M. H. Anderson, J. R. Ensher, M. R. Matthewa, C. E. Wieman, and E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor, Science, vol.269, pp.198-201, 1995.

X. Antoine, W. Bao, and C. Besse, Computational methods for the dynamics of nonlinear Schrödinger and Gross-Pitaevskii equations, (A Feature Article), Comp. Phys. Comm, vol.184, issue.12, pp.2621-2633, 2013.

X. Antoine, C. Besse, and V. Rispoli, High-order IMEX-spectral schemes for computing the dynamics of systems of nonlinear Schrödinger/Gross-Pitaevskii equations, J. Comput. Phys, vol.327, issue.15, pp.252-269, 2016.

X. Antoine and R. Duboscq, Robust and efficient preconditioned Krylov spectral solvers for computing the ground states of fast rotating and strongly interacting Bose-Einstein condensates, J. Comput. Phys, vol.258, pp.509-523, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00931117

X. Antoine and R. Duboscq, Modeling and computation of Bose-Einstein Condensates: stationary states, nucleation, dynamics, stochasticity, Nonlinear Optical and Atomic Systems: at the Interface of Mathematics and Physics, pp.49-145, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01094826

X. Antoine, A. Levitt, and Q. Tang, Efficient spectral computation of the stationary states of rotating Bose-Einstein condensates by the preconditioned nonlinear conjugate gradient method, J. Comput. Phys, vol.343, pp.92-109, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01393094

W. Bao and Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Mod, vol.6, pp.1-135, 2013.

W. Bao and Y. Cai, Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation, Math. Comput, vol.82, pp.99-128, 2013.

W. Bao, Q. Du, and Y. Zhang, Dynamics of rotating Bose-Einstein condensates and its efficient and accurate numerical computation, SIAM J. Appl. Math, vol.66, pp.758-786, 2006.

W. Bao, R. Carles, C. Su, and Q. Tang, Error estimates of a regularized finite difference method for the logarithmic Schrödinger equation, SIAM J. Numer. Anal, vol.57, pp.657-680, 2019.

W. Bao, D. Jaksch, and P. A. Markowich, Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation, J. Comput. Phys, vol.187, pp.318-342, 2003.

W. Bao, D. Marahrens, Q. Tang, and Y. Zhang, A simple and efficient numerical method for computing the dynamics of rotating Bose-Einstein Condensates via rotating lagrangian coordinates, SIAM J. Sc. Comput, vol.35, issue.6, pp.2671-2695, 2013.

W. Bao and J. Shen, A fourth-order time-splitting Laguerre-Hermite pseudospectral method for Bose-Einstein condensates, SIAM J. Sci. Comput, vol.26, pp.2020-2028, 2005.

W. Bao, Q. Tang, and Z. Xu, Numerical methods and comparison for computing dark and bright solitons in the nonlinear Schrödinger equation, J. Comput. Phys, vol.235, pp.423-445, 2013.

W. Bao and H. Wang, An efficient and spectrally accurate numerical method for computing dynamics of rotating Bose-Einstein condensates, J. Comput. Phys, vol.217, pp.612-626, 2006.

C. Besse, A relaxation scheme for the nonlinear Schrödinger equation, SIAM J. Numer. Anal, vol.42, pp.934-952, 2004.

C. Besse, S. Descombes, and G. , Dujardin and I. Lacroix-Violet, Energy preserving methods for nonlinear Schrödinger equations, IMA Journal of Numerical Analysis

W. Cai, C. Jiang, Y. Wang, and Y. Song, Structure-preserving algorithms for the two dimensional sine-Gordon equation with Neumann boundary conditions, J. Comput. Phys, vol.395, pp.166-185, 2019.

M. Caliari, C. Neuhauser, and M. Thalhammer, High-order time-splitting Hermite and Fourier spectral methods for the Gross-Pitaevskii equation, J. Comput. Phys, vol.228, pp.822-832, 2009.

Q. Cheng, C. Liu, and J. Shen, A new Lagrange multiplier approach for gradient flows, Comput. Methods Appl. Mech. Engrg, vol.367, p.13070, 2020.

Q. Cheng and J. Shen, Global constraints preserving scalar auxiliary variable schemes for gradient flows, SIAM J. Sci. Comput, vol.42, pp.2514-2536, 2020.

Q. Cheng, J. Shen, and X. Yang, Highly efficient and accurate numerical schemes for the epitaxial thin film growth models by using the SAV approach, J. Sci. Comput, vol.78, pp.1467-1487, 2019.

A. Collin, P. Massignan, and C. J. Pethick, Energy-dependent effective interactions for dilute many-body systems, Phys. Rev. A, vol.75, p.13615, 2007.

M. Delfour, M. Fortin, and G. Payre, Finite-difference solutions of a nonlinear Schrödinger equation, J. Comput. Phys, vol.44, pp.277-288, 1981.

B. D. Esry and C. H. Greene, Validity of the shape-independent approximation for Bose-Einstein condensates, Phys. Rev. A, vol.60, pp.1451-1462, 1999.

X. Feng, B. Li, and S. Ma, High-order mass-and energy-conserving SAV-Gauss collocation finite element methods for the nonlinear Schrödinger equation

A. L. Fetter, Rotating trapped Bose-Einstein condensates, Rev. Mod. Phys, vol.81, pp.647-691, 2009.

E. P. Gross, Structure of a quantized vortex in boson systems, Nuovo. Cimento, vol.20, pp.454-457, 1961.

W. Kim and H. Moon, Dark and bright soliton exchange in a nonlinear dispersive medium, J. Korean Phys. Society, vol.38, pp.558-561, 2001.

L. Lin, Z. Yang, and S. Dong, Numerical approximation of incompressible Navier-Stokes equations based on an auxiliary energy variable, J. Comput. Phys, vol.388, pp.1-22, 2019.

Z. Liu, H. Zhang, X. Qian, and S. Song, Mass and energy conservative high-order schemes for the nonlinear Schrödinger equation in one and two dimensions, 2019.

D. Pathria and J. L. Morris, Pseudo-spectral solution of nonlinear Schrödinger equation, J. Comput. Phys, vol.87, pp.108-125, 1990.

L. P. Pitaevskii, Vortex lines in an imperfect Bose gas, Soviet Phys. JETP, vol.13, pp.451-454, 1961.

L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation, 2003.

K. I. Pushkarov, D. I. Pushkarov, and I. V. Tomov, Self-action of light beams in nonlinear media: soliton solutions, Opt. Quantum Electron, vol.11, pp.471-478, 1979.

X. Ruan, Y. Cai, and W. Bao, Mean-field regime and Thomas-Fermi approximations of trapped Bose-Einstein condensates with higher order interactions in one and two dimensions, J. Phys. B: At. Mol. Opt. Phys, vol.49, p.125304, 2016.

Y. Saad, Iterative Methods for Sparse Linear Systems, 1996.

Y. Saad and M. H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput, vol.7, issue.3, pp.856-869, 1986.

J. Shen and J. Xu, Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows, SIAM J. Numer. Anal, vol.56, pp.2895-2912, 2018.

J. Shen, J. Xu, and J. Yang, The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys, vol.352, pp.407-417, 2018.

J. Shen, J. Xu, and J. Yang, A new class of efficient and robust energy stable schemes for gradient flows, SIAM Review, pp.474-506, 2019.

J. Shen and Q. Zhuang, Efficient SAV approach for imaginary time gradient flows with applications to one-and multi-component Bose-Einstein Condensates, J. Comput. Phys, vol.396, pp.72-88, 2019.

M. Thalhammer, High-order exponential operator splitting methods for time-dependent Schrödinger equations, SIAM J. Numer. Anal, vol.46, pp.2022-2038, 2008.

M. Thalhammer, Convergence analysis of high-order time-splitting pseudo-spectral methods for nonlinear Schrödinger equations, SIAM J. Numer. Anal, vol.50, pp.3231-3258, 2012.

H. Wang, A time-splitting spectral method for coupled Gross-Pitaevskii equations with applications to rotating Bose-Einstein condensates, J. Comput. Appl. Math, vol.205, pp.88-104, 2007.

J. A. Weideman and B. M. Herbst, Split-step methods for the solution of the nonlinear Schrödinger equation, SIAM J. Numer. Anal, vol.23, pp.485-507, 1986.