
θ ∈ [0,Π/2] and a given velocity U ≥ 0, if ∆t and h are such that:

U∆t

h
(cos(θ) + sin(θ)) < 1,

then equation (4) corresponds to a convex combination of values belonging to [0, 1] and thus Φn+1,∗
i,j also lies

in [0, 1]. In the following, we set β = U∆t/h and we assume that for a given time step ∆t, the mesh size h is
chosen so that β ∈ [0, (cos(θ) + sin(θ))−1]. For the sake of simplicity, we assume that ∆t remains the same for
all time-iterations.
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2.2 Second step: the Glimm Random Update

Let us now assume that the approximated value Φni,j of Φ in each cell (i, j) at time tn lies in {0, 1}. When

applying the Upwind scheme (4) recalled in Section 2.1, the new values Φn+1,∗
i,j generally do not all lie in {0, 1}.

The Glimm Random Update proposed in [8] simply consists in updating Φn+1,∗
i,j according to:

Φn+1
i,j =

{
1, if ωn ∈ [0,Φn+1,∗

i,j ],

0, otherwise,
(5)

where ωn is a random number generated thanks to a uniform distribution on [0, 1]. A straightforward conse-
quence of this update (5) is that at time tn+1 the approximated value Φn+1

i,j lies in {0, 1} for all the cells (i, j).
It’s worth to insist on the fact that ωn is the same for all the cells, but that ωn is independent
from all the ωk with k < n. It should be noted that this feature was introduced in [1, 2, 3] considering the
Glimm’s scheme [5] for the one-dimensional cases. This point is essential for the scheme to behave properly, as
shown in the following sections. In particular, this forbids the formation of “holes” in the profiles, as highlighted
in the beginning of Section 3.2.

Remark. In the present paper ωn is a random number generated thanks to a uniform distribution on [0, 1].
In a practical point of view, ωn can be replaced by a quasi-random number that is chosen in a low-discrepancy
sequence [8]. In [9], the Glimm’s scheme associated with a quasi-random number instead of a random number
has been examined. According to previous works, the Van Der Corput sequence is one of the most efficient
choice, see for instance [3], [7] or [11] (Chapter 5).

3 Some properties of the Upwind-GRU scheme

In this section, the scheme presented in Section 2 is translated in terms of stochastic process. Indeed, the
complete update of Φni,j into Φn+1

i,j involves a random choice, so that further analyses of the scheme can be done
when considering the approximated values of Φ as one realization of a stochastic process. In the following, P(A)
denotes the probability of an event A according to the continuous uniform distribution on [0, 1], which is the
probability distribution for the choice ωn in the update (5).

3.1 Expectations and transitional probabilities

From formula (5) we get the following conditional probabilities knowing the set of the approximated values at
time tn and denoted by Φn = {Φni,j : ∀(i, j)}:

P
(
Φn+1
i,j = 1|Φn

)
= Φn+1,∗

i,j and P
(
Φn+1
i,j = 0|Φn

)
= 1− Φn+1,∗

i,j . (6)

It should be noted here that it is mandatory to have 0 ≤ Φn+1,∗
i,j ≤ 1 so that the two probabilities above are

properly defined. This point highlights the importance of the CFL condition of Section 2.1. Considering the
probabilities (6), one can easily obtain the conditional expectation E

[
Φn+1
i,j |Φn

]
of Φn+1

i,j knowing Φni,j :

E
[
Φn+1
i,j |Φ

n
]

=
(
1× P

(
Φn+1
i,j = 1|Φn

)
+ 0× P

(
Φn+1
i,j = 0|Φn

))
= Φn+1,∗

i,j , (7)

where Φn+1,∗
i,j is given by equation (4). Then, by integrating E

[
Φn+1
i,j |Φn

]
over the values of Φn, the following

can be straightforwardly obtained from (4) and (7):

E
[
Φn+1
i,j

]
= E

[
Φni−1,j

] U∆t

h
cos(θ) + E

[
Φni,j

](
1− U∆t

h
(cos(θ) + sin(θ))

)
+ E

[
Φni,j−1

] U∆t

h
sin(θ). (8)

It can thus be observed that the expectations E
[
Φni,j

]
are updated according to formula (8), which corresponds

to the update formula for the classical Upwind scheme without the GRU step. In that sense the Upwind-GRU
scheme corresponds to one way (among others) of selecting one realization of the stochastic process underlying
the classical Upwind scheme, see [4].

The update formula (4) implies that the value Φn+1,∗
i,j only depends on values Φni,j , Φni−1,j and Φni,j−1.

Obviously, combining (4) and (5), we have:

Φni,j = Φni−1,j = Φni,j−1 =⇒ Φn+1
i,j = Φni,j .

Hence, the value in cell (i, j) can change from tn to tn+1, i.e. Φn+1
i,j 6= Φni,j , but only when the value of the

approximated solution in at least one of its neighboring cells (i − 1, j) and (i, j − 1) differs from Φni,j . This
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Φni,j = 0 Φni−1,j = 0 Φni−1,j = 1

Φni,j−1 = 0 Φn+1,∗
i,j = 0 Φn+1,∗

i,j = β cos(θ)

Φni,j−1 = 1 Φn+1,∗
i,j = β sin(θ) Φn+1,∗

i,j = β(cos(θ) + sin(θ))

Table 1: Updated value Φn+1,∗
i,j when Φni,j = 0 with respect to the value in the neighboring cells (i − 1, j) and

(i, j − 1).

Φni,j = 1 Φni−1,j = 0 Φni−1,j = 1

Φni,j−1 = 0 Φn+1,∗
i,j = 1− β(cos(θ) + sin(θ)) Φn+1,∗

i,j = 1− β sin(θ)

Φni,j−1 = 1 Φn+1,∗
i,j = 1− β cos(θ) Φn+1,∗

i,j = 1

Table 2: Updated value Φn+1,∗
i,j when Φni,j = 1 with respect to the value in the neighboring cells (i − 1, j) and

(i, j − 1).

implies that during one time-step, the approximated solution only changes in the cells that have neighboring
cells which contain a different value at time tn. An other consequence is that no “hole” is created by the scheme.

The different possible configurations due to our specific choices are gathered in tables 1 and 2. From these
different cases and according to (5), we can give the following conditional probabilities that represent the
transitional probabilities for the stochastic process associated with the Upwind-GRU scheme:

P
(
Φn+1
i,j = 1 | Φni,j = 0,Φni−1,j = 0,Φni,j−1 = 0

)
= 0,

P
(
Φn+1
i,j = 1 | Φni,j = 0,Φni−1,j = 1,Φni,j−1 = 0

)
= β cos(θ),

P
(
Φn+1
i,j = 1 | Φni,j = 0,Φni−1,j = 0,Φni,j−1 = 1

)
= β sin(θ),

P
(
Φn+1
i,j = 1 | Φni,j = 0,Φni−1,j = 1,Φni,j−1 = 1

)
= β(cos(θ) + sin(θ)),

P
(
Φn+1
i,j = 1 | Φni,j = 1,Φni−1,j = 0,Φni,j−1 = 0

)
= 1− β(cos(θ) + sin(θ)),

P
(
Φn+1
i,j = 1 | Φni,j = 1,Φni−1,j = 1,Φni,j−1 = 0

)
= 1− β sin(θ),

P
(
Φn+1
i,j = 1 | Φni,j = 1,Φni−1,j = 0,Φni,j−1 = 1

)
= 1− β cos(θ),

P
(
Φn+1
i,j = 1 | Φni,j = 1,Φni−1,j = 1,Φni,j−1 = 1

)
= 1.

In the relations above, P
(
Φn+1
i,j = 1|Φni,j ,Φni−1,j ,Φ

n
i,j−1

)
represents the probability to obtain Φn+1

i,j = 1, knowing
values Φni,j , Φni−1,j and Φni,j−1. Obviously, for any of these possible configurations we have:

P
(
Φn+1
i,j = 0 | Φni,j ,Φ

n
i−1,j ,Φ

n
i,j−1

)
= 1− P

(
Φn+1
i,j = 1 | Φni,j ,Φ

n
i−1,j ,Φ

n
i,j−1

)
.

3.2 Pathological cases

In this section, we aim at highlighting a pathological behavior of the Upwind-GRU scheme. When considering
initial conditions with “thin” shapes on a given mesh (for instance based on a rectangular function in one
dimension), the “thin” shape - and thus the fronts - may completely disappear after a finite number of iterations.
This point has been highlighted in a numerical point of view in [8]. It will be shown here that mesh refinement
tends to decrease the probability of such a behavior for a given final simulation time. Obviously, in a practical
point of view, this solution can not always be used and restart strategies could be an alternative.

In order to illustrate this pathological behavior, a “one-dimensional” situation is considered here. Let us
choose θ = 0, so that the CFL constraint becomes β ∈ [0, 1]. Let us also assume that at time tn we have:

Φni,j =

{
1 if Ia ≤ i < Ib,
0 otherwise,

with Ia < Ib. We denote by ∆IN the number of cells in the x-direction for which ΦNi,j = 1 at iteration N , and
we have ∆In = Ib − Ia. For this very specific case, the CFL condition of Section 2.1 implies that β ∈ [0, 1].
Thererofe, we assume here that h is fixed and that ∆t is chosen so that β lies in [1/2, 1].

Following the results of tables 1 and 2 of Section 3.1, we get that after the first step of the Upwind-GRU
scheme:

Φn+1,∗
i,j =


Φni,j if i /∈ {Ia, Ib},
1− β if i = Ia,
β if i = Ib.

(9)

It can be noticed here that for all cells such that i /∈ {Ia, Ib}, Φn+1,∗
i,j = Φni,j ∈ {0, 1}. As a consequence we also

get that Φn+1
i,j = Φni,j if i /∈ {Ia, Ib}, which shows that no hole is created by the scheme in the initial profile.

Moreover, since ωn is the same for all the cells, the update (9) combined with the step (5) implies that the
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values Φn+1
i,j at time tn+1 do not depend on j: ∀i, Φn+1

i,j0
= Φn+1

i,j1
. These remarks imply that ∆In can been

defined in a unique manner at each iteration.
When turning to cells i ∈ {Ia, Ib}, according to the second step (5), we have three cases. Since we have

chosen β > 1/2, we have 0 ≤ 1− β < β ≤ 1 and these cases are the following:

• if ωn ∈ [0, 1− β], we have Φn+1
Ia,j

= 1 = ΦnIa,j and Φn+1
Ib,j

= 1 6= ΦnIb,j , and hence ∆In+1 = ∆In + 1 ;

• if ωn ∈]1− β, β], we have Φn+1
Ia,j

= 0 6= ΦnIa,j and Φn+1
Ib,j

= 1 6= ΦnIb,j , and hence ∆In+1 = ∆In ;

• if ωn ∈]β, 1], we have Φn+1
Ia,j

= 0 6= ΦnIa,j and Φn+1
Ib,j

= 0 = ΦnIb,j , and hence ∆In+1 = ∆In − 1.

When focusing on the width ∆In+1 of the approximated solution, due to the uniform distribution for ωn, we
have the following transitional probabilities :

P(∆In+1 = ∆In − 1) = 1− β, (10)

P(∆In+1 = ∆In) = 2β − 1, (11)

P(∆In+1 = ∆In + 1) = 1− β. (12)

If we have Ib = Ia + 1, the probability to set the all cells to 0 is then equal to (1 − β). Once all the cells are
equal to zero, they will remain to zero and the initial profile is definitively lost. The probabilities (10)-(12)
clearly advocate for the use of large values of β.

A more general result can be obtained. Indeed, the parameter β is constant and uniform, and the transitional
probabilities (10)-(12) thus do not depend on the time-iteration. The random variable (∆In+1 −∆In) is thus
associated with a generalized Bernoulli law. Therefore, the random variable (∆In) follows a multinomial law
and each possible realization of a sequence of n iterations of the GRU step is a combination of the three cases
mentioned above. Since the probabilities (10)-(12) do not depend on the time-iteration, the probability of one
realization for ∆In only depends on: the number I− of cases (10), the number I0 of cases (11) and the number
I+ of cases (12), with n = I− + I0 + I+. The order of occurrence of the cases does not change the probability.
We thus have:

P(I−, I0, I+) = C
I−,I+
I−+I0+I+

(1− β)I−+I+(2β − 1)I0 ,

where Cp,kn stands for the number of combinations:

Cp,kn =
n!

p! k! (n− p− k)!
.

Using these remarks, and starting with a width ∆In ≥ 1 at time tn, we can write the probability to set all
the values to zero after p iterations. First, if p < ∆In it is not possible to set all the cells to zero. For the
configurations with p ≥ ∆In, we have to sum the probability of all triplet (I−, I0, I+) ∈ ∆p

n, where:

∆p
n =

{
(I−, I0, I+) ∈ [[0, p]]3 with I− + I0 + I+ = p and I− + I+ ≥ ∆In

}
,

so that we get:

P
(
Φn+p
i,j = 0 : ∀(i, j)

)
=

{
0 if p < ∆In,∑

∆p
n
P(I−, I0, I+) otherwise,

(13)

The “worst case” in terms of simulation could be defined as the case with p = ∆In and I− = ∆In. This case
corresponds to the minimal number of iterations required to set all the values in cells to zero. It occurs with
the probability (1− β)∆In .

The same kind of results can obviously be obtained for β ∈ [0, 1/2]. Moreover, the cases where all the cells
are set to one (instead of zero) can be treated following the same idea. The main point to notice here is that for
coarse meshes, some parts of the initial solution may disappear with a non-zero probability. Nonetheless, for a
given physical width of the initial solution and for a given final time, mesh refinement decreases the probability
to set all the values in the cells to zero.

4 A result of convergence for the Upwind-GRU scheme

In this section, we propose a proof of convergence of the Upwind-GRU scheme when considering the advection
of a planar front through system (1). We first begin with the one-dimensional case. Due to our assumption
of constant and uniform velocity, the Upwind-GRU scheme exactly coincides with the Glimm scheme in our
one-dimensional case. Hence the proof of convergence of the latter is sufficient to prove the convergence of
the former. Nevertheless, the proof that we propose in Section 4.3 for the Upwind-GRU scheme in the two-
dimensional case is an extension of the proof of Section 4.2 for the one-dimensional case. Starting with the
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one-dimensional case may help the reader to grasp the main ingredients of the proof. This section begins by a
short subsection that recall some useful and basic notions of probability.

Throughout this section, the mesh described in Section 2 and the corresponding notations are used. The
one-dimensional case of Section 4.2 corresponds to θ = 0 and, for the sake of readability, notations associated
with the y direction are omitted.

4.1 Notion of convergence in the framework of probability.

The aim of this subsection is to recall some basic notions for the convergence of sequences of random variables.
A classical result issued from the Borel-Cantelli’s theorem is also proposed. It is indeed very useful in order to
prove the convergence of a sequence of random variables

Let (Xn)n≥0, Xn ∈ R, be a sequence of random variables in a probability space associated with the prob-
ability measure P . A sequence (Xn)n≥0 is said to converge in probability towards X ∈ R when n tends

towards +∞, or in short Xn
p→ X, when:

∀η > 0, lim
n→+∞

P ({|Xn −X| > η}) = 0.

A sequence (Xn)n≥0 is said to converge almost surely towards X when n tends towards +∞, or in short

Xn
as→ X, when:

∀η > 0, P
(
∩+∞
k=0 (∪m≥k{|Xm −X| > η})

)
= 0,

or in an equivalent manner:

P

({
lim

n→+∞
|Xn −X| = 0

})
= 1.

The convergence almost surely is stronger than the convergence in probability in the sense that:

Xn
as→ X =⇒ Xn

p→ X.

We can now introduce a result issued from the Borel-Cantelli’s theorem, and that is commonly used in
order to prove the convergence almost surely of a sequence (Xn)n≥0 towards X. Let us assume that for all

η > 0, the sequence
(∑N

n=0 P ({|Xn −X| > η})
)
N≥0

is convergent, which is equivalent to:

lim
N→+∞

+∞∑
n=N

P ({|Xn −X| > η}) = 0, or ∃C > 0, lim
N→+∞

N∑
n=0

P ({|Xn −X| > η}) ≤ C.

For any η > 0, thanks to the sub-additivity and to the monotony of the measure P , we have for all N :

P (∩∞k=0 (∪m≥k{|Xm −X| > η})) ≤ P (∪m≥N{|Xm −X| > η}) ≤
+∞∑
m=N

P ({|Xm −X| > η}) .

Hence, taking the limit N → +∞ of this inequality leads to:

P
(
∩+∞
k=0 (∪m≥k{|Xm −X| > η})

)
= 0,

which corresponds to the definition of the convergence almost surely Xn
as→ X. The present result, issued from

the Borel-Cantelli’s theorem, can be stated as follows:

∀η > 0, lim
N→+∞

+∞∑
n=N

P ({|Xn −X| > η}) = 0 =⇒ Xn
as→ X.

4.2 One-dimensional case

For the sake of simplicity, all subscripts j that are related to the coordinate y, and the y components and
coordinates are omitted. We consider here the one-dimensional counterpart of system of equations (1):{

∂tΦ(t, x) + U∂xΦ(t, x) = 0,
Φ(t = 0, x) = Φ0(x),

(14)

where the velocity U is constant and uniform. The initial condition is:

Φ0(x) =

{
1 if (x−X0

f ) < 0,

0 otherwise,
(15)

7



where X0
f stands for a given abscissa. It represents here the initial position of the front. Thanks to our

assumptions, the exact solution of system (14) with initial condition (15) can straightforwardly be written as:

∀t > 0,∀x, Φ(t, x) = Φ0(x− Ut). (16)

The first point here is to choose an approximated initial condition for the numerical scheme. Let us take the
classical approximated initial solution which is equal to the value of the initial condition (15) at the center of
gravity of the cell, that is:

Φ0
i = Φ0(Xi). (17)

It is an important point to be quoted that we obviously have:∑
i

∫ Xi+1/2

Xi−1/2

∣∣Φ0(x)− Φ0
i

∣∣ dx = O(h). (18)

Remark. Approximated initial conditions have been chosen here according to (17). It should be noted
that this choice has no consequence on the results of this section. The only requirement herein is to choose
approximated initial conditions that fulfill (18).

Starting with this approximated initial solution, the Upwind-GRU scheme defined in Section 2 is then applied
for a given time-step ∆t such that the CFL condition of Section 2.1 is fulfilled. The following proposition then
holds.

Proposition 4.1 With an approximated initial solution of the form (15) and (17) at time t0 = 0, the tran-
sitional probabilities for the approximated solution from time tn to time tn+1 = tn + ∆t, obtained with the
Upwind-GRU scheme are: {

P
(
∀i, Φn+1

i = Φni−1

)
= β,

P
(
∀i, Φn+1

i = Φni
)

= 1− β. (19)

The parameter β corresponds to the CFL number and it must belong to ]0, 1[ in order to ensure the stability of
the numerical scheme.

Proof. Due to our choices for the velocity field and the initial condition there are only three possibilities among
the configurations gathered in tables 1 and 2:

• case 1: Φ0
i = 0 and Φ0

i−1 = 1;

• case 2: Φ0
i = 0 and Φ0

i−1 = 0;

• case 3: Φ0
i = 1 and Φ0

i−1 = 1.

For any cell i in the case 2 or 3, updating the approximated solution through the Upwind-GRU scheme does
not change the value in the cell: Φ1

i = Φ0
i . Indeed, the update through the Upwind-GRU scheme implies that

a change may only occur in a cell that is in case 1. Considering the specific form of the initial condition in this
section, there is a unique cell i0 in case 1 at first iteration. We have in that cell the transitional probability:

P
(
Φ1
i0 = 1 | Φ0

i0 = 0,Φ0
i0−1 = 1

)
= β.

Since the values in the cells that are in case 2 or 3 remain unchanged with probability 1, the update of the
approximated solution Φ1 corresponds to a translation of the initial approximated solution Φ0:

• from +h to the right with respect to the positive x when Φ1
i0

= 1, in other words ∀i, Φ1
i = Φ0

i−1;

• from 0 when Φ1
i0

= 0, which means that Φ1 = Φ0.

Thus, at the end of the first iteration there is always a unique cell which is in case 1, and all the other cells are
in case 2 or 3. Moreover, we then obtain the following transitional probabilities:{

P
(
∀i, Φ1

i = Φ0
i−1

)
= β,

P
(
∀i, Φ1

i = Φ0
i

)
= 1− β. (20)

It should be noted that the transitional probabilities (20) do not depend on the time iteration (we recall that
β is fixed in our specific case), and since the initial profile is just translated from h or 0, we deduce that the
probabilities (20) remain the same for all the iterations. We thus get the transitional probabilities (19) which
hold for any iteration time tn. This ends the proof of proposition 4.1.

Let us consider N > 0 time-iterations. As mentioned above in the proof of proposition 4.1, each realization
of the Upwind-GRU scheme for N iterations is thus composed of K ∈ [[0, N ]] shifts of h to the right of the
approximated initial solution Φ0 and N − K standstills. The probability of each configuration is given by
proposition 4.2.
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Proposition 4.2 The probability PKN to get exactly K ∈ [[0, N ]] shifts for N iterations with the Upwind-GRU
scheme is:

PKN = CKN (β)K(1− β)N−K , (21)

where CKN stands for the number of combinations:

CKN =
N !

K!(N −K)!
.

Proof. As mentioned above in the proof of proposition 4.1, for each iteration we have the same transitional
probabilities (19). Moreover, the random numbers ωn involved in the second step of the Upwind-GRU scheme
are independent for all the iterations. Hence each realization is independent and follows (19). Therefore, all
the configurations of K shifts and N −K standstills are equivalent in terms of probability. As a consequence,
the configurations obtained after N iterations with the Upwind-GRU scheme follow the binomial distribution
with the parameter β: B(N, β). Thus, we obtain the formula (21) for the probability PKN to get K shifts for N
iterations.

Hence, the configurations obtained with the Upwind-GRU scheme follow the binomial distribution B(N, β).
Since the displacement associated with each configuration is known, we can deduce ENd the expectation of the
displacement of the approximated initial solution after N iterations.

Proposition 4.3 The expectation of the displacement of the approximated initial solution after N iterations
ENd is equal to the displacement of the approximated initial solution through system (14).

Proof. For each configuration with N iterations and exactly K shifts, the displacement of the approximated
initial solution is equal to Kh. We then get from proposition 4.2 that ENd is:

ENd =

N∑
K=0

(
PKN Kh

)
, (22)

ENd = h

N∑
K=1

(
KCKN (β)K(1− β)N−K

)
, (23)

ENd = h

N∑
K=1

(
NCK−1

N−1 (β)K(1− β)N−K
)
, (24)

ENd = Nβh

N−1∑
K=0

(
CKN−1(β)K(1− β)(N−1)−K

)
. (25)

The sum on the right hand side of equation (25) is the development of the polynomial (β + (1− β))
N−1

which
is obviously equals to 1. We thus finally get:

ENd = Nβh. (26)

By introducing the definition of β = U∆t/h, we can write:

ENd = Nβh = UN∆t = UtN . (27)

The displacement UtN corresponds exactly to the displacement of the approximated initial solution between
t = 0 and t = tN when it is considered as the initial condition for system (14). This ends the proof of proposition
4.3.

Thanks to proposition 4.3, we know that the Upwind-GRU scheme implies an exact average displacement of
the approximated initial solution. The proof proposed in this section is based on the fact that the probability
distribution of one realization of the displacement for a given N , based on (21), corresponds to a distribution
that is centered on a neighborhood of the displacement ENd . By studying the probabilities PKN given by (21),
we obtain proposition (4.4).

Proposition 4.4 For any number of iterations N > 0, there exists an integer 0 ≤ KN,β < N , such that
K 7→ PKN increases for K ≤ KN,β and decreases for K > KN,β. Therefore, the probability PKN reaches a
maximum for K = KN,β or K = KN,β + 1. Moreover, the displacement associated with KN,β fulfills:

|KN,βh− ENd | < 2h. (28)

9



Proof. For a given number of iterations N , simple calculus rules lead to the relation:

PK+1
N = PKN

N −K
K + 1

β

1− β
.

Hence we get that
PK+1
N ≥ PKN ⇐⇒ K ≤ βN − (1− β).

We denote KN,β the integer part of (βN − (1− β)), we then have:

PK+1
N ≥ PKN ⇐⇒ K ≤ KN,β . (29)

From the definition of KN,β , since 0 < β < 1 and thanks to relation (26) from proposition 4.3, it yields:

|KN,βh− ENd | < 2h.

Hence, from (29) and (28), we deduce that K 7→ PKN increases for K ≤ KN,β and decreases for K > KN,β .
Therefore, the probability PKN reaches a maximum for K = KN,β or K = KN,β + 1. This ends the proof for
proposition 4.4.

As an illustration of proposition 4.4, the probabilities PKN are plotted on Fig. 2 with respect to K/N for
N = 100 and β = 0.75. In this case, we have K100,0.75 = 74 and the maximum is reached for K = 75. It can be
observed that the probabilities PKN quickly tend to zero as K deviates from K100,0.75. This feature also plays
an important role in the present proof, and in particular for proposition 4.5.
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Figure 2: Probabilities PKN (y-axis) with respect to K/N (x-axis) for N = 100 and β = 0.75. The maximum is
reached for K = 75 (with K100,0.75 = 74) and its value is P 75

100 ∼ 0.0917997.

Let us fix a final time T and a CFL number β. The time-step is thus deduced from T and from the number
of iterations N through: ∆t = T/N ; hence, the mesh size is obtained from the CFL condition: h = TU/(Nβ).
For a given η > 0, the probability for the displacement of the approximated initial solution to be in the interval
[ENd − η,ENd + η] after N time-iterations is denoted by PηN . We can state the following proposition for PηN .

Proposition 4.5 Let us assume that the final time T and the CFL number β ∈]0, 1[ are given. Let N be the
total number of time-steps for reaching the final time T , so that both h and ∆t are known for any number of
iterations N . Then, the displacement of the approximated initial solution by the Upwind-GRU scheme after N
time-iterations converges almost surely to the exact displacement ENd = TU when N tends towards +∞:

KNh as−→ TU

where the random variable (KN ) stands for the random variable associated with the number of shifts obtained
by the Upwind-GRU scheme for N iterations.

Proof. Let us denote by PηN the probability for the displacement of the approximated initial solution to be in
the interval [ENd − η,ENd + η] after N time-iterations. The probability PηN is defined as:

PηN =
∑

K∈HN (η)

PKN ,
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whereHN (η) =
{
K ∈ [[0, N ]], |ENd −Kh| ≤ η

}
and ENd = TU . So, thanks to relation (28), there exists a number

of iterations Nη for which we have:

∀N ≥ Nη, { KN,β ,KN,β + 1} ⊂ HN (η).

From now on we assume that N is greater than Nη. Let us also define Kinf (resp. Ksup) as the integer part
of (ENd − η)/h+ 1 (resp. of (ENd + η)/h− 1). Obviously, Kinf and Ksup belong to HN (η). However, since we
have chosen N > Nη and thanks to (29), we have the relation:

∀K /∈ HN (η), PKN < max
(
P
Kinf

N , P
Ksup

N

)
from which we get that:

1− PηN =
∑

K/∈HN (η)

PKN ≤ card(H′N (η))×max
(
P
Kinf

N , P
Ksup

N

)
≤ N max

(
P
Kinf

N , P
Ksup

N

)
, (30)

where H′N (η) is the complementary set of HN (η): H′N (η) =
{
K ∈ [[0, N ]], |ENd −Kh| > η

}
. Thanks to our

choices, we have in fact:

(ENd − η)/h+ 1 = N β
(

1− η

TU

)
+ 1 and (ENd + η)/h− 1 = N β

(
1 +

η

TU

)
− 1.

It means that for 0 < η < TU , Kinf and Ksup tend to +∞ as fast as N when N tends to +∞. Since in the
definition of PKN , the integer K is the exponent of β ∈]0, 1[, it means that the term involving the maximum on
the right hand side of (30) tends to zero faster than 1/N when N tends towards +∞. As a consequence, we
get that:

0 ≤ 1− PηN ≤ N max
(
P
Kinf

N , P
Ksup

N

)
−→

N→+∞
0, (31)

whereof we deduce that the probability for the displacement of the approximated initial solution to be at a
distance less than η from the exact displacement tends to 1 when the number of iterations tends towards +∞.
Moreover, by summing inequality (31) for N = 1 to N = N0 ≥ 1 we get:

0 ≤ 1−
N0∑
N=1

(PηN ) ≤
N0∑
N=1

(
N max

(
P
Kinf

N , P
Ksup

N

))
. (32)

Since in the definition of PKN , the integer K is the exponent of β ∈]0, 1[, the sum on the right and side of
inequality (32) remains bounded when N0 tends towards +∞. So that for all η > 0, there exists a constant
C1 > 0 such that:

∞∑
N=1

(
P (|ENd −KNh| ≥ η)

)
≤ C1.

Thanks to this bound, the Borel-Cantelli’s theorem then states that the random variable associated with the
approximated displacement (KNh) converges almost surely to the exact displacement ENd = TU when the
number of iterations tends towards +∞. This ends the proof the proposition 4.5.

Proposition 4.5 proves that the displacements of the approximated initial solution due to the Upwind-GRU
scheme tend almost surely towards the exact displacement when the number of iterations N tends towards
+∞. We can then conclude the whole proof with the following theorem which mainly relies in the results of
proposition 4.5.

Theorem 4.1 Let us assume that the final time T and the CFL number β ∈]0, 1[ are given. Let N be the
total number of time-steps for reaching the final time T , so that both h and ∆t are known for any number of
iterations N . The approximated solutions computed with the Upwind-GRU scheme at time T for a CFL number
β converge almost surely towards the exact solution when N tends towards +∞:

XN,gru
f

as−→ Xf (T ),

where Xf (T ) is the position of the exact front at time T , and XN,gru
f the position of the front for the approximated

solution at time T for N iterations.

Proof. For a final time T and a CFL number β ∈]0, 1[, both h and ∆t are known for any number of iterations

N through the relations: ∆t = T/N and h = TU/(Nβ). The position of the approximated initial front X0,N
f
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for the approximated initial condition (17) also only depends on the number of iterations N . When considering
the initial condition associated with (17):{

1 if (x−X0,N
f ) < 0,

0 otherwise,
(33)

the position XN
f (T ) of the front at time T of the exact solution of system (1) with initial condition (33) is:

XN
f (T ) = X0,N

f + UT.

Let us denote by Xf (T ) the position at time T of the exact front in the solution (16) of system of equations (1)
for the initial condition (15):

Xf (T ) = X0
f + UT.

We know from proposition 4.1 that for the approximated initial condition (17), the approximated solution
computed by the Upwind-GRU corresponds to a translation of the approximated initial condition. We can thus
define a front location XN,gru

f for the approximated solution computed by the Upwind-GRU scheme after N
iterations.

By considering a number of shifts 0 ≤ KN ≤ N , the approximated front is such that:

|Xf (T )−XN,gru
f | = |(X0

f + UT )− (X0,N
f +KNh)| = |(X0

f −X
0,N
f ) + (UT −KNh)|.

Thanks to our choice for the approximated initial condition, we obtain that:

|Xf (T )−XN
f (T )| = |X0,N

f −X0
f | ≤ h,

and thus that:

|Xf (T )−XN,gru
f | ≤ h+ |UT −KNh| = TU

β

1

N
+ |UT −KNh|.

Since T , U and β are fixed, when N tends towards +∞, we have TU/(βN)→ 0. Moreover, thanks to proposition

4.5 we also have |UT −KNh| as−→ 0. It can therefore be concluded that:

|Xf (T )−XN,gru
f | as−→ 0,

when N tends towards +∞. This ends the proof of theorem 4.1.
Finally, we have proved that the approximated solutions computed with the Upwind-GRU scheme converge

towards the exact solution almost surely for the specific problem involving: a constant and uniform velocity
and an initial condition based on the Heaviside function. It is possible to extend this result to more general
initial conditions while keeping a constant and uniform velocity. Nevertheless, for these more general cases, it
should be accounted for the pathological behavior described in Section 3.2. It should still be noted that in the
case of non constant and non-uniform velocities, the proof becomes very tricky. In particular expressing the
probabilities (21) as in proposition 4.2 is no longer possible since the transitional probabilities that are used in
the proof of proposition 4.1 depend on the time-iteration. This is indeed the key point in the proof proposed
here.

4.3 Two-dimensional case

In the following, the results of Section 4.2 are extended to the two-dimensional case for θ ∈ [0,Π/4] (the other
cases can be studied in a similar way). Each proposition of the previous section has thus its counterpart in the
present section. Let us begin by defining the initial condition:

Φ0(x, y) =

{
1 if (x−X0

f ) cos(θ) + (y − Y 0
f ) sin(θ) < 0,

0 otherwise.
(34)

for system (1). We define the line D0
f : (x − X0

f ) cos(θ) + (y − Y 0
f ) sin(θ) = 0 where (X0

f , Y
0
f ) corresponds to

a reference point of D0
f , and n0 = (cos(θ), sin(θ)) corresponds to the unit vector which is orthogonal to D0

f

and oriented following the velocity field (we recall that here θ ∈ [0,Π/4]). This initial condition corresponds to
Φ0(x, y) = 1 for all the points (x, y) below D0

f and to Φ0(x, y) = 0 for all the points (x, y) above D0
f . Thanks

to the assumptions detailed in Section 2, the exact solution of (1) with the initial condition (34) is:

Φ(t, x, y) =

{
1 if (x−Xf (t)) cos(θ) + (y − Yf (t)) sin(θ) < 0,
0 otherwise,

(35)
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n

Front

θ

Figure 3: Example of a front on a given mesh at the beginning of a time-iteration. The front is represented
by the dashed line, and n stands for its normal vector. The red cells contain the value 1, and all the other
one contain the value 0. Therefore: red cells correspond to case 4, blue cells correspond to case 3, green cells
correspond to case 1 and purple cells correspond to case 2

where the reference point (Xf (t), Yf (t)) corresponds to the translation of the reference point (X0
f , Y

0
f ) from the

vector (tU cos(θ), tU sin(θ)), that is:

Xf (t) = X0
f + tU cos(θ) and Yf (t) = Y 0

f + tU sin(θ). (36)

Let us now turn to the approximated solutions of (35) and (36) computed by the Upwind-GRU scheme.
We first define the approximated initial condition Φ0

i,j for the Upwind-GRU scheme. Even if several choices
are possible, they have no influence on the results of this section provided that we have:∑

(i,j)

∫
(i,j)

∣∣Φ(t = 0, x, y)− Φ0
i,j

∣∣ dxdy = O(h). (37)

In the following, we define:
Φ0
i,j = Φ0(Xi, Yj), (38)

which is a classical choice fulfilling (37). We recall that, according to the definitions of section 2, Xi and Yj are
the coordinates of the center of gravity of cell (i, j) (see also Fig. 1).

Remark. As in Section 4.2, all the approximated initial conditions fulfilling condition (37) can be chosen
instead of (38) for obtaining the results of this section.

Starting from this initial condition, we then apply the Upwind-GRU scheme with a time-step ∆t such
that the CFL condition of Section 2.1 is fulfilled. Then the following proposition holds for the transitional
probabilities.

Proposition 4.6 With an approximated initial solution of the form (34) and (38) at time t0 = 0, the tran-
sitional probabilities for the approximated solution from time tn to time tn+1 = tn + ∆t, obtained with the
Upwind-GRU scheme are: 

P
(
∀(i, j), Φn+1

i,j = Φni−1,j

)
= β cos(θ),

P
(
∀(i, j), Φn+1

i,j = Φni,j−1

)
= β sin(θ),

P
(
∀(i, j), Φn+1

i,j = Φni,j
)

= 1− β(cos(θ) + sin(θ)).

(39)

The parameter β corresponds to the CFL number and it should belong to ]0, (cos(θ) + sin(θ))−1[ in order to
ensure the stability of the numerical scheme.

Proof. Due to our choices for the velocity field and the initial condition, we are faced to only four of the eight
configurations gathered in tables 1 and 2:

• case 1: Φ0
i,j = 0, Φ0

i−1,j = 1, and Φ0
i,j−1 = 0;

• case 2: Φ0
i,j = 0, Φ0

i−1,j = 1, and Φ0
i,j−1 = 1;
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• case 3: Φ0
i,j = 0, Φ0

i−1,j = 0, and Φ0
i,j−1 = 0;

• case 4: Φ0
i,j = 1, Φ0

i−1,j = 1, and Φ0
i,j−1 = 1.

Cases 3 and 4 correspond to cells (i, j) for which the approximated value of Φ can not change at the first
iteration: Φ1

i,j = Φ0
i,j . We thus focus on the cells of cases 1 and 2, that are the cells just downwind the

approximated front, see Fig. 3. For these cells, the first step of the Upwind-GRU scheme leads to the values:

• case 1: Φ1,∗
i,j = β cos(θ);

• case 2: Φ1,∗
i,j = β(cos(θ) + sin(θ).

Then, the second step of the Upwind-GRU scheme leads to:

• case 1: Φ1
i,j = 1 if ω0 ∈ [0, β cos(θ)], and Φ1,∗

i,j = 0 otherwise;

• case 2: Φ1
i,j = 1 if ω0 ∈ [0, β(cos(θ) + sin(θ)], and Φ1,∗

i,j = 0 otherwise.

Since θ ∈ [0,Π/4], we have 0 ≤ β cos(θ) ≤ β(cos(θ) + sin(θ) ≤ 1. Moreover, ω0 is the same for all the cells,
therefore three possibilities arise:

• When ω0 ∈ [0, β cos(θ)], cells in case 1 and 2 change from 0 to 1, and Φ1
i,j corresponds to a translation of

the initial condition of h in the direction of the positive x: Φ1
i,j = Φ0

i−1,j .

• When ω0 ∈]β cos(θ), β(cos(θ) + sin(θ))], only the cells in case 2 change from 0 to 1, and Φ1
i,j corresponds

to a translation of the initial condition of h in the direction of the positive y: Φ1
i,j = Φ0

i,j−1.

• When ω0 ∈]β(cos(θ) + sin(θ)), 1], all the cells remain unchanged, and Φ1
i,j is equal to the initial condition:

Φ1
i,j = Φ0

i,j .

Hence we can deduce from these remarks that, at first iteration, the initial profile is simply translated with the
following transitional probabilities

P
(
∀(i, j), Φ1

i,j = Φ0
i−1,j

)
= β cos(θ),

P
(
∀(i, j), Φ1

i,j = Φ0
i,j−1

)
= β sin(θ),

P
(
∀(i, j), Φ1

i,j = Φ0
i,j

)
= 1− β(cos(θ) + sin(θ)).

(40)

Two important points have to be quoted here in order to pursue the proof. First, the update from t = 0 to
t = ∆t preserves the initial profile in the sense that it is just translated to the right or to the top, or it remains
at its initial location. The second point is that the transitional probabilities (40) only depend on the velocity
field, on the time-step ∆t and on the mesh-size h. Since all these parameters are uniform and constant, the
probabilities (40) remain unchanged for all iterations and for all cells. Hence, the iteration from a time tn to
the time tn+1 exactly corresponds to the first iteration in terms of transitional probabilities, and we thus obtain
the probabilities (39).

For the sake of readability, let us denote by Px = β cos(θ) the probability to shift the approximated solution
from one cell in the direction of positive x and by Py = β sin(θ) the probability to shift the approximated
solution from one cell in the direction of positive y.

Let us consider N > 0 time-iterations of the Upwind-GRU scheme with (34) and (38) as an initial condition.
These N iterations are composed of successive x−shifts, y−shifts or standstills of the approximated initial
solution. Since Px and Py do not depend on the iteration, all the combinations of the same number of shifts
and standstills are equivalent. Therefore, the probability for each configuration is given by proposition 4.7.

Proposition 4.7 The probability to get exactly Kx shifts along x and Ky shifts along y, with (Kx,Ky) ∈ [[0, N ]]2

and Kx +Ky ≤ N , reads:

P
Kx,Ky

N = C
Kx,Ky

N (Px)Kx(Py)Ky (1− Px − Py)N−Kx−Ky . (41)

where C
Kx,Ky

N stands for the number of combinations:

C
Kx,Ky

N =
N !

Kx!Ky!(N −Kx −Ky)!
.

Proof. As mentioned above in the proof of proposition 4.6, for each iteration we have the same transitional
probabilities (39). Moreover, the random numbers ωn involved in the second step of the Upwind-GRU scheme
are independent for all iterations. Hence each realization is independent and follows (19). Therefore, all
the configurations of Kx x−shifts, Ky y−shifts and N − K standstills are equivalent in terms of probability.
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As a consequence, the configurations obtained after N iterations with the Upwind-GRU scheme follow the
multinomial distribution with the parameter (Px, Py): B(N,Px, Py). Thus, we obtain the formula (41) for the

probability P
Kx,Ky

N to get Kx x−shifts and Ky y−shifts for N iterations.
We know from the previous proposition that the different configurations that can be obtained after N itera-

tions follow a multinomial distribution B(N,Px, Py). Since the space discretisation is known, the displacement
associated with each configuration can easily be obtained. Therefore, the expectation of the displacement of
the approximated initial solution after N iterations, ENd , can be explicitely writen. The following result then
holds.

Proposition 4.8 The expectation of the displacement of the approximated initial solution after N iterations
ENd is equal to the displacement of the approximated initial solution through system (1).

Proof. Thanks to this probability (41), we can write explicitly the expectation ENd = (ENd,x, E
N
d,y) of the

displacement of the initial approximated solution after N iterations by summing all the displacement weighted
by their probabilities:

ENd =
∑

0≤ Kx+Ky≤N

(
P
Kx,Ky

N (Kxh,Kyh)
)
. (42)

The x-component ENd,x of the average displacement ENd can be written in a more convenient form:

ENd,x =
∑

0≤ Kx+Ky≤N

(
P
Kx,Ky

N Kxh
)

;

ENd,x = h

N∑
Kx=1

N−Kx∑
Ky=0

(
KxC

Kx,Ky

N (Px)Kx(Py)Ky (1− Px − Py)N−Kx−Ky

) .

Yet for 1 ≤ Kx ≤ N we have the relation:

Kx C
Kx,Ky

N = N C
Kx−1,Ky

N−1 ,

hence the formula above for ENd,x can be simplified in:

ENd,x = NhPx

N−1∑
Kx=0

(N−1)−Kx∑
Ky=0

(
KxC

Kx,Ky

N−1 (Px)Kx(Py)Ky (1− Px − Py)(N−1)−Kx−Ky

) ,

ENd,x = NhPx
∑

0≤ Kx+Ky≤N−1

(
C
Kx,Ky

N−1 (Px)Kx(Py)Ky (1− Px − Py)(N−1)−Kx−Ky

)
. (43)

The sum in the formula above corresponds to the development of the polynomial (Px+Py +(1−Px−Py))(N−1)

which is equal to 1. So that we finally get:

ENd,x = NhPx.

Thanks to the definition of Px and β, we then obtain that:

ENd,x = Nhβ cos(θ) = N∆tU cos(θ) = tNUx. (44)

Obviously, the same computations can be done for ENd,y, the y-component of ENd , and it can be found that:

ENd,y = tNUy. (45)

As a consequence, the expectation of the displacement is equal to the exact displacement due to the velocity
field (Ux, Uy):

ENd = tN (Ux, Uy).

This ends the proof of proposition (4.8).
At that point, we have thus proved that each approximated solution ΦNi,j computed with the Upwind-GRU

scheme corresponds to the initial solution Φ0
i,j translated and that the expectation of these translations is equal

to the displacement of the exact solution between time t = 0 and time t = tN . For the continuation of the

proof, we need to study in detail the probabilities (41). In particular, it will be proved that (Kx,Ky) 7→ P
Kx,Ky

N

possesses a unique maximum on DN = {[[0, N ]]2, Kx +Ky ≤ N}.
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Proposition 4.9 For any number of iterations N > Nβ,θ, with Nβ,θ = max(1,max(1/Px, 1/Py) − 2), there

exists two integers 0 ≤ K∗x < N and 0 ≤ K∗y < N , such that the probability P
Kx,Ky

N reaches a maximum for
(K∗x,K

∗
y ). Moreover, the displacement associated with (K∗x,K

∗
y ) fulfills:∣∣ENd,x − hK∗x∣∣ ≤ 2 max(Px, (1− Px))h, (46)

and: ∣∣ENd,y − hK∗y ∣∣ ≤ 2 max(Py, (1− Py))h. (47)

Proof. For a given number of iterations N , the following relations between the probabilities can be obtained
using simple calculus rules:

P
Kx+1,Ky

N = P
Kx,Ky

N

Px(N −Kx −Ky)

(1− Px − Py)(Kx + 1)
; (48)

P
Kx,Ky+1
N = P

Kx,Ky

N

Py(N −Kx −Ky)

(1− Px − Py)(Ky + 1)
. (49)

From (48) and (49), one can obtain that:

P
Kx+1,Ky

N ≥ PKx,Ky

N ⇐⇒ NPx − (1− Px − Py)− PxKy − (1− Py)Kx ≥ 0;

P
Kx,Ky+1
N ≥ PKx,Ky

N ⇐⇒ NPy − (1− Px − Py)− (1− Px)Ky − PyKx ≥ 0.

Since the probabilities Px and Py do not depend on the iteration, each inequality above is afine with respect
to (Kx,Ky). The associated sub-domains of DN are then separated by a line. For the first inequality, and
respectively the second one, we define the lines (Dx) and respectively (Dy):

(Dx) : NPx − (1− Px − Py)− PxKy − (1− Py)Kx = 0;

(Dy) : NPy − (1− Px − Py)− (1− Px)Ky − PyKx = 0.

These two lines are different because the determinant of the matrix that contains their normal vector reads:∣∣∣∣ 1− Py Px
Py 1− Px

∣∣∣∣ = 1− Px − Py = 1− β(cos(θ) + sin(θ)),

which is non-negative thanks to the CFL condition for β. Moreover, the two components of the normal vector
of (Dx) (resp. (Dy)) have the same sign which implies that (Dx) (resp. (Dy)) has a negative slope in the
(Kx,Ky)-plane. We now define the two lines that are the counterpart of (Dx) and (Dy) in the (x, y)-plane:

(D′x) : NPx − (1− Px − Py)− Pxy − (1− Py)x = 0;

(D′y) : NPy − (1− Px − Py)− (1− Px)y − Pyx = 0.

The line (D′x) (resp. (D′y)) has the same normal vector and the same distance to the origin (0, 0) than (Dx)
(resp. (Dy)). This distance to the origin is NPx − (1− Px − Py) for (Dx) and (D′x), and NPy − (1− Px − Py)
for (Dy) and (D′y). Let us now compute (x∗, y∗) the intersection point for (D′x) and (D′y) in the (x, y)-plane.
It can be easily found that:

x∗ = NPx − (1− 2Px) and y∗ = NPy − (1− 2Py).

It is an important point to be quoted that in general x∗ and y∗ do not lie in [[0, N ]], this explains why (D′x)
and (D′y) have been introduced. For small N , x∗ and y∗ can be non-positive. But for any given β and θ, there
exists a number of iterations Nβ,θ = max(1,max(1/Px, 1/Py) − 2) such that for all N > Nβ,θ we have x∗ ≥ 0
and y∗ ≥ 0. Moreover, we have:

x∗ + y∗ ≤ N ⇔ Px + Py ≤ 1,

which is fulfilled thanks to the CFL condition for β. We assume from now that N ≥ Nβ,θ. Therefore we get that
(x∗, y∗) ∈ {[0, N ], x∗+y∗ ≤ N}, the latter subset being the counterpart in R2 of the subset DN . By multiplying
the coordinates (x∗, y∗) by h, and thanks to relations (44) and (45), we obtain the associated displacement:

h (x∗, y∗) = ENd + h (1− 2Px, 1− 2Py). (50)

Since Px and Py lie in [0, 1], we thus get: ∣∣hx∗ − ENd,x∣∣ < h; (51)∣∣hy∗ − ENd,y∣∣ < h. (52)
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Kx

Ky

X*

Y*

(front)

(Dx)

(Dy)

θ

Figure 4: Probabilities P
Kx,Ky

N with respect to Kx and Ky for N = 100, θ = 0.15 Π and β = 0.75/(cos(θ) +
sin(θ)). The front (black line), the lines (Dx) (orange line) and (Dy) (purple line), and the point (x∗, y∗) are
plotted.

Let us now turn back to the probabilities P
Kx,Ky

N . From the previous remarks, see also Fig. 4, we know

that Kx 7→ P
Kx,Ky

N increases when (Kx,Ky) is below (D′x) and decreases when (Kx,Ky) is above (D′x) ; and

that Ky 7→ P
Kx,Ky

N increases when (Kx,Ky) is below (D′y) and decreases when (Kx,Ky) is above (D′y). The

intersection point of these two lines is (x∗, y∗), so that the maximum of (Kx,Ky) 7→ P
Kx,Ky

N on DN is reached
at a point (K∗x,K

∗
y ) such that |x∗ −K∗x| ≤ 1 and

∣∣y∗ −K∗y ∣∣ ≤ 1. Then, using relation (50), the inequality
|x∗ −K∗x| ≤ 1 leads to:

−1 ≤ x∗ −K∗x ≤ 1;

−h ≤ ENd,x + h (1− 2Px)− hK∗x ≤ h;

−2(1− Px)h ≤ ENd,x − hK∗x ≤ 2Pxh.

This leads to inequality (46) and, applying the same idea for the y-component, (47) can be found. In fact,

these two inequalities state that the most probable displacement (hK∗x, hK
∗
y ) following P

Kx,Ky

N tends towards

the exact displacement ENd when the mesh size h tends towards zero (at a fixed β). This ends the proof of
proposition 4.9.

Let us choose η > 0, and let us define the subset of DN :

HN (η) =
{

(Kx,Ky) ∈ DN/
∣∣ENd,x − hKx

∣∣ ≤ η and
∣∣ENd,y − hKy

∣∣ ≤ η} .
The subset HN (η) contains all the possible couples (Kx,Ky) that, for N iterations, lead to a displacement which
have a distance from the exact displacement less than η. Since we have a cartesian setting, the distance used
here corresponds to a L1-norm component by component. Let us fix a final time T and let us fix a CFL number
β in ]0, (cos(θ) + sin(θ))−1[. For a given number of iterations N , the time-step is chosen constant: ∆t = T/N .
We thus get that the mesh size if fixed and reads: h = TU/(Nβ).

Proposition 4.10 Let us assume that the final time T and the CFL number β ∈]0, (cos(θ)+sin(θ))−1[ are given.
Let N be the total number of time-steps for reaching the final time T , so that both h and ∆t are known for
any number of iterations N . The displacement of the approximated initial solution by the Upwind-GRU scheme
after N time-iterations converges almost surely to the mean displacement ENd = (ENd,x, E

N
d,y) = (TUx, TUy) as

N tends towards +∞:
(KNx h,KNy h)

as−→ (TUx, TUy),

where (KNx ) (resp. (KNy )) denotes the random variable associated with the number of shifts of the approximated
solution in the x-direction (resp. y-direction).
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Proof. We first define PηN , the probability for the displacement of the approximated initial solution to be in the
domain [ENd,x − η,ENd,x + η]× [ENd,y − η,ENd,y + η] after N time-iterations. Inequalities (46) and (47) imply that,
for a given h, there exists Nη > Nβ,θ such that for all N > Nη we have (K∗x,K

∗
y ) ∈ HN (η). In the following,

we assume that we have N > Nη.

From the previous results (see inequalities (51)-(52) and the results of monotony for P
Kx,Ky

N on DN ) we can
deduce that there exists a couple (Kx,m,Ky,m) in DN \ HN (η) such that:

∀(Kx,Ky) ∈ DN \ HN (η), P
Kx,Ky

N ≤ PKx,m,Ky,m

N .

Due to the monotony results, this maximum probability P
Kx,m,Ky,m

N is always reached close to the frontier
between HN (η) and DN \ HN (η), which means that we have:

η <
∣∣ENd,x − hKx,m

∣∣ ≤ η + h, and η <
∣∣ENd,y − hKy,m

∣∣ ≤ η + h. (53)

As a consequence, by using (44) and the relation h = TU/(Nβ), the first inequality of (53) gives:

ENd,x − η − h ≤ hKx,m ≤ ENd,x + η + h;

h NPx − η − h ≤ hKx,m;

Nβ
(

cos(θ)− η

TU

)
≤ Kx,m + 1. (54)

In the same way, one can easily find from the second inequality of (53) that:

Nβ
(

sin(θ)− η

TU

)
≤ Ky,m + 1. (55)

We can deduce from inequalities (54) and (55), and from the fact that the parameters θ, T and U are fixed, that
for small enough values of η the integers Kx,m and Ky,m tend towards +∞ linearly when N tends towards +∞.
According to (54) and (55), this is the case if the following sufficient condition is fulfilled: η ≤ min(Ux, Uy)T .
From now we thus assume that η fulfills that condition.

The probability to have a couple
(
KNx ,KNy

)
in DN \ HN (η) is thus:

P
((
KNx ,KNy

)
∈ DN \ HN (η)

)
=

∑
(Kx,Ky)∈DN\HN (η)

P
Kx,Ky

N < card (DN \ HN (η))P
Kx,m,Ky,m

N .

Since card (DN \ HN (η)) ≤ N2, we get the inequality:

P
((
KNx ,KNy

)
∈ DN \ HN (η)

)
< N2P

Kx,m,Ky,m

N ,

and by expressing explicitly P
Kx,m,Ky,m

N we obtain:

P
((
KNx ,KNy

)
∈ DN \ HN (h)

)
< N2C

Kx,m,Ky,m

N (Px)Kx,m(Py)Ky,m(1− Px − Py)N−Kx,m−Ky,m . (56)

When N tends towards +∞, the term N2C
Kx,m,Ky,m

N on the right hand side of the inequality tends to +∞ as
a polynomial in N ; whereas the three other terms tend to zero as exponential terms (since Px and Py are in
[0, 1]). Hence, we finally get that

P
((
KNx ,KNy

)
∈ DN \ HN (η)

)
−→

N→+∞
0 (57)

and obviously we have

P
((
KNx ,KNy

)
∈ HN (η)

)
−→

N→+∞
1. (58)

The latter means that for any given η ≤ min(Ux, Uy)T , the probability to have a displacement inside HN (η)
tends to 1. Due to our choice, ENd does not depend on N : ENd = tN (Ux, Uy) = T (Ux, Uy). Thus the frontier of
the domain HN (η) which is given by h and ENd , does not depend on N . We can then deduce from (58) that:

PηN = P
(
|KNx h− TUx| < η and |KNy h− TUy| < η)

)
= P

((
KNx ,KNy

)
∈ HN (η)

)
−→

N→+∞
1. (59)

Since the limit (59) holds for all 0 < η ≤ min(Ux, Uy)T , we can conclude that the approximated displacement
associated with the Upwind-GRU scheme tends towards the exact displacement with probability 1 when the
number of iterations tends towards +∞ (i.e. when the time-step ∆t or the mesh-size h tend towards 0).
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Moreover, if we sum the inequality (56) for N = 1 to N = N0 ≥ 1, we get that:

N0∑
N=1

P
((
KNx ,KNy

)
∈ DN \ HN (h)

)
<

N0∑
N=1

N2C
Kx,m,Ky,m

N (Px)Kx,m(Py)Ky,m(1− Px − Py)N−Kx,m−Ky,m . (60)

Since the term N2C
Kx,m,Ky,m

N tends to +∞ as a polynomial in N , and since the three other terms tend to zero
as exponential terms (since Px and Py are in [0, 1]), the sum on the left-hand-side of inequality (60) remains
bounded when N0 tends towards +∞. Therefore, there exists a constant C2 > 0 such that:

+∞∑
N=1

P
((
KNx ,KNy

)
∈ DN \ HN (h)

)
< C2,

whereof we deduce thanks to the Borel-Cantelli’s theorem that the random variable (KNx h,KNy h) converges

almost surely to (ENd,x, E
N
d,y) = (TUx, TUy) when N tends towards +∞:

(KNx h,KNy h)
as−→ (TUx, TUy).

This ends the proof of proposition 4.10.
In the following, we assume that the final time T and the CFL number β ∈]0, (cos(θ) + sin(θ))−1[ are given,

so that both h and ∆t are known for any number of iterations N . Let us define the front of the approximated
solution. Obviously, the latter depends on the number of iterations N . It reads:

FN,gru = FN,grux ∪ FN,gruy , (61)

where the set FN,grux (resp. FN,gruy ) corresponds to all the faces along x (resp. along y) which separate two
cells associated with different values of the approximated solution a iteration N :

FN,grux =
⋃
(i,j)

{
[xi−1/2, xi+1/2]× {yj−1/2}, ΦNi,j−1 6= ΦNi,j

}
,

and
FN,gruy =

⋃
(i,j)

{
{xi−1/2} × [yj−1/2, yj+1/2], ΦNi−1,j 6= ΦNi,j

}
.

Finally, FN,gru contains all the points of R2 that belong to the front of the approximated solution. Moreover,
thanks to the definition of the approximated initial solution (38) and to the choices for U and n, all the cells
(i, j) that are below F0,gru with respect to the y-axis (or equivalently that are on the left of F0,gru with respect
to the x-axis) are such that ΦNi,j = 1. Conversely, all the other cells are such that ΦNi,j = 0. Thanks to the
definition of the exact solution (35) we can easily define the front F(t) of the exact solution at time t as the
translation due to the velocity U = (Ux, Uy) of the initial front:

D0
f = {(x, y); (x−X0

f ) cos(θ) + (y − Y 0
f ) sin(θ) = 0},

which has already been defined at the beginning of Section 4.3. We thus have:

F(t) = D0
f + t (Ux, Uy). (62)

We also define the following distance between two connected subsets A and B of R2:

d(A,B) = sup
x∈A

(
inf
y∈B

(|x− y|)
)

+ sup
y∈B

(
inf
x∈A

(|x− y|)
)
. (63)

It should be noted that, if A ⊂ B (resp. B ⊂ A) then the second term of d(A,B) (resp. the first term of
d(A,B)) vanishes. Hence, we have: A = B =⇒ d(A,B) = 0. Moreover, if d(A,B) = 0 the two terms in the
definition of the distance are equal to zero, which implies that:

∀x ∈ A, inf
y∈B

(|x− y|) = 0, and ∀y ∈ B, inf
x∈A

(|x− y|) = 0,

and, thus:
∀x ∈ A, ∀y ∈ B, x = y; and ∀y ∈ B, ∀x ∈ A, x = y;

which leads to:
∀x ∈ A, x ∈ B, and ∀y ∈ B, y ∈ A.

Therefore, we have: d(A,B) = 0 =⇒ A = B. So that we can conclude that d(A,B) = 0⇐⇒ A = B.
Since the result of proposition 4.10 remains true for any η > 0, it can be stated that the displacement

due to the Upwind-GRU scheme tends towards the exact displacement with probability 1 when the number of
iterations N tends towards +∞. We can then conclude the whole proof with the following theorem.
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Theorem 4.2 Let us assume that the final time T and the CFL number β ∈]0, (cos(θ) + sin(θ))−1[ are given.
Let N be the total number of time-steps for reaching the final time T , so that both h and ∆t are known for
any number of iterations N . The approximated solution obtained by the Upwind-GRU scheme after N time-
iterations converges almost surely to the exact solution at time T when N tends towards +∞ when considering
the distance d(., .) in the sense that:

d
(
FN,gru,F(T )

) as−→ 0.

Proof. For a final time T and a CFL number β ∈]0, (cos(θ) + sin(θ))−1[, both h and ∆t are known for any
number of iterations N through the relations: ∆t = T/N and h = TU/(Nβ). At time T , the exact solution
(35) corresponds to the translation with the uniform vector U × T of the initial condition (34), so that we have
for the exact front at time T :

F(T ) = F(0) + U × T. (64)

It is an important point to be recalled here that the same random number ωk is used for all the cells at iteration
k. Therefore, one time-step of the Upwind-GRU scheme corresponds to a translation (+h, 0) or (0,+h) of
the approximated solution, see proposition 4.6. We denote by V N,gru the displacement due to the Upwind-
GRU scheme after N iterations, which is composed of KNx displacement along x and KNy displacement along y:

V N,gru = (KNx h,KNy h). We know from proposition 4.8, that it is uniform and that its expectation is equal to
U × T = (UxT,UyT ). We then have:

FN,gru = F0,gru + V N,gru. (65)

Considering equations (64) and (65) we get:

d
(
F(T ),FN,gru

)
= d

(
F(0) + UT,F0,gru + V N,gru

)
.

Since the translation vectors UT and V N,gru are uniform, the definition of the distance (63) leads to:

d
(
F(T ),FN,gru

)
= d

(
F(0),F0,gru

)
+ |UT − V N,gru|.

Thanks to our choice for the initial condition, the equality above gives:

d
(
F(T ),FN,gru

)
≤ h+ |U × T − V N,gru| = TU

βN
+ |UT − V N,gru|, (66)

Since T , U and β are fixed, when N tends towards +∞, we have TU/(βN)→ 0. Moreover, thanks to proposition

4.10 we also have |UT − V N,gru| as−→ 0. It can therefore be concluded that:

d
(
F(T ),FN,gru

) as−→ 0,

when N tends towards +∞. This proves that the approximated front converges almost surely towards the exact
front when N tends towards +∞ when considering the distance d(., .). This ends the proof of theorem 4.2.

Finally, we have proved that the approximated solutions computed with the Upwind-GRU scheme converge
almost surely towards the exact solution for the specific problem involving: a constant and uniform velocity and
an initial condition composed of two states separated by a linear front. Obviously, it is possible to extend this
result to the three-dimensional case when focusing of the same kind of configurations. For more complex con-
figurations the same limitations are encountered as those shortly described at the end of Section 4.2 concerning
the one-dimensional case.

4.4 Three-dimensional case

The results of Section (4.3) can be straightforwardly extended to the three-dimensional case. The same argu-
ments can be used even if the calculus may be a little more complex. We thus do not develop entirely here
the three-dimensional case, and we limit this section to the statement of the counterpart of theorem (4.2) for
the convergence of the Upwind-GRU scheme. We consider here a uniform mesh composed of cubic cells with a
length h. The set of equations is now:{

∂tΦ(t, x, y, z) + Ux∂xΦ(t, x, y, z) + Uy∂yΦ(t, x, y, z) + Uz∂zΦ(t, x, y, z) = 0,
Φ(t = 0, x, y, z) = Φ0(x, y, z).

(67)

where the velocity field (Ux, Uy, UZ) is such that Ux > 0, Uy > 0 and Uz > 0. As in the previous section, we
choose a specific initial condition associated with a planar front:

Φ0(x, y, z) =

{
1 if (x−X0

f )nx + (y − Y 0
f )ny + (z − Z0

f )nz < 0,

0 otherwise.
(68)
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where n = (nx, ny, nz) is the normal vector to the initial front and (X0
f , Y

0
f , Z

0
f ) a reference point of the initial

front. As in Section (4.3), we assume that n2
x+n2

y +n2
z = 1 with nx > 0, ny > 0 and nz > 0. The approximated

initial condition Φ0
i,j,k for the Upwind-GRU scheme is defined as:

Φ0
i,j,k = Φ0(Xi, Yj , Zk), (69)

where (Xi, Yj , Zk) corresponds to the center of gravity of cell (i, j, k). As for the two-dimensional case, see
definition (63), we define the following distance between two connected subsets A and B of R3:

d(A,B) = sup
x∈A

(
inf
y∈B

(|x− y|)
)

+ sup
y∈B

(
inf
x∈A

(|x− y|)
)
. (70)

For the problem defined in this section, theorem 4.3 then states that the approximated solution obtained with
the Upwind-GRU scheme converge towards the exact solution.

Theorem 4.3 Let us assume that the final time T and the CFL number β ∈]0, (nx + ny + nz)
−1[ are given.

Let N be the total number of time-steps for reaching the final time T , so that both h and ∆t are known for
any number of iterations N . The approximated solution obtained by the Upwind-GRU scheme after N time-
iterations converges almost surely to the exact solution at time T when N tends towards +∞ when considering
the distance d(., .) in the sense that:

d
(
FN,gru,F(T )

) as−→ 0.

4.5 A shorter proof for the convergence in probability

For the sake of simplicity, the following proof is proposed for the two-dimensional case but is obviously can be
extended to the one- and three-dimensional cases. The present proof is much shorter that the one proposed
in Section 4.3. Indeed it relies on some classical and general results of probability, as the weak law of large
numbers, instead of using exact computations. As in Section 4.3, for a final time T and a CFL number
β ∈]0, (cos(θ) + sin(θ))−1[, both h and ∆t are known for any number of iterations N through the relations:
∆t = T/N and h = TU/(Nβ).

We consider here the assumptions of Section 4.3. Let us first recall that the approximated front FN,gru
at iteration N has been defined by (61). Using definition (70), we get that the distance d(., .) between the
approximated initial front and the exact front fulfills the relation:

d(F0,gru, D0
f ) ≤ h, (71)

which is obviously consistent with relation (37). We then have the following result.

Theorem 4.4 Let us assume that the final time T and the CFL number β ∈]0, (cos(θ) + sin(θ))−1[ are given,
so that both h and ∆t are known for any number of iterations N . The approximated front computed with the
Upwind-GRU scheme converges in probability towards the exact front with order 1 with respect to h when h→ 0.

Proof. At time t = T , the exact front Df (t) associated with the exact solution (35) is equal to the initial front
translated by (UxT,UyT ):

Df (t) = D0
f + T (Ux, Uy). (72)

From the previous sections, we know that FN,gru is obtained by successive translations of vector: (0, 0), (h, 0) or
(0, h). For each iteration n, the choice between these different possible translations is governed by the random
number ωn. We define δDn the random variable corresponding to the translation at an iteration n in the
direction of the velocity field (Ux, Uy). We know that: P (δDn = h cos(θ)) = β cos(θ) = Px,

P (δDn = h sin(θ)) = β sin(θ) = Py,
P (δDn = 0) = 1− Px − Py.

(73)

Hence, the variables (δDn) are independent and they all follow the same generalized Bernoulli law with param-
eters Px and Py. As a classical result, we get that the expectation and the variance of the variable δDn are
respectively:

E [δDn] = hβ, and V ar (δDn) = h2β v(β, θ),

with v(β, θ) =
(
cos(θ)3 + sin(θ)3 − β

)
≥ 0 thanks to the choices β < (cos(θ) + sin(θ))−1 and θ ∈]0,Π/4[.
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As a consequence, the displacement in the direction of the velocity (Ux, Uy) of the initial approximated front

after N iterations, XN =
∑N
i=1 δDi, is a random variable that follows a multinomial law of parameter (Px, Py).

We thus obtain the probability for XN :

P
(
XN = Kxh cos(θ) +Kyh sin(θ)

)
= C

Kx,Ky

N (Px)Kx(Py)Ky (1− Px − Py)N−Kx−Ky , (74)

with (Kx,Ky) a couple of positive integers such that Kx + KY ≤ N . As in Section 4.3, Kx (respectively Ky)
corresponds to the number of translations (h, 0) (resp. (0, h)). Equation (74) is the counterpart of equation
(41) given in proposition 4.7. The analogous of the result of proposition 4.8 is then:

E
[
XN

]
= TU. (75)

If we define X
N

= XN/N , which corresponds to the average displacement per iteration in the direction of the
velocity (Ux, Uy) for N iterations, we can apply the weak law of large numbers to the variables (δDn). The

latter states that, since (δDn) are independent and identically distributed variables, X
N

is such that:

E
[
X
N
]

= E [δDn] = βh, (76)

which is in equivalent to (75) when Nβh = TU , and:

V ar
(
X
N
)

=
V ar (δDn)

N
=
h2β

N
v(β, θ), (77)

where V ar(.) denotes the variance. Moreover, the Chebyshev inequality provides the relation:

∀ε > 0, P
(∣∣∣XN − E

[
X
N
]∣∣∣ ≥ ε) ≤ V ar

(
X
N
)

ε2
,

whereof we deduce, by setting ε′ = Nε and by using (76) and (77), that:

∀ε′ > 0, P
(
|XN −Nβh| ≥ ε′

)
≤ Nh2β

(ε′)2
. (78)

Hence, since 1/N = βh/(TU) relation (78) leads to:

∀ε′ > 0, P
(
|XN − TU | ≥ ε′

)
≤ (TU)2

(ε′)2N
=

(TU)β

(ε′)2
h. (79)

The quantities β and TU are fixed, so we get from (79) that the approximated displacement in the direction
of the velocity (Ux, Uy) obtained with the Upwind-GRU scheme converges in probability towards the exact one

when the number of iterations tends to +∞: XN p→ TU . Moreover, thanks to the relation between N and h,
we get that XN converges in probability to TU with order 1 with respect to h when h→ 0.

We can then conclude following the same idea than that used in the proof of theorem 4.2. The approximated
front FN,gru at iteration N is the set:

FN,gru = F0,gru +XN (cos(θ), sin(θ)).

Yet, for a final time T and a CFL number β ∈]0, (cos(θ) + sin(θ))−1[, both h and ∆t are known for any number
of iterations N through the relations: ∆t = T/N and h = TU/(Nβ). Thanks to (71), when h tends towards
0, F0,gru tends to D0

f surely with order 1 in h (this convergence is deterministic). Moreover, according to (79),

XN (cos(θ), sin(θ)) tends with probability 1 to :

TU(cos(θ), sin(θ)) = T (Ux, Uy),

with order 1 with respect to h. By considering the distance d(., .), we can then conclude that the approximated
front converges in probability with order 1 in h towards the exact front (72) when h tends towards 0. This ends
the proof of theorem 4.4.

It should be noted that inequality (79) is less sharp (at least for large enough N) that the inequality obtained
in Section 4.3. In particular (79) is not sufficient to allow the use of the Borel-Cantelli’s theorem for obtaining
the convergence almost surely. Obviously, (74) provides a sharper bound as in Section 4.3. This allows to apply
for the Borel-Cantelli’s theorem and to get the convergence almost surely.
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5 Conclusion

Some results and properties of the Upwind-GRU scheme introduced in [8] have been studied. In particular,
a proof of convergence of the Upwind-GRU scheme has been proposed considering a two-dimensional and a
three-dimensional setting and a particular class of advection problems. The latter corresponds to the transport
of a planar front by a constant and uniform velocity field.

It is an important point to be quoted here that the choice of the same random number ωk for all the cells
at iteration k appears as the key point in order to get a consistent scheme. This is clearly highlighted by the
different results proposed in this work. Moreover, the proofs of Section 4 are based on the properties of the
multinomial probability distribution which arises from the assumption that the velocity field is constant and
uniform. If this assumption does not hold, the proof may become more complex. Indeed, expressing a monotony
result as the one stated in proposition 4.9 becomes very tricky. This would be the case when studying extensions
to non-uniform Cartesian grids and/or non-uniform velocity fields. For such cases, the use of more general results
could be of great help, as briefly shown in Section 4.5. The weak law of large numbers has been used in Section
4.5 thanks to our specific situation, but the strong law of large numbers or the central limit theorem might be
efficient mathematical tools in order to treat the more complex situations, as in [4] or [10].

Nevertheless, some extensions of the proof of Sections 4.2, 4.3 and 4.4 to more general cases could be possible,
at least for uniform Cartesian grids. For instance, initial solutions involving a non-planar front could also be
considered provided that the components of its local normal vector have the same sign everywhere. For such
cases, the same arguments than that developed in Section 4 could be used. Nonetheless when the sign of at
least one of the components of the local normal vector changes, the approximated solutions may undergo the
pathological behavior reported in Section 3.2. Therefore, this should be accounted for in the proof.

At last, it should be mentioned that more complex situations have been investigated numerically in [8]. Test
cases involving non-uniform meshes and non-uniform velocity fields have been considered. For each of these
complex configurations, the approximated solutions computed using the Upwing-GRU scheme converge towards
the exact solution with an effective convergence rate of 0.8 when the mesh is refined.
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