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Abstract. The impact of resonant magnetic perturbations (RMP) on the plasma

edge equilibrium and on the turbulence is investigated in a circular limited

configuration. The study is based on a Braginski-based isothermal fluid model. The

flow response of an unperturbated case to a small amplitude three-dimensional single

mode RMP is studied and a scan in amplitude and poloidal and toroidal mode number

is performed. Special attention is given when magnetic islands appear in the simulation

domain on flux surfaces of rational safety factor. Results show an impact of Magnetic

Perturbations (MPs) on both the plasma equilibrium and on the turbulence properties,

with a deviation to the reference solution which depends on the MPs amplitude and

on their wavenumbers. The impact of MPs on turbulence is however globally weaker

than on the plasma equilibrium, suggesting a stabilizing effect of the MP on turbulent

transport. Experimental trends are recovered such as the density pump-out and the

increase of the radial electric field as well as the reorganization of the parallel velocity.

The ballooning of the transport is modified under the effect of the perturbations, with

a shift of the peaked poloidal region from the upper to the lower outer midplane.

In the present model, the SOL width is observed decreasing in the presence of MPs.

Turbulence properties are also impacted with the density fluctuations level decreasing

in perturbated solutions and the intermittency is globally weakened.
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1. Introduction

Heat and particle exhaust in future reactors like ITER remains one of the most critical

issue for succeeding operation, due to the engineering limits of the materials taking

the energy fluxes. This challenge became even more important with the discovery of

the high confinement mode (H-mode) in ASDEX [1] (and subsequently most others

diverted machines). While the improved confinement associated with H-mode makes

it the regime of reference for the design and operation of ITER, it also comes with

negative side-effects when looking at heat exhaust issues. In steady state, H-mode is

associated with narrower Scrape-Off Layers (SOL) than in L-mode [2, 3], leading to

predictions of the heat flux decay width in ITER of the order of 1mm and heat flux

densities to the target larger than material limits. The strategy to cope with these

conditions consists in running the machine in semi- or fully-detached conditions, i.e.

in using energy loses generated in the divertor by neutral particles and impurities to

dissipate radiatively the energy flux before it reaches the targets [4]. H-mode is also

associated with MHD instabilities, the so-called Edge Localized Modes (ELMs), which

generate transient heat and particle fluxes to the target plates [5]. Predictions for ITER

are well beyond acceptable engineering limits [6], making it mandatory to implement

a strategy to prevent the development of ELMs. Several methods have been proposed

and will be implemented in ITER to mitigate ELMs, among which the most promising

consists in the use of externally induced small resonant magnetic perturbations (RMPs,

MPs). However, the introduction of these perturbations is not without consequence on

the plasma equilibrium and could eventually impact the control of steady state fluxes

by detachment.

MPs are by nature 3D and break the toroidal symmetry assumption made in the

large majority of experimental and numerical studies. These MPs are called resonant

when they resonate with the field on a given magnetic flux surface, usually located in

the plasma edge region. The efficiency of these MPs at controlling ELMs depends on

different conditions (see [7]) and the 3D full understanding of the complex interaction

between RMP and the plasma remains a challenging task. Several experimental stud-

ies have underlined 3D changes on the heat flux and particle distribution at the egde

plasma, for different tokamaks [8–10]. One of these effects is the non-axisymmetric pat-

tern of the heat flux, which could have detrimental effect on the detachment. Among

other known effects, we note the equilibrium modifications with a change of the radial

electric field, of the plasma rotation and of the parallel flows [8]. Concerning turbulence,

experiments show a change of the density fluctuations with a complex pattern remaining

difficult to interpret [8].

On the simulations efforts, most studies concentrate on the plasma response to ex-

ternal MP, such as the plasma screening [11, 12] in a MHD framework or the coupling

ELM-RMP [13] but little is known about the inter-ELM conditions. Up to now, most of
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the focus has been given to evaluating the impact of RMPs on the access and toroidal

symmetry of the detached regime. Such modelling requires a code combining 3D geom-

etry and neutral physics. This is the case of EMC3-EIRENE [14] whose model relies on

a mean-field approach, i.e. plasma transport equation in which perpendicular fluxes are

assumed to take the form of a Fick’s law with prescribed diffusion coefficients. In the

absence of better information on the impact of RMPs on anomalous transport, these

studies are conducted with fixed transport coefficients taken equal for both axisymet-

ric reference cases and RMP-perturbed cases [15]. In this frame, 3D simulations show

distinct differences in the pattern of the fluxes reaching the divertor compared to axisym-

metric ones [16]. However, the assumption that perpendicular transport mechanisms are

not significantly influenced by MPs needs to be checked as it might impact these results.

Understanding and evaluating the impact of MPs on perpendicular transport can

only be made with the support of 3D edge turbulence codes. Moreover, the code must

have a few specific features, including the capability to run with realistic magnetic

geometry (at least a realistic safety factor profile) and a non-axisymmetric magnetic

field. Very few tools actually match these requirements to date, explaining why efforts

towards modelling the impact of MPs on edge turbulence have remained quite limited

in the literature. Reiser et al. [17] modelled a full 3D circular geometry with both open

(SOL) and closed (CFR) field lines using an electromagnetic fluid code. Their work

showed a strong suppression of blob amplitude, and a reversal of the radial E ×B flux

when an ergodic MP is applied, in accordance with the experiments cited herein. This

work was extended with [18] in a non-isothermal framework, showing a reduction of the

pedestal profile gradients with the RMP, but little about turbulence itself.

With the lack of further studies with 3D fluid codes, the modelling effort of 3D

edge plasma turbulence with 3D MPs is still needed. The main question of interest is

the evaluation of the impact of the MPs on transverse transport in order to guide the

modelling effort in mean-field tools. In particular, the amplitude and localization of

such impact need to be quantified. Impact on fluctuations and global flows is also of

interest as it might result in a change in impurities erosion and redistribution. In this

paper, we investigate, with a fluid model, the impact of MPs on turbulent transport and

equilibrium in the edge plasma of tokamaks. As first step before moving towards higher

complexity, an isothermal model and a limiter configuration are used, and single mode

perturbations are considered. The electrostatic TOKAM3X code, modified to introduce

3D magnetic perturbations, is used (see [19] for the version without MPs). Due to the

electrostatic aspect of the model, the screening of the MP by the plasma [11, 12] and the

magnetic flutter in the frame of plasma turbulence [18] are not taken into account in the

present study. This is not a strong limitation as we work in ideal simplified conditions

with low beta plasmas and single mode perturbations. The plasma screening will have

to be taken into account when these studies are generalized to realistic RMP spectra

and/or high beta discharges. In this sense, we assume being in the same framework

as [20] and let any generalization to future work.
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The rest of the paper is organized as follows. Sec. 2 briefly introduces the

mathematical and numerical model as well as the implementation of a 3D MP in the

TOKAM3X code. The impacts of MPs on the global edge plasma equilibrium and on

the turbulence properties are investigated in Sec. 3, and in Sec. 4, respectively. Finally,

a discussion on the E × B shear and the difference between turbulent and mean-field

simulations are provided in Sec. 5 before the conclusion in Sec. 6.

2. Electrostatic fluid turbulence model with 3D magnetic perturbations

2.1. The TOKAM3X model

The TOKAM3X code is a two-fluid, drift-reduced electrostatic model for electrons and

a single ion species, solving the edge (closed and open field line region) plasma in

versatile geometries [21], based on the Braginskii’s closure [22]. All details are provided

in Ref. [19].

The code is run here in its isothermal version and in a circular limited geometry. A

non-isothermal version of the code exists as seen in [23] and is able to run into complex

and realistic geometries [21]. This allows us in this first work to exclude geometrical and

non isothermal effects for a step-by-step approach. The dimensionless equations together

with the boundary conditions for the particles density N , the parallel momentum Γ, the

vorticity W and the electric potential Φ are given in Appendix A. The reference scales

for space and time are the ion Larmor radius ρL =
√
miT0/(eB0), where mi is the

ion mass and e the elementary charge, and the inverse of the ion cyclotron frequency

ωc = eB0/mi, respectively.

2.2. Magnetic equilibrium and perturbations

The equilibrium magnetic field ~B0 is assumed to be fixed and axisymmetric (toroidally

symmetric) with the existence of flux surfaces, which are tangent to the magnetic field

lines. The magnetic field orientation is such that the ion ∇B drift (Eq. A.6) is oriented

toward the bottom of the machine. The safety factor q is chosen with a parabolic profile,

and varying between 3 and 6 within the simulation box. We consider here the addition

of a three-dimensional perturbation with a small enough amplitude to remain in the

model assumptions.

2.2.1. Single mode MP case

The cylindrical basis is defined as ~B = ~B(R,Z, φ), where R is the major radius, Z

the vertical distance and φ the toroidal curvilinear coordinate. As the magnetic field is

divergence-free, it can be written as the curl of a vector potential ~A0:

~B0 = ~∇× ~A0 (1)

Due to the anisotropy of magnetically confined plasmas and the magnetic topology, it is

natural to define a three-dimensional non-orthogonal local basis, a so-called curvilinear
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system, such that each position vector ~r follows the transformation:

~r(R,Z, φ) = ~r(ψ, θ∗, ϕ) (2)

where ψ labelled the flux surfaces, θ∗ is a poloidal curvilinear angle, varying along flux

surfaces (normalized between [0, 2π]) and ϕ is a toroidal curvilinear angle (normalized

between [0, 2π]). This allows to define a set of covariant (~eψ, ~eθ∗ , ~eϕ) and contravariant

(~eψ, ~e θ
∗
, ~eϕ) basis, such that:

~eψ =
∂~r

∂ψ
; ~eθ∗ =

∂~r

∂θ∗
; ~eϕ =

∂~r

∂ϕ
(3)

~eψ = ~∇ψ ; ~e θ
∗

= ~∇θ∗ ; ~eφ = ~∇ϕ (4)

With these two basis, the magnetic vector potential, associated with the equilibrium

field ~B0, can be written [24]:

~A0 = Ψp
~∇ϕ+ Ψt

~∇θ∗ (5)

where Ψp(ψ) and Ψt(ψ, θ
∗) are flux fonctions (the indices stand for poloidal and toroidal

respectively).

The small amplitude MP is introduced in TOKAM3X by disturbing the magnetic

vector potential ~A0 as follows:

~A = Ψp(1 + εp)~∇ϕ+ Ψt
~∇θ∗ (6)

where |εp(ψ, θ∗, ϕ)| � 1 with

εp = a · 10−3 sin(mθ∗ − nϕ) (7)

with (m,n) are the wavenumbers in the poloidal and toroidal directions, respectively,

and a is the amplitude (not radially dependant). This perturbation being small, the

computational grid can be kept axisymetric and aligned along the magnetic surfaces

without introducing any numerical issues on the solution accuracy. This leads to the

following relations for the components of the basis:

~eϕ · ~eψ = ~eϕ · ~eθ∗ = ~eϕ · ~eψ = ~eϕ · ~e θ∗ = ~eϕ × ~eϕ = 0 (8)

and thus for the magnetic field to:

~B =

(
∂εpΨp

∂θ∗

)
~∇θ∗ × ~∇ϕ+

(
∂Ψp

∂ψ
+
∂εpΨp

∂ψ

)
~∇ψ × ~∇ϕ+

(
∂Ψt

∂ψ

)
~∇ψ × ~∇θ∗

= Bψ~eψ +Bθ∗~eθ∗ +Bϕ~eϕ = Br
~eψ
|~eψ|

+Bp
~eθ∗

|~eθ∗|
+Bt

~eϕ
|~eϕ|

(9)

where Bi are the contravariant components of the magnetic field. (Br, Bp, Bt) are the

radial, poloidal and toroidal components of the magnetic field. For an axisymmetric

magnetic field, Br = 0. With the new radial component Br, the parallel and

perpendicular operators and the drift velocities have to be recalculated and can be

seen in Eq. A.1 A.2 A.3 A.4. Some details on the curvilinear form of the drifts are given

in Appendix B.

2.3. Simulation settings



Impact of three-dimensional magnetic perturbations on turbulence in tokamak edge plasmas6

Simulation a m n

Reference 0 0 0

MP no island

1 6 4

2 6 4

3 6 4

1 10 6

MP islands

1 6 2

1 15 4

1 18 4

1 22 6

Table 1: Parameters (a,m, n) of

the MPs used in the

simulations. a is the

amplitude, m,n are the

poloidal and toroidal

wavenumbers, respec-

tively. n is given for a

full torus.

The simulations are run in circular geometry with an

infinitely thin limiter located at the bottom of the

machine. Open (SOL) and closed (CFR) fieldline

regions are both simulated. To save computational

time, only a half torus is modelled, assuming the π-

periodicity of the solution in the toroidal direction.

Geometrical parameters - The aspect ratio is

chosen A = a
R0

= 3.4. The minor radius of the

simulated tokamak is 256ρL (Larmor radius).

Control parameters - The normalized parallel

resistivity η‖ and the perpendicular diffusion coef-

ficient D⊥,X are fixed in all simulations and equal

to η‖(
en0

B0
) = 10−5 and D⊥,X = 10−2(ρ2

Lωc). This

value is of the order of the neoclassical values, and

small enough to make sure turbulence is the domi-

nant transport mechanism while preserving numeri-

cal stability.

Finally, a particle source is set at the inner boundary

(core boundary). The source is radially decaying as

a vanishing exponential after a few cells to ensure a

constant particle source and to have no effect on the

simulation away from the boundary.

The mesh in ψ × θ∗ × ϕ is 64 × 512 × 64. Each simulation is run for longer time than

the confinement time. The equilibrium is assumed to be reached when variations of

the time derivatives for the density, the momentum and the particles flux at the limiter

targets are less than 1%.

Magnetic perturbations (MPs) - The parameters of the perturbations Eq. 7 are

given in Tab. 1. The case (0, 0, 0) corresponds to the simulation of reference without

MP. This reference solution has been used as an initial condition for all computations

with MP. In agreement with the theory of MPs, depending on the wavenumbers of

perturbated modes magnetic islands can be found in the simulation domain on flux

surfaces of rational q. In this case, solutions are referred as solutions with magnetic

islands. For some others modes, magnetic islands do not appear in the computational

domain (their amplitude are actually too weak to break the flux surfaces). These

solutions are referred as solutions without magnetic island. An illustration of such

solutions is given on Fig. 1. It shows two Poincaré sections corresponding to magnetic

perturbations (a,m, n) = (1, 6, 4) (Fig. 1a) and (a,m, n) = (1, 6, 2) (Fig. 1b). On

Fig. 1b, multiple magnetic islands chains can be seen at different radial locations on the

flux surfaces of rational q = m/n as 3 ≤ q = 6/2 ≤ 6. This is explained by the form of

the poloidal magnetic field which writes as Bp ∝ 1/[R0(1 + A cos θ∗)]. Expanded in a

Taylor series, the multiplication of Bp by the perturbation εp (Eq. 7) involves successive

modes and not only the mode excited by the perturbation of Ψp. On the example of
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Fig. 1b multiple modes can appear as long as 3 ≤ q = i/2 ≤ 6, that corresponds to

i = 6, 7, . . . , 12. The amplitude of the magnetic islands however decreases when the

mode m increases.

(a) (a,m, n) = (1, 6, 4) (b) (a,m, n) = (1, 6, 2)

Figure 1: Poincaré sections of the perturbed magnetic field for two MPs. The values of the

safety factor q have been plotted on the vertical axis on the right hand. (1a) No

magnetic islandin the computational domain. (1b) Magnetic islands at q = 6/2,

7/2, 8/2, . . . θ∗ = 0 corresponds to the Low Field Side (LFS) mi plane location.

Increasing θ∗ direction corresponds to the electron diamagnetic direction.

In the poloidal and toroidal directions, the response of the magnetic field to any MP

is as expected. It is shown in the poloidal direction on Fig. 2. The Fourier transforms of

the norm of the total magnetic field | ~B| show that peak values correspond to the poloidal

m mode of the perturbation, with a secondary peak of smaller amplitude corresponding

to a resonance at 2m. The peaks become more visible for high m, typically m ≥ 10,

specially when magnetic islands appear in the simulation box, Fig. 2b. Results in the

toroidal direction are not shown, the spectra being simply composed of two peaks, one

at n = 0 corresponding to the toroidal component of the magnetic field and the other

one to the wavenumber of the perturbation.

3. Impact of three-dimensional single MP on the mean fields

The impact of MPs is analyzed on flow variables averaged on time and in the toroidal

direction.

3.1. Density pump-out

The first observation is the density pump-out for most MP. This can be seen on the time

trace of the particle content on Figs. 3. We can clearly see that as soon as the MP is
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(a) (b)

Figure 2: Fourier transforms in the poloidal direction of the norm of the total magnetic

field | ~B| for different MPs without (2a) or with (2b) magnetic islands inside the

computational domain. r/a = 0.9 and ϕ = π/8. Cm is the energy for each mode

m.

activated, the particle content drop by a few percent (5 to 10% at most), which is a clear

reminiscent of the the density pump-out seen in experiments in DIII-D [25], JET [26]

or MAST [8]. We observe a pump-out for all perturbated cases for the simulations

without magnetic island (see Fig. 3a) with a greater amplitude for the cases (2, 6, 4)

and (1, 10, 6). It seems that a threshold exists as the case (3, 6, 4) is similar to (1, 6, 4)

in respect to the amplitude of the pump-out. For the cases with magnetic islands (see

Fig. 3b), the maximal pump-out is for the cases (1, 15, 4) and (1, 6, 2) whereas the case

(1, 22, 6) could almost be seen as a pump-in. No visible trends seems to be highlighed

concerning the pump-out effect in respect to the mode numbers or the amplitude of the

perturbation.

(a) (b)

Figure 3: Time traces of the particle content in the simulation box for the case with magnetic

islands outside the box (3a) and inside (3b).
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3.2. Mean profiles

Present results show that the impact of the MPs is the strongest on the LFS. The

plots on Fig. 4 show the radial density profiles in log scale at the Low Field Side (LFS)

midplane. In the far closed field lines region (CFR), it shows that whatever the MP the

radial gradient remains unchanged while the density is reduced. Then, just before the

separatrix, the gradient decreases compare to the reference. It peaks at the separatrix,

with a lower peak for most MPs. The density profiles show a higher density when MP

are on. The gradient decreases after the separatrix, in the same way, with or without

MPs. Deeper into the SOL, the density profiles flatten, having a mostly higher gradient.

For the MPs without magnetic island in the simulation box (Fig. 4a), the density

deviation from the reference solution increases with the MP amplitude (see solutions

(1, 6, 4), (2, 6, 4)) but seems to have a threshold as solutions (3, 6, 4) and (2, 6, 4) are

really similar. The solution (1, 10, 6) behaves almost similarly than the solution (2, 6, 2),

whose changes are starker than the similar amplitude (1, 6, 4). Thus, even without

magnetic island, the response of the density profile can be impacted in similar way with

either a higher amplitude with lower mode number or a lower amplitude but with higher

mode number of the perturbation.

For the MPs with magnetic islands in the simulation box (Fig. 4b), the density changes

similarly and the density deviation from the reference solution changes with the MP

wavenumber, the amplitude, here, being the same for all MPs. The changes are however

more pronounced than in the solutions without magnetic island. Density gradients

decrease more sharply around the separatrix under the effect of the resonant MPs (see

Figs. 4c and 4d). It results in a higher density around the separatrix for these MPs.

The density profile is the first visible change in experiments with MPs. A second one

is the profile of the radial electric field, directly impacted by the new radial component

of the magnetic field. Figs. 5 show the radial profiles of the mean electrostatic potential

Φ at the LFS midplane. The impact of MPs depends on the presence of magnetic

islands or not in the simulation box. Without magnetic islands (Fig. 5a), an increase is

observed for most studied cases in the CFR as well as a global drop in the SOL, leading

to a flattening of the profile. The direct consequence is a decrease (in absolute value) of

the radial electric field Er. This trend is observed experimentally too [8, 27, 28]. With

magnetic islands (Fig. 5b), the shift of potential is a global increase in both CFR and

SOL, except in the far SOL where the potential decreases below the reference value of

the non perturbated solution. We observe that the amplitude of the increase for the

electric potential is dependent on both the mode and the amplitude. Higher modes

(m,n) or higher amplitudes a seem to increase the rise of the electric potential.

Figs. 5c,5d show the radial profiles of the mean radial electric field at the LFS

midplane. As a side note, the HFS midplane profile follows the same trend. For the

cases without magnetic island in the simulation box (Fig. 5c), the flattening of Er on

perturbated solutions, hints by the profile of Φ, is confirmed. The mean radial electric

field, negative in the CFR in the reference simulation, shifts towards positive values
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(a) No magnetic island (b) Magnetic islands

(c) No magnetic island (d) Magnetic islands

Figure 4: Radial profiles of the mean density (4a,4b) in log scale and of the density radial

gradient (4c,4d) at the LFS midplane for different magnetic perturbations (MPs).

MPs with no magnetic island in the simulation box (4a,4c). MPs with magnetic

islands (4b,4d). Quantities are averaged on time t and toroidal direction ϕ. The

vertical dashed line is the separatrix.

resulting in a much lower amplitude. Deeper into the SOL, the mean radial electric field

flattens with respect to the reference solution but the profiles become nearly independent

on the MP.

For the cases with magnetic islands (Fig. 5d), in the CFR, the mean radial electric field

shifts in the same manner with the MP wavenumber. In the SOL near the separatrix,

Er sharply increases, with an increasing radial gradient with the MPs amplitude, then

decreases to a plateau in the far SOL.

This flattening of the electric potential and the resulting drop of the radial electric

field can have direct consequences on the parallel flows, and this is the object of the

following section.
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(a) No magnetic island (b) Magnetic islands

(c) No magnetic island (d) Magnetic islands

Figure 5: Radial profiles of the mean electrostatic potential Φ (5a,5b) and of the mean radial

electric field Er = 〈−∂rΦ〉t,ϕ (5c,5d) at the LFS midplane for different magnetic

perturbations (MPs). MPs with no magnetic islands (5a,5c) in the simulation box.

MPs with magnetic islands (5b,5d). Quantities are averaged on time t and toroidal

direction ϕ. The vertical dashed line is the separatrix.

3.3. Impact on flows and rotation

The increase of the potential, and consequently the change in the radial electric field,

leads to a reorganization of the plasma rotation and flows which is illustrated by a

change of the parallel velocity. Parallel velocities have been experimentally measured

in [8] and can be a point of qualitative comparison with the simulations. Fig. 6 shows

the radial profiles of the mean parallel Mach number (M‖ = Γ/(N
√

2)) averaged on time

and on the toroidal direction at the LFS (Figs. 6c and 6d) and HFS (Figs. 6a and 6b)

midplanes. A positive Mach number corresponds to the electron diamagnetic direction.

At the HFS midplane, in the cases with MPs without island in the simulation box,

Fig. 6a shows a decrease of M‖ in the perturbed solutions around the separatrix with a

complete reversal of the sign of M‖. In the far SOL and in the far CFR, the variations

with respect to the reference case are very small. In the cases with magnetic islands in
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the simulation box, Fig. 6b shows similar trends around the separatrix but a significant

increase of M‖ in the far SOL and a more significant increase in the far CFR than in

the cases without magnetic islands. We note that the decrease (or increase if relevant)

is more pronounced for high amplitudes or high mode numbers.

At the LFS midplane (Figs 6c and 6d), all cases show similar trends with a global

increase of M‖ in perturbated solutions, with still a stronger increase for higher modes

or amplitudes. On Fig. 6d, the presence of magnetic islands leads to a larger rise of the

profiles. As the reference value of M‖ is negative at the LFS midplane, the progressive

increase depending on the MP has different meaning. For low amplitude and modes

MPs, such as (1, 6, 2) and (1, 6, 4), the increase of M‖ is actually a decrease of the

parallel flow as it tends to zero. For larger amplitudes or modes, the MPs create a

positive parallel flow, so that the increase is both a change in the direction of the flow

and an increase of the speed of the flow. This trend is observed in [8], at least in the

SOL. In the CFR, the parallel flow is shown to increase, which we only observed at the

HFS midplane.

3.4. Impact on radial transport

In order to better understand the changes in the radial profiles of the density N and

the potential Φ on the global plasma behavior, the different components of the radial

flux are analyzed. As the simulation is flux-driven, and the forcing value of the flux is

constant through all simulations, the radial particle flux is constant. The radial particle

flux can be decomposed into 5 components:

Γr = ΓrE×B + Γr∇Bi
+ Γrcurv + Γrdiff + Γr‖ (10)

The terms successively denote the E × B velocity driven flux (comprising a mean-field

and a turbulent component), responsible of the turbulent transport, two contributions

of the 2 curvature driven drifts i.e. the ∇Bi flux and the curvature one, the diffusive

flux and the last one the radial component of parallel flux. The latter is non zero only

when MP are turned on.

3.4.1. Flux surface averaged fluxes The mean flux is estimated here by integrating each

component along the flux surface (in θ, ϕ), then average in time. The E × B, the ∇Bi

and the curvature components are shown on Fig. 7 at LFS. The diffusive component is

shown on Fig. 8. The radial component of the parallel flux is neglectable even with MP

and will thus not be discussed here. To give an order of magnitude, the contribution of

Γr‖ flux is < 1% of the total flux in all cases.

In the CFR, both the E × B and ∇Bi fluxes slightly increase near the separatrix,

that is compensated by an equivalent decrease of the diffusive flux due to the response

of the gradient, in both cases with or without magnetic islands. The changes are more

complex in the middle and far SOL. For the cases without magnetic island, the E ×B
flux (Fig. 7a) decreases in the far SOL, which is partially compensated by an increase of

the diffusive flux (Fig. 8a). For the cases with magnetic islands, the trend is a growth



Impact of three-dimensional magnetic perturbations on turbulence in tokamak edge plasmas13

(a) No magnetic island HFS (b) Magnetic islands HFS

(c) No magnetic island LFS (d) Magnetic islands LFS

Figure 6: Radial profiles of the mean parallel Mach number M‖ = Γ/(N
√

2) averaged on

time and in the toroidal direction at the LFS (6a,6b) and at the HFS (6c,6d).

MPs without magnetic island in the simulation box (6a,6c) and with magnetic

islands (6b,6d). The vertical dashed line is the separatrix.

of the E × B flux in the middle SOL (Fig. 7b) but a decrease in the far SOL. The

diffusive flux increases comparably to the decrease of the E × B flux (Fig. 8b). As a

note, the ∇Bi flux is negative (Figs. 7c and 7d), that explains why the sum of the E×B
and the diffusive fluxes is above 100%. Finally the curvature drift shows an interesting

behavior as the case without magnetic island (Fig. 7e) is not impacted whereas the case

with magnetic island (Fig. 7f) shows a decrease in the SOL dependent on the mode

number. These observation demonstrate a direct impact of the MPs on radial transport

mechanisms, explaining the changes in density profiles and the density pump-out. A

more detailed analysis of the impact on turbulence properties is proposed in Sec. 4.

3.4.2. Poloidal distribution of 〈Γr〉t,ϕ. In order to explain the changes in the parallel

flow velocity, we now investigate the poloidal distribution of radial fluxes. Indeed, the

time average parallel flow in the edge plasma is driven by 2 mechanisms: the sheath loss
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(a) No magnetic island (b) Magnetic islands

(c) No magnetic island (d) Magnetic islands

(e) No magnetic island (f) Magnetic islands

Figure 7: Radial profiles of the mean E × B flux ΓrE×B (7a,7b), ∇Bi flux (7c,7d) and

curvusive flux Γrcurv (7e,7f) at LFS. Cases without magnetic island (7a,7c,7e)

in the simulation box. Cases with magnetic islands (7b,7d,7f) in the simulation

box. The quantities are averaged both in time t and in the poloidal and toroidal

directions (θ, ϕ). The vertical dashed line denotes the separatrix
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(a) No magnetic island (b) Magnetic islands

Figure 8: Radial profiles of the mean diffusive flux Γrdiff (8a,8b) at LFS. Cases without

magnetic island (8a) in the simulation box. Cases with magnetic islands (8b) in

the simulation box. The quantities are averaged both in time t and in the poloidal

and toroidal directions (θ, ϕ). The vertical dashed line denotes the separatrix.

at boundary conditions and the necessity to balance the local divergence of the radial

flux (~∇ · ~Γ = 0). The poloidal distribution and the asymetries of radial fluxes hence are

crucial in the understanding of the changes on parallel flows M‖. For each quantity we

note:

f(t, ψ, θ∗, ϕ) = f̄(ψ, θ∗, ϕ) + f̃(t, ψ, θ∗, ϕ) (11)

where f̄ = 〈f〉t is averaged over time and 〈f̃〉t = 0 per construction. We are interested

here at the time averaged fluctuating parts, so that only the product of two (or more)

fluctuating parts remains.

We concentrate our study on the flux and more specifically here on ΓrE×B which in

isothermal simulations is the only one component getting a non zero fluctuating part

when averaged on time, ∝ 〈Ñ ~B× ~∇Φ̃〉t. Fig. 9 shows the poloidal mean profiles related

to ΓrE×B and averaged in time and in the toroidal direction at the flux surface r/a = 0.9.

The Fig. 9a clearly shows a shift to the LFS midplane (θ = 0) of the ballooning of the

total ΓrE×B mean flux when the solution is perturbated by MP. This shift is larger when

magnetic islands are in the simulation box as shown on Fig. 9b. This change in the

poloidal asymmetry is directly related to the change of M‖. This is underlined by the

complex role plays by the mean and fluctuating parts of the flux.

If the fluctuating part is the major contribution of the flux (see on Figs. 9e and 9f)

with an increase of the ballooning in the upper LFS midplane, the mean-field part varies

the most. The mean contribution shows a complete reversal (see on Figs. 9c and 9d)

around the LFS midplane.

The others mean-field contributions, Γr∇Bi
and Γrcurv, are not shown here as their

variations are at least one order of magnitude lower than the E×B mean-field variations.

Furthermore, the most varying part, the Γrcurv for the case with magnetic island, shows
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a similar profile as the mean-field E×B with an increase at the bottom of the machine

and a decrease at the top, the reference case being completely flat.

The main conclusion of this part is that the MPs create a poloidal redistribution of

the radial fluxes, especially the mean-field part and particularly the E × B flux. This

is linked to the poloidal reorganization of the density and it is in agreement with the

parallel flow changes.

3.5. SOL width

Density decay length (in ρL)

MP 〈λN〉 Trend

(0, 0, 0) 36 −

MP no island

(1, 6, 4) 30 ↘
(2, 6, 4) 30 ↘
(3, 6, 4) 28 ↘
(1, 10, 6) 30 ↘

MP islands

(1, 6, 2) 41 ↗
(1, 15, 4) 33 ↘
(1, 18, 4) 31 ↘
(1, 22, 6) 29 ↘

Table 2: SOL density decay length λN (in Lar-

mor radius ρL) averaged in poloidal

and toroidal direction

The flux reorganization drives toward

a study of the impact of the MPs on

the SOL width. The decrease of the

density in the SOL can be approximated

into an exponential decay such that

∂ψ〈N〉t = 〈N〉t/λN where λN is the

density gradient length, sometimes called

the density decay length. The impact of

MP on λN is shown in Tab. 2. The values

are obtained through an exponential fit

of the density in the SOL. Except

for the perturbation (1, 6, 2) with an

increase of around 10%, the density decay

length decreases when the solution is

perturbated. This decrease is of the order

of 20%, and curiously of similar order for

every MP. The mechanism of the drop

of λN can be seen as a consequence of

the flow reorganization discussed before.

This is what has been seen in Fig. 4 except for the perturbation (1, 6, 2). The solutions

also show a steepening of the radial density gradient, which is also a reason for the

decrease in λN . The particularity of (1, 6, 2) can not be explained but we underline,

that it is an extremum in the scan in mode numbers with larger islands than the others.

4. Impact of MP on turbulence properties

We have seen in the previous section that MPs impact the plasma equilibrium via a

reorganization of particles fluxes, including the radial flux driven by turbulence. Changes

in the properties of fluctuations has also been reported experimentally as a signature of

the impact of MP on the edge plasma [8, 29]. Here, the impact of the MPs on turbulent

fluctuations is analyzed.

Quantities are decomposed into a mean and a fluctuating part as presented in Eq 11.

The fluctuations properties are analyzed from Probability Density Functions (PDFs).
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(a) No magnetic island (b) Magnetic islands

(c) No magnetic island (d) Magnetic islands

(e) No magnetic island (f) Magnetic islands

Figure 9: Poloidal profiles of the E × B total flux ΓrE×B (9a,9b), the mean Γ̄rE×B (9c,9d)

and the fluctuating Γ̃rE×B (9e,9f) parts at r/a = 0.9 (CFR). Quantities are

(t, ϕ)-averaged. (9a,9c,9e) cases without magnetic island in the simulation box.

(9b,9d,9f) cases with magnetic islands in the simulation box. θ = 0 corresponds to

the LFS midplane.
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The skewness for any variable X is defined here as:

γ1(X) = E

[(
X − µX
σX

)3
]

(12)

where µX is the mean and σX the standard deviation of X.

4.1. Impact on the fluctuation levels

The evolution of the fluctuation level for density events in the radial direction,

characterized here by the toroidal averaged of σN/N , is shown on Fig. 10. To compare

both the difference with or without magnetic island and the poloidal asymmetry of the

turbulence, the standard deviation is plotted at the HFS and the LFS midplane.

At the HFS midplane on Figs. 10a and 10b the fluctuation level in the CFR is low

(of the order of 5%) and rather constant in the radial direction up to the vicinity of

the separatrix. This trend remains unsensitive to MPs, whether magnetic islands are

present or not. On the contrary, MPs have a clear impact on the density fluctuation

level in the SOL. In this region, MPs reduce the fluctuation level from around 25% down

to 15 to 20% depending on cases. In the cases with no magnetic island, the lowering of

fluctuation level is nearly independent of the MP, whereas it becomes very sensitive to

the perturbations wavenumber in the cases with magnetic islands. In these cases, the

difference in the fluctuations level with the unperturbated case increases with r/a and

with the poloidal wavenumber m of the perturbations.

At the LFS midplane on Figs. 10c and 10d, the fluctuations level in the CFR

rapidly and continuously increases with r independently of the MP, from 10% at the core

boundary to 25% at the separatrix. The difference of amplitude with the HFS illustrates

the ballooned character of turbulent transport already mentionned in Sec. 3. In the

SOL and in the vicinity of the separatrix, the fluctuation level decreases with respect

to the unperturbated case. The differences are larger in the cases with magnetic islands

from barely 1% without islands and now up to 5%. Deeper into the SOL, perturbated

solutions exhibit oscillating fluctuations around the reference case. Without magnetic

islands, the fluctuation level follows the reference case minus 1% at most before going

up to at most 8% after the mid SOL. With magnetic islands, the fluctuation levels start

aroud minus 5% at the lowest point before going up by 5% at most after the mid SOL.

No regular trend depending on amplitudes or modes of the MP is visible. Such a drop

in the density fluctuations around the separatrix is in agreement with the decrease of

the SOL width λN and the increase of the density gradient in a large part of the SOL

as seen in Sec. 3.

4.2. Impact on the turbulence intermittency

The PDFs of the density are plotted on Fig. 11 at two radial locations in the CFR

and into the SOL at LFS midplane, i.e. r/a = 0.975 and r/a = 1.0188, respectively.

Both locations correspond to a region with magnetic islands (if relevant). The color
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(a) No magnetic island HFS (b) Magnetic islands HFS

(c) No magnetic island LFS (d) Magnetic islands LFS

Figure 10: Radial profiles of the standard deviation over time of the density averaged in

the toroidal direction ϕ and normalized by the (t, ϕ)-averaged density at the

HFS (10a,10b) and at the LFS (10c,10d). Cases with no magnetic island 10a,10c

in the simulation box. Cases with magnetic islands 10b,10d. The values are

multiplied by 100 for readability. The dashed line is the separatrix.

zones correspond to the direct histogramm of the event and the curves are obtained

through a kernel density estimation. In the outer part of the CFR, the PDFs of the

perturbated solutions are nearly Gaussian for the case without magnetic island (see

Fig. 11a). The cases with magnetic islands (see Fig. 11b) show a positive skewness

(skewed to the right), which seems stronger for higher mode numbers. Deeper inside

the CFR (not shown here), the PDFs are not significantly perturbed by the MP and

exhibit a gaussian shape.

In the SOL, the PDF of the reference case shows a PDF shape characterized

by intermittent turbulence with a well-marked positive skewness with most event

concentrated on the left of the figure (see Figs. 11c and 11d).

For the case without magnetic island (Fig. 11c), the PDF skews to the right,

similarly with the reference case, which is still a mark of intermittency. Nevertheless,
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with higher amplitude (or mode number), the peak of the curve decreases, forcing the

distribution toward a less skewed profile. It could mean a loss of intermittency or, at

least, a loss a high density bursty events compare to the average ones.

For the case with magnetic islands (Fig. 11d), the peaks of the PDFs decrease

immediately for all MPs with no visible trends. The PDFs are still skewed to the

right but as for the cases without magnetic island, the PDFs tends toward a gaussian

shape, compare to the reference case. This is promising as we could expected a control

of the turbulence properties in the SOL by the size and/or the numbers of magnetic

islands, beyond the ELM suppression in H-mode.

These results show that the MPs do not change the turbulence properties in the

CFR. The changes occur mainly near the separatrix and in the SOL with an opposite

effect between the HFS and LFS midplanes. At the HFS midplane, the intermittency

and bursty behavior of the turbulence increases while the effect is opposite at the LFS

midplane. The intermittency still exists but with less high density (bursty) events.

The radial profiles of the skewness of the density along the time axis are now shown

on Fig. 12 at both HFS and LFS. It is noted γ1,N and it is averaged in the toroidal

direction. For each plot, the error barr is estimated lower than 5%. In the CFR, all

plots show that the impact of MPs is weak, with a nearly zero skewness in this region.

This means that as in the reference solution density events stay clearly well centered

around the mean value with no favorable events (bursts or sinks). These plots show,

for all cases, a larger skewness on the LFS midplane than on the HFS corresponding to

the turbulence ballooning already mentionned.

In the SOL, the impact of perturbations is stronger than at the CFR. At the HFS

midplane and with respect to the reference solution (Figs. 12a and 12b), there is a small

decrease of the skewness near the separatrix, this effect being more pronounced in the

case without magnetic island, followed by a large increase in the middle of the SOL, this

effect is larger in the case with magnetic islands. For non resonant modes (Fig. 12a),

there is no clear dependence of the solution on the wavenumber or the amplitude of the

pertubation even if the perturbation of largest amplitude has the largest skewness all the

others behave fairly similarly. For resonant modes (Fig. 12b), MP of high wavenumbers

lead to a high positive skewness. As a final overall trend at HFS midplane, we can see

that MPs seem to shift spacially to the left the behavior into the SOL of the density

events (the events arising earlier with MP).

At LFS midplane, without or with magnetic islands, the largest changes concentrate

into the SOL. For non resonant modes and with respect to the reference solution, the

skewnesses of the perturbed solutions are smaller in the vicinity of the separatrix and

then become larger deeper into the SOL, Fig. 12c. These deviations become larger when

the amplitude of the perturbation is increased. We note an increase of the skewness in

the far SOL. A similar trend is observed with magnetic islands, but the skewness remains

smaller than the reference solution even in the far SOL (see Fig. 12d). The deviation

becomes larger with the mode wavenumber.
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(a) No magnetic island, r/a = 0.975 (b) Magnetic islands, r/a = 0.975

(c) No magnetic island, r/a = 1.0188 (d) Magnetic islands, r/a = 1.0188

Figure 11: Normalized PDFs of density events along (t, ϕ)-axis at the LFS midplane and

at two radial positions in the CFR and in the SOL, i.e. r/a = 0.975 (11a,11b)

and r/a = 1.0188 (11c,11d). Cases with no magnetic island (11a,11c) in the

simulation box. Cases with magnetic islands (11b,11d). As a reference, the dotted

black line corresponds to an exact Gaussian. The color zones is the histogramm

of each curve. The curves have been obtained with a kernel density estimation.

5. Discussion

5.1. On the role of the E ×B shear

An explanation of the changes observed on density profiles and turbulence properties

could have been the decrease of the E×B shear sE×B due to the flattening of the radial

electric field’s profile driven by the MPs. The radial profiles of sE×B is shown on Fig. 13

for all the cases studied above. As could be expected from the potential profiles of Fig. 5

the MP reduces significantly the radial shear of the poloidal flow which one could be
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(a) No magnetic island, HFS midplane (b) Magnetic islands, HFS midplane

(c) No magnetic island, LFS midplane (d) Magnetic islands, LFS midplane

Figure 12: Radial profiles of the skewness over time of the density, averaged over ϕ. HFS

midplane (12a,12b). LFS midplane (12c,12d). The error bar for each curve is

estimated to be smaller than 5%.

tempted to associate with the increase of the turbulence flux and the flattening of the

density profile. However, the reduction is much stronger for the non resonant modes

than for the resonant ones, which is not the case for the other effects described above.

This suggests that even if we can not exclude an influence of the change of the flow shear

on turbulence transport, the shear reduction due to MPs is not the main mechanism

explaining the changes in the turbulence pattern and in the mean density profiles.

5.2. Implications for mean field modelling

So far, the numerical analysis of the impact of RMPs on the edge equilibrium plasma

including neutrals recycling have only been performed using mean-field codes [15]. In the

absence of better indications, these studies are conducted assuming that perpendicular

diffusion coefficients characterizing anomalous radial trasnport remain unchanged when

RMPs are switched on. Our simulations allow us to cast some light on this assumption.



Impact of three-dimensional magnetic perturbations on turbulence in tokamak edge plasmas23

(a) No magnetic island, HFS midplane (b) Magentic islands, HFS midplane

(c) No magnetic island, LFS midplane (d) Magnetic islands, LFS midplane

Figure 13: Radial profiles of the E × B shear averaged over (t, ϕ) at the HFS

midplane (13a,13b) and at the LFS midplane (13c,13d), 〈sE×B〉t,ϕ = 〈∂ruθ
∗
E×B〉t,ϕ.

〈sE×B〉t,ϕ = 〈∂ruθ
∗
E×B〉t,ϕ. MPs corresponding to magnetic islands into the

computational domain (13b,13d) or not (13a),13c.

To do so, in order to open a discussion on the relative impact of MPs on plasma

equilibrium and plasma turbulence, 3D turbulence simulations have been compared

to corresponding 3D transport simulations in which drifts have been switched off and

anomalous transport is modelled by a constant diffusion coefficient. To perform such a

comparison, an effective transport coefficient has been first computed from turbulence

simulations. It has been defined as:

D⊥ = − Γr

∇rN
(13)

Fig. 14 shows two examples of 2D maps in the poloidal plane of the time-averaged

D⊥ at ϕ ∼ π/2. Results show a rather weak variations in the poloidal direction of

this coefficient, with as expected highest values on the LFS (by removing the limiter

area). A complete study we have performed, shows a global lowering of the averaged

D⊥ (in the same way as λN) when MPs are applied: D⊥ = 3.3 · 10−2(ρ2
Lωc) for the

reference solution (0, 0, 0), and D⊥ oscillates between 2.3 · 10−2 and 2.8 · 10−2 depending
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on the perturbation, excepted for an unexplained reason for the MP (1, 6, 2) for which

D⊥ = 3.8 · 10−2.

For the present simulations, D⊥ = 3.9 · 10−2ρ2
Lωc is considered. In addition, to

avoid the occurence of small flow scales related to microturbulence the vorticity and the

Ohm law equations are shunted. The perpendicular velocity ~u⊥ is put to zero and thus

the radial transport is entirely modelled by D⊥.

(a) Reference solution (0, 0, 0) (b) Magnetic perturbation (1, 15, 4)

Figure 14: 2D map in the poloidal plane of the effective diffusion coefficient for the radial

transport D⊥ = Γρ/∇ρN , averaged in time and ϕ.

We define the toroidal inhomogeneities of the time averaged density as:

(〈NMP〉t − 〈N(0,0,0)〉t,ϕ)/〈N(0,0,0)〉t,ϕ (14)

These inhomogeneities for 3D turbulence and corresponding transport computations

are shown on Fig. 15 without MP, and with MPs (1, 6, 2) and (1, 15, 4) corresponding

to two resonant modes, expected to provide a stronger impact. As expected the

reference solution in transport mode (Fig. 15a) shows no inhomogeneity in the poloidal

plane since the system is perfectly axisymmetric. In the reference turbulent case

(see Fig. 15b), inhomogenities are visible at a level of around 6% due to the finite

duration of our statistical interval and the strong correlation in the toroidal phasing

between consecutive large scale events. Perturbated solutions clearly show now that the

density fluctuations amplitude is enhanced in turbulence simulations compared to the

corresponding transport ones, with respectively fluctuations amplitude of about ±30%

for turbulence vs ±3% for transport. In addition, transport simulations clearly show

that maximum fluctuations are localized on magnetic islands in the close vicinity of

the separatrix (see Figs. 15c and 15e), which is not the case in turbulence simulations,

Figs. 15d and 15f. In these latter simulations, the fluctuations maximum occurs into

the SOL without any visible mode locking effect. The amplification by MPs of the

toroidal inhomogeneities of the time-averaged density points out a possible phase locking

of turbulence with respect to MPs, favouring specific poloidal/toroidal location for

the radial propagation of the filaments in the SOL. The difference in the pattern of
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homogeneities between the mean-field and the turbulent case also highlight a non local

effect of the MP on turbulent transport.

6. Concluding remarks

This paper focused on the impact of 3D magnetic perturbations (MPs) on electrostatic

and isothermal fluid turbulence at the edge of a limiter plasma in circular geometry.

Single 3D mode MPs of small amplitude have been considered leading to magnetic is-

lands or not in the computational domain depending on the wavenumbers combination

in the poloidal and toroidal direction (resonant modes or not). This work is a first

step towards a better understanding of the impact of magnetic perturbations. Results

show an impact of MPs on the plasma equilibrium and on a lesser extent on the tur-

bulence properties, with a magnitude which dependent on the MPs amplitude and on

their wavenumbers, especially if they correspond to resonance with magnetic islands in

the simulation box or not.

Concerning the plasma equilibrium, numerical results show an impact on profiles

and flows and recover some key features seen in experiments such as the loss of density

in the edge of the closed field lines region and the decrease of the radial electric field,

coupled with a change of the plasma rotation. These changes of profiles are associated

with a reorganisation of fluxes in the edge plasma, both mean field and turbulent,

leading to strong changes and even local reversal of the parallel velocities (hence toroidal

rotation). The latter effect had also been reported in experiments.

As far as exhaust issues are concerned, numerical results have shown that the MPs

impact the SOL width, with a decrease of the SOL decay length. This is most probably

related to the overall decrease of radial turbulent transport in the SOL, driven by a

drop of the fluctuation level in the presence of a MPs.

Concerning the fluctuation properties, MPs do not change the fundamental nature

of edge turbulence which remains dominated by intermittent large amplitude events

associated with radially filamentary structures. Nevertheless, quantitative properties

are impacted, especially in their spatial distribution (LFS/HFS asymmetries and radial

profiles). MPs trigger a drop of the relative density fluctuation level in the near SOL.

In the far SOL, the fluctuation level is found to decrease on the HFS but increase on the

LFS. Intermittency, measured here as the skewness of the PDF of density fluctuations

is also impacted, with a reduction in the vicinity of the separatrix in open field lines.

On the opposite, an increase of the skewness of density fluctuation is observed in the

outermost part of close field lines when magnetic islands are present. The latter effect

is more marked when magnetic islands are present in the vicinity of the separatrix. We

have noted a difference between LFS and HFS midplane, with a more important de-

crease of the skewness in the SOL, near the separtrix at LFS midplane compare to the

HFS midplane. The skewness increase then at the HFS in the mid SOL whereas this
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(a) Reference solution (0,0,0) (b) Reference solution (0,0,0)

(c) MP (1, 6, 2) (d) MP (1, 6, 2)

(e) MP (1, 15, 4) (f) MP (1, 15, 4)

Figure 15: 2D maps in the poloidal plane ϕ = 0 of toroidal inhomogeneities of

the time averaged density (〈NMP〉t − 〈N(0,0,0)〉t,ϕ)/〈N(0,0,0)〉t,ϕ. 3D transport

simulations (15a,15c),15e. 3D turbulence simulations (15b,15d,15f). D⊥ =

3.9 · 10−2ρ2
Lωc.
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increase is observed on the far SOL at the LFS only.

Finally, a comparison between self-consistent turbulence simulations and mean-field

simulations, in which radial transport is prescribed via a gradient-diffusion assumption,

highlight a significant difference in the response of the plasma to MPs. The amplitude

of the non-axisymmetric density perturbation is much more pronounced in the self-

consistent case than in the mean-field case. Moreover, its spatial localization is also

different, the effect of magnetic islands remaining local in the mean-field case while non

local effects are important with turbulence. These results suggest that the assumption

of unperturbed perpendicular transport in mean-field simulations with MPs is probably

an oversimplification and calls for further studies on the significant role played by

turbulence on the response of the plasma to magnetic perturbations.
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Appendix A. Fluid equations

The TOKAM3X dimensionless equations for an isothermal plasma are given here. The

magnetic field is assumed to be fixed and axisymmetric. The vector ~b = ~B/B defines

the direction of the magnetic field. The gradients in the parallel and perpendicular

directions are respectively defined as ∇‖· = ~b · ∇· and ∇⊥· = ∇ · −~b∇‖·.

∂tNi + ~∇ ·
(

Γi~b+Ni~u⊥,i

)
= ~∇ · (D⊥,N ~∇⊥Ni) + SN (A.1)

∂tΓi + ~∇ ·
(

Γ2
i

Ni

~b+ Γi~u⊥,i

)
= −~∇

(
Pe + Pi

)
+ ~∇ ·

(
D⊥,ΓNi

~∇⊥
Γi
Ni

+D⊥,N
Γi
Ni

~∇⊥Ni

)
+ SΓ

(A.2)

∂tW + ~∇ ·
(
W

Γi
Ni

~b+W (~uE + ~u∇B,i)− J‖~b
)

= ~∇ ·
(
N(~u∇B,i − ~u∇B,e)

)
+ ~∇ ·

(
D⊥,W ~∇⊥W

)
+ SW

(A.3)
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Ne∇‖Φ−∇‖Pe − 0.71Ne∇‖Te + η‖NiJ‖ = 0 (A.4)

where Ni,e is the particle density for the ions or the electrons, Γs = Nsu‖,i is the

parallel momentum, J‖ the parallel current density and Pi,e = Ni,eTi,e is the pressure.

Assuming quasineutrality Ne = Ni = N and an isothermal plasma, it lets Pi = Pe = N

as Te = Ti = T = 1.

Equ. A.3 is the electric charge balance. Eq. A.4 is the Ohm’s law derived from the

electron momentum balance equations by neglecting electron inertia. D⊥ are diffusion

coefficient, standing for sub-grid diffusion model representative of collisional transport

processes. Φ is the electric potential and η‖ the parallel resistivity. The generalized

vorticity W , in the frame of the Boussinesq’s approximation, is defined as:

W = ∇ ·
(

1

B2
~∇⊥Φ +

1

NB2
~∇⊥Pi

)
(A.5)

Each equation gets a source term SX modelled in the code as a Gaussian with the peak

at the core boundary. In this drift-reduced model, the perpendicular velocity is given

by the following drift velocities:

~u⊥,i = ~uE + ~u∇B,i + ~ucurv =
~E × ~B

B2
+

2Te
B

~B × ~∇B
B2

+
Γ2
i

N2
i B

~B × ~∇B
B2

(A.6)

where ~E = −~∇Φ is the electric field.

Appendix A.1. Boundary conditions

In the perpendicular direction, a Neumann condition is used for all variables ∂⊥(·) = 0.

In the SOL, at the shealth entrance, a Bohm-Chodura boundary conditions [30] are

required on the Mach number: M‖ ≥ 1 with M‖ = u‖,i/cs = Γi/(N
√
Te + Ti). A

parallel current J‖ is imposed on each side of the target plate. These write (isothermal

hypothesis):

(Γs~b+Ns~u⊥,s) · ~n ≥ Nscs~b · ~n (A.7)

J‖ = ±Γi(1− eΛ−Φ) ∼
Φ→Λ

N(Λ− Φ) (A.8)

where Λ is the normalized sheath floating potential and ~n the normal to the wall. Using

Eq. A.8 and the Ohm’s law A.4, a condition on the parallel gradient of the electric

potential is obtained:

∇‖Φ =
∇‖N
N
± η‖Γi(Λ− Φ) (A.9)

Appendix B. Curvilinear coordinates system

In the following, the Einstein’s convention is used (repeated indexes is a sum over

possible values). With the covariant and contravariant basis (see Eq. 3 and 4) and the

corresponding metric, the gradient, divergence and curl write:

~∇f =
∂f

∂ui
~ei (B.1)
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~∇ · f =
1

J

∂

∂ui
(Jai) (B.2)

~∇× f =
1

J

∑
k

(
∂aj
∂ui
− ∂ai
∂uj

)
~ek i, j, k cyclic (B.3)

where ~a is a vector and ai = ~a · ~ei, ai = ~a · ~ei. ui ∈ {ψ, θ∗, ϕ} (local basis). J is the

determinant of the local Jacobian matrix J defined in each point as:

J =

 ∂R/∂ψ ∂R/∂θ∗ ∂R/∂ϕ

∂Z/∂ψ ∂Z/∂θ∗ ∂Z/∂ϕ

∂φ/∂ψ ∂φ/∂θ∗ ∂φ/∂ϕ

 ≈
 ∂R/∂ψ ∂R/∂θ∗ 0

∂Z/∂ψ ∂Z/∂θ∗ 0

0 0 ∂φ/∂ϕ

(B.4)

We may notice that J = ~ei ·~ej×~ek with (i, j, k) ∈ (ψ, θ∗, ϕ) in cyclic order. The parallel

gradient then becomes:

∇‖f = ~b · ~∇f

=
Br

B
√
gψ,ψ

∂f

∂ψ
+

Bp

B
√
gθ∗,θ∗

∂f

∂θ∗
+

Bt

B
√
gϕ,ϕ

∂f

∂ϕ

(B.5)

and the divergence:

~∇ · (f~b) =
1

J

[
∂

∂ψ

(
Jf

Br

B
√
gψ,ψ

)
+

∂

∂θ∗

(
Jf

Bp

B
√
gθ∗,θ∗

)
+

∂

∂ϕ

(
Jf

Bt

B
√
gϕ,ϕ

)]
(B.6)

The perpendicular gradient writes (contravariant basis):

~∇⊥f = ~∇f −~b∇‖f

=

[
∂f

∂ψ
−
(
Br
√
gψ,ψ

B
+

Bp gθ∗,ψ
B
√
gθ∗,θ∗

)
∇‖f

]
~eψ

+

[
∂f

∂θ∗
−
(
Br gψ,θ∗

B
√
gψ,ψ

+
Bp
√
gθ∗,θ∗

B

)
∇‖f

]
~e θ

∗

+

[
∂f

∂ψ
−
Bt
√
gϕ,ϕ

B
∇‖f

]
~eϕ

(B.7)

The drift velocities have the following expression (contravariant basis):

~B × ~∇f
B2

=
J

B2

[(
gψ,ψ

Bt√
gϕ,ϕ

~e θ
∗ − gψ,ψ Bp√

gθ∗,θ∗
~eϕ − gψ,θ∗ Bt√

gϕ,ϕ
~eψ + gψ,θ

∗ Br√
gψ,ψ

~eϕ
)
∂f

∂ψ

+

(
gθ

∗,ψ Bt√
gϕ,ϕ

~e θ
∗ − gθ∗,ψ Bp√

gθ∗,θ∗
~eϕ − gθ∗,θ∗ Bt√

gϕ,ϕ
~eψ + gθ

∗,θ∗ Br√
gψ,ψ

~eϕ
)
∂f

∂θ∗

+ gϕ,ϕ
(

Bp√
gθ∗,θ∗

~eψ − Br√
gψ,ψ

~e θ
∗
)
∂f

∂ϕ

] (B.8)
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