
HAL Id: hal-02938158
https://hal.science/hal-02938158v2

Submitted on 22 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dominance-based linear formulation for the
Anchor-Robust Project Scheduling Problem

Pascale Bendotti, Philippe Chrétienne, Pierre Fouilhoux, Adèle Pass-Lanneau

To cite this version:
Pascale Bendotti, Philippe Chrétienne, Pierre Fouilhoux, Adèle Pass-Lanneau. Dominance-based lin-
ear formulation for the Anchor-Robust Project Scheduling Problem. European Journal of Operational
Research, 2021, 295 (1), pp.22-33. �10.1016/j.ejor.2021.02.034�. �hal-02938158v2�

https://hal.science/hal-02938158v2
https://hal.archives-ouvertes.fr

Dominance-based linear formulation for the Anchor-Robust

Project Scheduling Problem

Pascale Bendotti1,2, Philippe Chrétienne2, Pierre Fouilhoux2, and Adèle
Pass-Lanneau1,2

1 EDF R&D, F-91120 Palaiseau, France,
{pascale.bendotti, adele.pass-lanneau}@edf.fr

2 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France,
{philippe.chretienne, pierre.fouilhoux}@lip6.fr

February 13, 2021

Abstract

In project scheduling under processing times uncertainty, the Anchor-Robust Project
Scheduling Problem is to find a baseline schedule of bounded makespan and a max-weight
subset of jobs whose starting times are guaranteed. The problem was proven NP-hard even
for budgeted uncertainty. In the present work we design mixed-integer programming (MIP)
formulations that are valid for a variety of uncertainty sets encompassing budgeted uncer-
tainty. A new dominance among solutions is proposed, resulting into an MIP formulation.
We further study the combinatorial structure of the problem. Non-trivial polynomial cases
under budgeted uncertainty are exhibited, where the dominance-based formulation yields a
polyhedral characterization of integer solutions. In more general cases, the dominance-based
formulation is shown to be tighter than all previously known formulations. In numerical ex-
periments we investigate how the formulation performs on instances around the polynomial
cases, for both budgeted uncertainty sets and more elaborate uncertainty sets involving
several budgets.

Keywords: project scheduling; combinatorial optimization; mixed-integer programming;
robust 2-stage optimization; polyhedral characterization.

1 Introduction

Consider a set of n jobs J to be scheduled under precedence constraints. The precedence graph
is a directed acyclic graph G(p) = (J,A, p), where J = J ∪ {s, t} and s (resp. t) is a dummy
job representing the beginning (resp. end) of the project. Processing times of jobs are p ∈ RJ+
and every arc (i, j) ∈ A has length pi, with ps = 0. A schedule of G(p) is a vector x ∈ RJ+ of
starting times such that xs = 0 and xj − xi ≥ pi for every arc (i, j) of G(p). Finding a schedule
with minimum makespan xt = mini∈J xi + pi is a classical polynomial-time solvable problem
[Pinedo, 2002].

In practice processing times may be uncertain parameters, which calls for robust approaches.
We consider that jobs have nominal processing times p and the real processing times may be
p + δ, where δ lies in an uncertainty set ∆ ⊂ RJ+. For a given uncertainty set, different robust
approaches can be considered. A first approach from the static-robust framework [Soyster, 1973]

1

is to find a schedule x ∈ RJ+ such that x is a schedule of G(p+δ) for every δ ∈ ∆, and so that
the makespan of x is minimized. The static-robust approach is known to be overly conservative,
i.e., it produces a schedule with a very large makespan. An alternate approach from adjustable-
robust optimization [Ben-Tal et al., 2004], is to find the minimum value B such that for every

δ ∈ ∆ there exists a schedule xδ ∈ RJ+ of G(p+δ) such that xδt ≤ B. The adjustable-robust
approach is appealing since it often gives a worst-case makespan that is significantly lower than
the static-robust makespan. It was studied in Minoux [2009] for project scheduling. A major
drawback is that the schedule depends on the uncertainty realization. In other words, starting
times cannot be decided before δ is known.

Project scheduling has a large variety of practical applications such as planning industrial
activities. The durations of activities are often not known exactly or they can change over
time: this calls for the study of project scheduling under processing times uncertainty. It is
often necessary to compute a schedule in advance, called baseline schedule [Herroelen and Leus,
2002], while taking into account processing times uncertainty. The precomputation of a baseline
schedule is common practice, especially when scheduling activities requires preparation and
coordination with other entities to secure the availability of staff or specific equipment. The
makespan of the baseline schedule is a major criterion; in some cases, the project must be
scheduled so that it completes before a deadline. Moreover if processing times are disrupted
and the schedule must be revised, it is important to stick to the baseline schedule [Herroelen
and Leus, 2004]. As some activities may be difficult to reschedule, it is interesting to guarantee
their starting times in the baseline schedule against uncertainty realizations.

The Anchor-Robust Project Scheduling Problem. A new robust problem was introduced in
Bendotti et al. [2019]. Before the real processing time of jobs is known, the problem is to decide
which solution x of G(p) to choose as a baseline schedule with a bounded makespan. The key
idea is to define an anchored set of jobs as a subset of jobs whose starting times could remain
the same for any realization in the uncertainty set. Formally, given a schedule x of G(p) and
uncertainty set ∆, a subset of jobs H ⊆ J is x-anchored if for every δ ∈ ∆ there exists xδ

schedule of G(p+δ) such that xδi = xi for every i ∈ H. Given a deadline for the project and
an anchoring weight associated to each job, the Anchor-Robust Project Scheduling Problem
(AnchRob) is then to find a baseline schedule x satisfying the deadline, and a subset of jobs H
that is x-anchored, so as to maximize the total anchoring weight of H.

Connections with classical robust approaches are as follows. If there exists a solution (x,H)
of (AnchRob) with H = J , i.e., a solution where all jobs are anchored, then x is a solution of
the static-robust problem. If no such solution exists, it means that no static-robust solution
respects deadline M . (AnchRob) is a so-called robust 2-stage optimization problem, where x
and H are first-stage decisions and xδ are second-stage decisions. Schedule x is thus a baseline
schedule which may be adjusted in second stage by revising starting times of non-anchored jobs
only.

Let us present several uncertainty sets of interest for (AnchRob). This includes budgeted
uncertainty sets [Bertsimas and Sim, 2004] where at most Γ processing times deviate from the
nominal values p. A special case is box uncertainty sets, in which every processing time deviates
from its nominal value within an interval, corresponding to uncertainty budget Γ = n. Another
special case, referred to as 1-disruption uncertainty sets, is also considered. It corresponds to
the situation where one deviation of fixed length occurs to any job in the project (i.e., one
job, whichever it could be). We also consider more elaborate uncertainty sets, corresponding to
unions or intersections of budgeted uncertainty sets. Such uncertainty sets account, e.g., for the
case of several uncertainty budgets on subsets of jobs.

Robust 2-stage problems are often considered challenging and computationally intensive
[Buchheim and Kurtz, 2018, Gabrel et al., 2014]. A compact MIP formulation for robust 2-stage

2

problems is often not known, and proposed exact approaches rely on decomposition methods,
see, e.g., [Billionnet et al., 2014, Ayoub and Poss, 2016, Zeng and Zhao, 2013]. Another trend
is to consider approximations. With decision rules introduced in Ben-Tal et al. [2004] it is
assumed that second-stage variables have a fixed dependency (e.g., affine) on the uncertainty
realization. It yields tractable approximations of the original robust 2-stage problem. With k-
adaptability introduced by Bertsimas and Caramanis [2010] a fixed number of recourse solutions
is determined in first stage and the recourse problem is to choose the best among them. The
focus of the present work is to investigate exact approaches for the (AnchRob) problem, and
especially compact formulations, which – to the best of our knowledge – have been scarcely
studied for robust 2-stage problems.

Robust 2-stage problems including a baseline solution in first stage and a feature to keep
decisions unchanged were considered under the name of recoverable robustness [Liebchen et al.,
2009, D’Angelo et al., 2011] or robust optimization with incremental recourse [Şeref et al., 2009].
When decisions are represented by continuous variables, different measures can be used to ac-
count for the stability of decisions. For project scheduling, the expected absolute gap between
starting times was used as stability measure in Herroelen and Leus [2004]. The anchoring crite-
rion was defined as the number of identical starting times in Bendotti et al. [2017]. This criterion
was studied for rescheduling problems in Bendotti et al. [2020]. The (AnchRob) problem was
introduced in Bendotti et al. [2019], and it was proven NP-hard even for budgeted uncertainty.
For budgeted uncertainty, a compact MIP reformulation was obtained, denoted by (Lay). It is
based on a so-called layered graph and a dedicated analysis of the problem in this special case.
This MIP formulation is inherent to budgeted uncertainty, and thus not applicable to other
uncertainty sets.

In this work, we investigate linear formulations for (AnchRob) that are valid for a variety
of uncertainty sets encompassing budgeted uncertainty. The starting point is to precompute
the worst-case value over ∆ of the longest i−j path for every pair of jobs i, j, and to use these
values in a linear formulation. We exhibit a dominance property among schedules and derive
a linear formulation from it. This dominance-based linear formulation, called (Dom), improves
over a naive linear formulation. In the case of budgeted uncertainty, (Dom) is compared with
known formulation (Lay). A polyhedral study is carried out to highlight how formulation (Dom)
captures the combinatorial structure of the problem. We prove that (Dom) yields a complete
polyhedral characterization in two special cases: box uncertainty, and 1-disruption uncertainty
for precedence graphs where all s−t paths are longest s−t paths. We thus obtain that the latter is
a polynomial case, while (AnchRob) under budgeted uncertainty is NP-hard in general. Finally
numerical experiments give evidence that (Dom) performs well for budgeted uncertainty, even
for instances that do not match the polyhedral characterization cases. (Dom) is also capable of
solving the problem for uncertainty sets where no MIP formulation was previously investigated,
e.g., in the case of several budgets.

In Section 2 notation and preliminaries on problem (AnchRob) are given. In Section 3 the
dominance-based linear formulation is presented, and compared with other known formulations.
In Section 4 polyhedral characterizations are proven for box uncertainty, and 1-disruption un-
certainty. In Section 5 numerical results are presented.

3

2 Preliminaries

2.1 General notation

Let G(p) = (J,A, p) be the precedence graph. It is assumed that there is an arc (s, i) (resp.
an arc (i, t)) for every job i ∈ J without predecessor (resp. without successor) in J . Let ≺
denote the partial order on J defined by i ≺ j if there exists an i−j path in G. Given i, j ∈ J ,
i ≺ j, let LG(p)(i, j) be the length of the longest i−j path in G(p). In the sequel we will use the
shorthand notation L0

ij = LG(p)(i, j). The minimum makespan of a schedule of G(p) is then L0
st.

The earliest schedule defined by xi = L0
si for every i ∈ J is a schedule with minimum makespan.

Let X≤M ⊆ RJ+ denote the set of schedules of G(p) with makespan at most M . A longest s−t
path is a critical path. The precedence graph G(p) is quasi-critical if every job i ∈ J belongs to
a critical path, i.e., L0

si + L0
it = L0

st. The precedence graph G(p) is critical if all s−t paths in
G(p) are critical, i.e., they have length L0

st. Note that if G(p) is critical then it is quasi-critical.
The uncertainty set ∆ is assumed to be a subset of RJ+. For uncertainty set ∆, let us define the
value

L∆
ij = max

δ∈∆
LG(p+δ)(i, j)

for every i, j ∈ J , i ≺ j. Then L∆
ij is the worst-case longest path value between job i and job j.

2.2 The Anchor-Robust Project Scheduling Problem

Let us now give a formal definition of the Anchor-Robust Project Scheduling Problem (An-
chRob). An instance of the problem is described by the parameters (G(p),M, ∆, w) where:
G(p) = (J,A, p) is the precedence graph, M ≥ 0 is a deadline on the project, ∆ ⊂ RJ+ is the
uncertainty set, and w ∈ RJ+ is a vector of non-negative anchoring weights associated with jobs.

A solution of the problem is a pair (x,H) where x is a schedule of G(p) with makespan xt at
most M , and H is a subset of J that is x-anchored, that is: for every realization δ in ∆, there
exists a schedule xδ of G(p+ δ) satisfying xδi = xi for i ∈ H. The objective is to find a solution
(x,H) with maximum total anchoring weight

∑
i∈H wi.

The Anchor-Robust Project Scheduling Problem is related to robust 2-stage optimization.
First-stage decisions are the baseline schedule x, and the anchored set H. Second-stage deci-
sions, i.e., decisions that depend on the uncertainty realization, are the schedule xδ involved in
the definition of an anchored set. The problem can be rewritten under the following form:

(AnchRob): max
∑
i∈H wi

s.t. x schedule of G(p)
xt ≤M
H ⊆ J : ∀δ ∈ ∆, ∃ xδ schedule of G(p+δ)

s.t. xi = xδi ∀i∈H

Note that the proposed form is related to max/min/max problems arising usually in robust 2-
stage optimization. Given a schedule x of G(p), a subset H ⊆ J , and an uncertainty realization
δ ∈ ∆, the second-stage or recourse problem of (AnchRob) is to decide the existence of a schedule
xδ of G(p+ δ) with xi = xδi for every i ∈ H.

Let us finally illustrate (AnchRob) on a simple example. Consider a project schedul-
ing instance with 5 jobs. The precedence graph is represented in Figure 1. Nominal pro-
cessing times are p = (1, 1, 1, 1, 2). Each job is also associated with a worst-case deviation

4

δ̂ = (0.5, 1, 0.5, 0.5, 0.5). In Figure 1, each arc (i, j) is weighted with value pi + δ̂i. Let the
deadline be M = 4.5.

s

1

2

3

4

5

t

0

0

1+0.5 1+0.5

1+1

1+0.5

2+0.5

1+0.5

Figure 1: Precedence graph for an instance with 5 jobs, with arc-weights p+ δ̂.

Two different uncertainty sets will be considered, to give a flavor of their respective impact
on solutions of (AnchRob).

A first uncertainty set is the box ∆ = Πi∈J [0, δ̂i]. Then every job i may have any duration in

range [pi, pi+δ̂i]. Consider a schedule for processing times p+ δ̂. If it has a makespan larger than
M , such a schedule is infeasible for (AnchRob). Hence (AnchRob) is different from the static-
robust case. Consider the schedule x = (0, 1, 1, 3, 2.5) and set H = {1, 2, 4}. Figure 2 shows

schedule x. Each job is represented by a rectangle of length pi, and deviation δ̂i is represented
with dotted rectangle. Jobs from H are represented in dark gray. Then (x,H) is a solution of
(AnchRob) for box ∆. First x has makespan M = 4.5. Also the set H is x-anchored, since for
any value of jobs durations, it is possible to repair the schedule by moving jobs 3 and 5 only (in
this case, just by right-shifting).

0 M

1

3

5

2

4

Figure 2: Schedule x = (0, 1, 1, 3, 2.5) and set H = {1, 2, 4} in dark gray, x-anchored for box

uncertainty set ∆ = Πi∈J [0, δ̂i].

A second uncertainty set is ∆ = {(δ̂iui)i∈J : u ∈ {0, 1}J ,
∑
i∈J ui ≤ 1}. It corresponds to

an uncertainty budget Γ = 1, i.e., at most one processing time deviates. Consider the same
schedule x, and the set H ′ = {1, 2, 4, 5}, represented in Figure 3. Set H ′ is x-anchored for
budgeted uncertainty set ∆: indeed for any value of δ ∈ ∆, the schedule can be repaired by
moving only job 3.

5

0 M

1

3

5

2

4

Figure 3: Schedule x = (0, 1, 1, 3, 2.5) and set H ′ = {1, 2, 4, 5} in dark gray, x-anchored for

budgeted uncertainty set ∆ = {(δ̂iui)i∈J : u ∈ {0, 1}J ,
∑
i∈J ui ≤ 1}.

2.3 Uncertainty sets

Note first that some assumptions on ∆ can be made without loss of generality. The uncertainty
set can be assumed to be convex [Ben-Tal et al., 2004]. The uncertainty set can also be assumed
to be down-monotone, i.e., if δ ∈ ∆ and δ′ ≤ δ then δ′ ∈ ∆. Indeed it directly follows from the
fact that if xδ is a schedule of G(p + δ), then it is a schedule of G(p + δ′) for every δ′ ≤ δ. In
the present work, considered uncertainty sets will be polyhedra, and w.l.o.g. down-monotone.

Let us now present some uncertainty sets of interest.
Set ∆ is a box uncertainty set if ∆ = {(δi)i∈J : 0 ≤ δi ≤ δ̂i ∀i ∈ J} with δ̂ ∈ RJ+, i.e., it is

a cartesian product of intervals. Then δ̂ is a greatest element of ∆ in the sense that δ ≤ δ̂ for
every δ ∈ ∆. Note that if ∆ is any set with greatest element δ̂, then w.l.o.g. it can be assumed
to be down-monotone, and thus equal to the box with greatest element δ̂.

Set ∆ is a budgeted uncertainty set if ∆ = {(δ̂iui)i∈J : u ∈ [0, 1]J ,
∑
i∈J ui ≤ Γ}, with

deviation δ̂ ∈ RJ+ and uncertainty budget Γ ∈ {1, . . . , |J |}. The extreme points of such ∆
correspond to budgeted uncertainty as defined in the seminal work of [Bertsimas and Sim,
2004], where Γ is the number of processing times that may deviate from their nominal value.
Box uncertainty is the special case of budgeted uncertainty where Γ = |J |.

Set ∆ is a 1-disruption uncertainty set if it is a budgeted uncertainty set with unit budget
Γ = 1 and uniform deviation, i.e., δ̂i = δ̂0 for every i ∈ J . Extreme points of a 1-disruption
uncertainty set represent the situation where one event of fixed – possibly large – deviation δ̂0
may happen anywhere in the project. Then the processing time of one job is increased by fixed
amount δ̂0.

Let us now present more elaborate uncertainty sets, built as unions or intersections of bud-
geted uncertainty sets.

Set ∆ is a partition-budgeted uncertainty set if ∆ = {(δ̂iui)i∈J : u ∈ [0, 1]J ,
∑
i∈Jk ui ≤

Γk ∀k ∈ {1, . . . ,m}} where (J1, ..., Jm) is a partition of J and Γk ∈ {1, . . . , |Jk|} for every
k ∈ {1, . . . ,m}. Each group Jk is associated with its own uncertainty budget Γk. It holds

that ∆ =
⋂

1≤k≤m ∆k where ∆k = {(δ̂iui)i∈J : u ∈ [0, 1]J ,
∑
i∈Jk ui ≤ Γk} for every k ∈

{1, . . . ,m}. Distinct uncertainty budgets on disjoint subsets of the partition are relevant when
deviations of jobs from different subsets are uncorrelated. A special case of interest is to consider
a partition (J1, J2) where jobs of the first subset J1 are associated with small deviations but
large uncertainty budget Γ1; jobs of the second subset J2 are associated with large deviations
but small uncertainty budget Γ2.

Set ∆ is a mixed-budgeted uncertainty set if ∆ =
⋃

1≤k≤m ∆k where ∆k are budgeted un-

certainty sets. Consider the following special case, where ∆1 is defined by deviation δ̂ and

6

budget Γ1, and ∆2 is defined by deviation τ δ̂ for a given τ ∈ [0, 1], and budget Γ2 > Γ1. Then
∆ = ∆1 ∪ ∆2 supports two kinds of uncertainty realizations corresponding either to a large
number of small deviations (i.e., δ ∈ ∆2) or a small number of large deviations (i.e., δ ∈ ∆1).
For uniform deviation, it holds that ∆1 (∆ whenever τΓ2 > Γ1.

All these uncertainty sets are defined implicitly through inequalities or set operations. Note
that the uncertainty set may also be given explicitly as the convex hull of a discrete set of
points. Given a set S of scenarii, for every s ∈ S the uncertainty realization is some δs ∈ RJ+,
and ∆ = conv{δs, s ∈ S}. Any implicitly-defined set ∆ can be written under that form by
enumerating its extreme points, but then the input size is exponentially increased.

2.4 Assumption on longest paths computation

Computing worst-case longest path values L∆
ij can be an NP-hard problem for polyhedral set ∆

defined by inequalities [Bendotti et al., 2019].
However, efficient algorithms can be designed for some uncertainty sets. For box uncer-

tainty, the computation is straightforward since L∆
ij = LG(p+δ̂)(i, j). For budgeted uncertainty

sets, and thus 1-disruption uncertainty sets, the worst-case longest path values L∆
ij can be

computed in polynomial time by dynamic programming [Minoux, 2009]. The algorithm is
linear in Γ|A|. For partition-budgeted uncertainty sets, the L∆

ij values can be computed us-
ing a straightforward generalization of the dynamic programming of [Minoux, 2009] which is
linear in (Π1≤k≤mΓk)|A|. For mixed-budgeted uncertainty sets, the L∆

ij values can be easily

obtained since L∆
ij = max1≤k≤m L

∆k

ij for every i, j ∈ J . For explicitly-defined uncertainty

sets, values L∆
ij can be computed in polynomial time in the number of scenarii |S|, since

L∆
ij = maxs∈S LG(p+δs)(i, j). This relies on the property that L∆

ij = L
conv(∆)
ij for any ∆, as

proven in Bendotti et al. [2019].

In the sequel, the main assumption is that the L∆
ij values have been precomputed. Thus

they will appear as coefficients of constraints in the proposed mixed-integer programming for-
mulations.

2.5 Anchored sets

Let us finally give some preliminaries related to linear formulations for (AnchRob). Recall that
a solution of (AnchRob) is a pair (x,H) with a schedule x and a subset H of jobs that is x-
anchored. Fix x a schedule of G(p). It was shown in Bendotti et al. [2019] that a set H is

x-anchored if and only if xj − xi ≥ L∆
ij for every i ∈ H ∪ {s}, j ∈ H, i ≺ j. Let G̃H denote the

precedence graph obtained from G(p) by introducing additional arcs (i, j), i ∈ H ∪ {s}, j ∈ H,
i ≺ j with arc-lengths L∆

ij . Then

Proposition 1 (Bendotti et al. [2019]). Let H ⊆ J . Vector x is a schedule of G(p) such that

H is x-anchored if and only if x is a schedule of G̃H .

Let us now define anchored sets, independently from a given baseline schedule. A subset
H ⊆ J is anchored if there exists a schedule x ofG(p) with makespan at mostM such thatH is x-
anchored. An issue is then to retrieve a baseline schedule x for whichH is x-anchored. Consider z
the earliest schedule of G̃H : then by Proposition 1, if H is an anchored set then H is z-anchored.
Given H ⊆ J , let χH denote the incidence vector of H. Let H = {χH : H anchored set},
and Q = conv(H). Note that (AnchRob) reduces to finding a max-weight anchored set, i.e.,
maximizing

∑
i∈J wihi for h ∈ H, or equivalently, for h ∈ Q.

7

Let us give some definitions related to mixed-integer programming formulations for (An-
chRob). Considered formulations for (AnchRob) involve binary anchoring variables h ∈ {0, 1}J
to indicate if jobs are in the anchored set, and continuous variables, say x ∈ Rq. A formu-
lation for (AnchRob) is defined by a polyhedron P ⊆ Rq × [0, 1]J and integrality constraints
h ∈ {0, 1}J , so that the feasible set of the formulation is P ∩ (Rq×{0, 1}J). Given F ⊆ Rq×RJ ,
let Projh(F) = {h ∈ RJ : ∃(x, h) ∈ F} denote its projection on h variables. A formulation is
valid for (AnchRob) if Projh(P) ∩ {0, 1}J = H. Given two polyhedra P1 and P2, formulation
associated with P1 is stronger than formulation associated with P2 if Projh(P1) ⊆ Projh(P2). A
formulation yields a polyhedral characterization for (AnchRob) if Projh(P) = Q. Importantly, if
the formulation associated with polyhedron P yields a polyhedral characterization for a special
case of (AnchRob), and P is described by a polynomial number of inequalities, then the spe-
cial case of (AnchRob) is polynomial. Indeed (AnchRob) can be solved by the linear program
max

∑
i∈J wihi for (x, h) ∈ P.

3 Linear formulations for (AnchRob)

In this section, we establish linear formulations for (AnchRob) using L∆
ij values as coefficients.

In Section 3.1 a naive formulation is given as a benchmark. In Section 3.2 the main dominance
property is proven. In Section 3.3 a formulation is derived from the dominance property. In
Section 3.4 it is compared with other known formulations.

3.1 A naive formulation

Consider schedule continuous variables xj , j ∈ J , and anchoring binary variables hj ∈ {0, 1},
j ∈ J . Vector h is the incidence vector of the anchored set H. A formulation for (AnchRob)
requires constraints to enforce that H is an x-anchored set. The characterization of Proposition 1
suggests a quadratic constraint

xj − xi ≥ L∆
ijhihj ∀i, j ∈ J, i ≺ j (1)

to represent precedence constraints of the graph G̃H . Note that for dummy jobs s and t there
is no hj decision variable but we set hs = 1 and ht = 0 for the ease of notation. For validity, it
is sufficient to check that for each i ≺ j, if hi = 0 or hj = 0 then inequality (1) is valid. Indeed
it reduces to xj − xi ≥ 0 which holds for every i ≺ j for every schedule x of G(p).

Applying a standard linearization technique, a linear formulation (Std) can be obtained by
replacing constraint (1) by the following linear inequality (2)

(Std): max
∑
i∈J wihi

s.t. xj − xi ≥ pi ∀(i, j) ∈ A
xt ≤M
xj − xi ≥ L∆

ij(hi + hj − 1) ∀i, j ∈ J, i ≺ j (2)

xj ≥ 0 ∀j ∈ J
hj ∈ {0, 1} ∀j ∈ J

It is easy to check that when hi = 0 or hj = 0, (2) induces a valid constraint.

3.2 A dominance property

Let H ⊆ J be a subset of jobs. Let us define the set of all baseline schedules x such that (x,H)
is feasible for (AnchRob) as X≤M (H) = {x ∈ X≤M : H x-anchored}. Note that (AnchRob)

8

problem is to maximize the weight of a set H such that X≤M (H) 6= ∅. By Proposition 1,

X≤M (H) = {x ∈ X≤M : xj − xi ≥ L∆
ij ∀i ∈ H ∪ {s}, j ∈ H, i ≺ j}.

Let us now define a set of baseline schedules where the same inequality is imposed, but on
pairs i, j with i ∈ J ∪ {s}:

Z≤M (H) = {z ∈ X≤M : zj − zi ≥ L∆
ij ∀i ∈ J ∪ {s}, j ∈ H, i ≺ j}.

Theorem 1. Set Z≤M (H) is dominant, in the sense that Z≤M (H) ⊆ X≤M (H), and X≤M (H) 6=
∅ implies Z≤M (H) 6=∅.

Proof. Since H ⊆ J , the definition of set Z≤M (H) contains more constraints than that of set
X≤M (H). Hence Z≤M (H) ⊆ X≤M (H). Let us prove X≤M (H) 6= ∅ =⇒ Z≤M (H) 6= ∅. Note

that X≤M (H) is exactly the set of schedules of G̃H with makespan at most M . Let z be the

earliest schedule of G̃H . By assumption, there exists a schedule in X≤M (H), thus zt ≤M . Let
i ∈ J ∪ {s} and j ∈ H. Let us show that zj − zi ≥ L∆

ij holds, even for i /∈ H ∪ {s}. Consider

a longest s−i path P ∗si in G̃H , and let k ∈ H ∪ {s} be the last vertex of H ∪ {s} on this path.
Then zi = LG̃(s, i) = LG̃(s, k) + LG̃(k, i) = zk + LG̃(k, i). The subpath of P ∗si from k to i is a

longest k−i path in G̃H . Since it has no vertex in H∪{s} except k, it uses no additional arc and
its length is LG̃(k, i) = L0

ki. It comes zk − zi = −L0
ki. Since z ∈ X≤M (H), zj − zk ≥ L∆

kj . Then

zj−zi = (zj−zk)+(zk−zi) ≥ L∆
kj−L0

ki. Also, for k ≺ i ≺ j, it holds that L∆
kj ≥ L0

ki+L
∆
ij : indeed

L∆
ij is attained for some δ∗ ∈ ∆ ⊆ RJ+, hence L∆

kj ≥ LG(p+δ∗)(k, i) + LG(p+δ∗)(i, j) ≥ L0
ki + L∆

ij .

Finally zj − zi ≥ L∆
ij , hence z ∈ Z≤M (H). �

3.3 Dominance-based linear formulation (Dom)

(AnchRob) problem is to maximize the weight of a setH such thatX≤M (H) 6= ∅, or equivalently
with Theorem 1, such that Z≤M (H) 6= ∅. We now introduce a new formulation derived from
Theorem 1, where continuous variables z correspond to a schedule z ∈ Z≤M (H).

(Dom): max
∑
i∈J wihi

s.t. zj − zi ≥ pi ∀(i, j) ∈ A
zt ≤M
zj − zi ≥ L0

ij + (L∆
ij − L0

ij)hj ∀i, j ∈ J, i ≺ j (3)

zj ≥ 0 ∀j ∈ J
hj ∈ {0, 1} ∀j ∈ J

Proposition 2. Formulation (Dom) is valid for (AnchRob).

Proof. Let (z, h) be feasible for (Dom), and H := {i ∈ J : hi = 1}. Note first that inequality
(3) implies z ∈ X≤M (H). Hence z is a schedule with makespan at most M and H is z-anchored.
Hence h ∈ H. Conversely, let h ∈ H be the incidence vector of an anchored set H. From Prop. 1
and Theorem 1, there exists z ∈ Z≤M (H). Such a schedule z satisfies zj − zi ≥ L∆

ij for every
i ∈ J ∪ {s} and j ∈ H. Then z satisfies (3): indeed if hj = 1 inequality (3) corresponds to
inequality zj − zi ≥ L∆

ij ; if hj = 0 then (3) amounts to zj − zi ≥ L0
ij , which holds since z is a

schedule of G(p). �

Note that precedence constraint zj − zi ≥ pi associated with arc (i, j) ∈ A is implied by (3)
since i ≺ j and L0

ij ≥ pi.

9

We now introduce a family of valid inequalities. Let j ∈ J . By inequality (3) with i = s, it
comes that zj ≥ L0

sj + (L∆
sj − L0

sj)hj . Since z ∈ X≤M it satisfies zj + L0
jt ≤M , thus leading to

M ≥ L0
sj + (L∆

sj − L0
sj)hj + L0

jt. Hence the following valid inequality

hj ≤

⌊
M − (L0

sj + L0
jt)

L∆
sj − L0

sj

⌋
. (4)

In Section 4 they will be discussed with respect to the polyhedral characterization under box
uncertainty.

3.4 Comparison with known formulations

In this section formulation (Dom) is compared with (Std) and with (Lay), the previously known
formulation from [Bendotti et al., 2019] dedicated to budgeted uncertainty.

Consider first the continuous relaxations of (Dom), (Std) and the variant of (Std) with
quadratic constraint (1). It turns out that they can easily be compared. Indeed for every
hi, hj ∈ [0, 1], it holds that hj ≥ hihj . Hence the right-hand side of inequality (3) is tighter than
the right-hand side of inequality (1). Also for every hi, hj ∈ [0, 1], it holds that (1−hi)(1−hj) ≥ 0
or equivalently hihj ≥ hi + hj − 1. Hence the right-hand side of inequality (1) is tighter than
the right-hand side of inequality (2).

Let us now investigate the special case of budgeted uncertainty, and compare (Dom) with
formulation (Lay) from [Bendotti et al., 2019], that we now recall. Formulation (Lay) involves
anchoring variables hj ∈ {0, 1} for every j ∈ J , and continuous variables xγj for every γ ∈
{0, . . . ,Γ}, j ∈ J . Formulation (Lay) is based on a so-called layered graph Glay(h) associated
with h ∈ [0, 1]J and built as follows. The layered graph Glay(h) is formed with Γ + 1 copies of
the precedence graph called layers indexed from 0 to Γ. Let iγ denote the copy of job i in layer
γ. The layered graph features three types of arcs. Horizontal arcs are copies of arcs of G(p),
i.e., arcs (iγ , jγ) for (i, j) ∈ A, with length pi. Transversal arcs are (iγ+1, jγ) for (i, j) ∈ A,

with length pi + δ̂i. Vertical arcs are (iγ , iΓ) for i ∈ J , γ < Γ, with length −Dj(1− hj), where
Dj = LG(p+δ̂)(s, j)− LG(p)(s, j) for every j ∈ J . It was shown that h ∈ {0, 1}J is the incidence

vector of an anchored set if and only if there exists x a schedule of Glay(h) such that xΓ
t ≤ M .

This leads to the formulation

(Lay): max
∑
i∈J wihi

s.t. xγj − x
γ
i ≥ pi ∀(i, j) ∈ A, ∀γ ∈ {0, . . . ,Γ}

xγj − x
γ+1
i ≥ pi + δ̂i ∀(i, j) ∈ A, ∀γ ∈ {0, . . . ,Γ− 1}

xΓ
j − x

γ
j ≥ −Dj(1− hj) ∀j ∈ J , ∀γ ∈ {0, . . . ,Γ− 1}

xΓ
t ≤M
xγj ≥ 0 ∀j ∈ J, ∀γ ∈ {0, . . . ,Γ}
hj ∈ {0, 1} ∀j ∈ J

Variables xΓ
j , j ∈ J from layer Γ can be thought of as a baseline schedule such that H =

{i ∈ J : hi = 1} is xΓ-anchored. Other continuous variables xγj , j ∈ J , γ < Γ can be regarded
as additional variables.

In order to compare linear relaxations of (Lay) and (Dom), we show how to project explicitly
those two formulations on the space of h variables. Let C be the set of s−t paths in the transitive
closure of G. Note that there is one-to-one correspondence with chains of the poset (J,≺). Let
PLay (resp. PDom) denote the polytope of solutions ((xγ)γ∈{0,...,Γ}, h) (resp. (z, h)) that are
feasible for the continuous relaxation of formulation (Lay) (resp. (Dom)).

10

Proposition 3.

Projh(PDom) =

h ∈ [0, 1]J :
∑

(i,j)∈C
j 6=t

(
L0
ij + (L∆

ij − L0
ij)hj

)
+ L0

jCt ≤M ∀C ∈ C



Projh(PLay) =

h ∈ [0, 1]J :
∑

(i,j)∈C
j 6=t

(
L∆
ij −Dj(1− hj)

)
+ L0

jCt ≤M ∀C ∈ C


where jC denotes the last vertex of path C before sink t.

Proof. Let h ∈ [0, 1]J . Let G(h) denote the transitive closure of G, where arc (i, j) is given the
weight L0

ij + (L∆
ij − L0

ij)hj , with ht = 0 for the ease of notation. Then (z, h) ∈ PDom if and

only if z is a schedule of G(h) with makespan zt ≤M , by definition of formulation (Dom). The
existence of such z is equivalent to LG(h)(s, t) ≤ M ; or equivalently, every s−t path in G(h)

has length at most M . The length of path C ∈ C in G(h) is exactly the left-hand side of the
proposed inequality, hence the result.

A similar proof holds for formulation (Lay). Let h ∈ [0, 1]J . Let `Glay(h)(R) denote the

length of a path R in the layered graph Glay(h). It holds that h ∈ Projh(PLay) if and only
if there exists x a schedule of Glay(h) such that xΓ

t ≤ M . The existence of x is equivalent to
the longest path condition: LGlay(h)(s

Γ, tΓ) ≤ M ; or equivalently, `Glay(h)(R) ≤ M for every

path R from sΓ to tΓ in the layered graph Glay(h). Let us now show that it is equivalent to∑
(i,j)∈C, j 6=t

(
L∆
ij −Dj(1− hj)

)
+ L0

jCt
≤M for every C ∈ C.

Assume first `Glay(h)(R) ≤ M for every path R from sΓ to tΓ in Glay(h). Let C ∈ C be an

s−t path in the transitive closure of G. Consider an associated sΓ−tΓ path R∗ in the layered
graph built as follows: for every arc (i, j) ∈ C, j 6= t, path R∗ contains the subpath of length L∆

ij

going from iΓ to a copy jγ of j, and the vertical arc (jγ , jΓ); path R∗ also contains the subpath
of length L0

jCt
going from jC

Γ to tΓ. Then R∗ is an sΓ−tΓ path in Glay(h), by assumption it

has length at most M , hence
∑

(i,j)∈C, j 6=t
(
L∆
ij −Dj(1− hj)

)
+ L0

jCt
≤M .

Conversely assume
∑

(i,j)∈C, j 6=t
(
L∆
ij −Dj(1− hj)

)
+ L0

jCt
≤ M for every C ∈ C. Let R

be an sΓ−tΓ path in Glay(h). Let C∗ be the path defined the successive jobs j such that R
contains a vertical arc (jγ , jΓ); then C∗ ∈ C. For every (i, j) ∈ C∗, let R(i,j) denote the subpath
of R from iΓ to a copy jγ of job j. Since R(i,j) uses at most Γ transversal arcs, it comes
`Glay(h)(R

(i,j)) ≤ L∆
ij . Similarly, let R(jC∗ ,t) denote the subpath of R between jC∗

Γ and tΓ, then

`Glay(h)(R
(jC∗ ,t)) ≤ L0

jC∗ t. The total length of R is `Glay(h)(R) =
∑

(i,j)∈C∗,j 6=t(`Glay(h)(R
(i,j))−

Dj(1−hj)) + `Glay(h)(R
(jC∗ ,t)), thus upper-bounded by

∑
(i,j)∈C∗,j 6=t(L

∆
ij −Dj(1−hj)) +L0

jC∗ t.

By assumption this at most M since C∗ ∈ C, hence `Glay(h)(R) ≤ M . This proves the claimed
result. �

Proposition 4. If the instance satisfies LG(p+δ̂)(s, j) − L0
sj ≥ L∆

ij − L0
ij for every i ≺ j,

then formulation (Dom) is stronger than formulation (Lay), in the sense that Projh(PDom) ⊆
Projh(PLay).

Proof. For every i ≺ j, it holds that L∆
ij−Dj(1−hj) ≤ L0

ij+(L∆
ij−L0

ij)hj . Indeed it is equivalent

to (Dj − L∆
ij + L0

ij)hj ≤ Dj − L∆
ij + L0

ij . This latter inequality is satisfied for every hj ∈ [0, 1],

since Dj − L∆
ij + L0

ij ≥ 0 by the assumption. Using the explicit definition of projections in

11

Prop. 3, it comes that the inequalities defining the projection of (Dom) are tighter than the
inequalities defining the projection of (Lay). �

Importantly, the assumption of Proposition 4 is satisfied if the precedence graph is critical.
Indeed, assume G(p) is critical and let i ≺ j. The Dj value satisfies Dj ≥ L∆

sj − L0
sj ≥

L0
si + L∆

ij − L0
sj . Since G(p) is critical, it holds that L0

si + L0
ij = L0

sj , hence Dj ≥ L∆
ij − L0

ij .

We now give an example satisfying the assumption of Proposition 4, and where Projh(PDom)
is strictly included in Projh(PLay). Let J = {1, 2, 3} be a set of three jobs, let G be the path

(s, 1, 2, 3, t), and let pi = 1 and δ̂i = 1 for every i ∈ J . Let also Γ = 1, and M = 3. Consider
h∗ = (1, 0, 1

2). To see that h ∈ Projh(PLay), consider the layered graph Glay(h∗), represented in
Figure 4. The vector x defined by x1 = (0, 0, 1, 2, 3) in layer 1, x0 = (0, 0, 2, 3, 4) in layer 0 is
also represented into brackets on the vertices in Figure 4.

s0 10 20 30 t0

s1 11 21 31 t1

0 1 1 1

0 1 1 1

1+
1

1+
1

1+
1

0 -1 -2(1- 1
2)

[0] [0] [1] [2] [3]

[0] [0] [2] [3] [4]

Figure 4: Layered graph Glay(h∗) for h∗ = (1, 0, 1
2).

It can be checked that vector x is a schedule of Glay(h∗), hence (x, h∗) ∈ PLay. By contrast,
vector h∗ violates inequality defining Projh(PDom) associated with path P = (s, 3, t). Indeed
L0
s3 = 2, L∆

s3 = 3, L0
3t = 1 and the inequality is 2 + h3 + 1 ≤ 3. Thus h∗ /∈ Projh(PDom),

and Projh(PDom) (Projh(PLay). More precisely, it is a case where (Dom) yields a polyhedral
characterization of (AnchRob), as shown next in Section 4.2.1.

The question whether (Dom) is stronger than (Lay) for any instance, is left open. However
in numerical experiments presented in Section 5, the linear bound of (Dom) was always better
than the linear bound of (Lay).

4 Polyhedral characterization for special cases

In this section, we provide polyhedral characterizations of (AnchRob) for two special cases: box
uncertainty and 1-disruption uncertainty for critical precedence graph.

4.1 Box uncertainty

This section is devoted to box uncertainty, which is the special case of budgeted uncertainty
where Γ = |J |, and thus δ̂ ∈ ∆. Note first that if x the earliest schedule of G(p+ δ̂) satisfies the
deadline constraint xt ≤ M , then all jobs can be anchored and (x, J) is an optimal solution of
(AnchRob). However in general the schedule x may have a makespan larger than M , hence not
all jobs can be anchored (see, e.g., the example in Figure 2 in Section 2).

12

In Bendotti et al. [2019] a polynomial algorithm for (AnchRob) under box uncertainty was

provided. This algorithm is as follows: compute x the earliest schedule of G(p + δ̂) and x the
latest schedule of G(p) such that xt = M ; let H∗ = {i ∈ J | xi ≤ xi} and xi = min{xi, xi} for
every i ∈ J ; return (x,H∗).

The main result is that in this case the polytope Q of anchored sets is characterized by
inequalities (4).

Theorem 2. For box uncertainty,

Q = {h ∈ [0, 1]J : h satisfies (4)}.

Proof. Consider schedules x and x, defined by xj = LG(p+δ̂)(s, j) and xj = M − L0
jt for every

j ∈ J . Note first that for box uncertainty, L∆
sj = LG(p+δ̂)(s, j) = xj . Inequality (4) writes in this

case: hj ≤
⌊
M−(L0

sj+L0
jt)

L∆
sj−L0

sj

⌋
=
⌊
xj−L0

sj

xj−L0
sj

⌋
. Equivalently, it implies hj ≤ 1 if j ∈ H∗, and hj ≤ 0 if

j /∈ H∗. Hence {h ∈ [0, 1]J : h satisfies (4)} = [0, 1]H
∗ × {0}J\H∗

.
Every extreme point of [0, 1]H

∗ × {0}J\H∗
is the incidence vector of a set H ⊆ H∗. Since

any subset of an anchored set is anchored, and H∗ is anchored, then [0, 1]H
∗ × {0}J\H∗ ⊆ Q.

Conversely, if H is an anchored set, its incidence vector χH satisfies valid inequalities (4): thus
H ⊆ H∗. Hence Q ⊆ [0, 1]H

∗ × {0}J\H∗
. �

Note that Theorem 2 also holds for any ∆ that has a greatest element δ̂. This case is more
general than ∆ being a box, as mentioned in Section 2.3.

4.2 1-disruption uncertainty

In this section, set ∆ is a 1-disruption uncertainty set, i.e., a budgeted uncertainty set with
Γ = 1 and δ̂i = δ̂0 for every i ∈ J . In Section 4.2.1 the polyhedral characterization is shown
for the special case with zero processing times. In Section 4.2.2 it is extended to any critical
precedence graph with non-zero processing times.

4.2.1 The Unitary (AnchRob)

Assume first pi = 0 for every i ∈ J . W.l.o.g. δ̂0 = 1. Finally assume deadline M integer. If M
is not integer, it can be replaced with bMc w.l.o.g.: indeed, since p and δ̂ are integer, for any H

the earliest schedule of G̃H is integer-valued with integer makespan.
In this special case, an instance is the precedence graph G = (J,A), p = 0, δ̂0 = 1, integer

deadline M , and anchoring weights. This special case is referred to as the Unitary Anchor-
Robust (U-AnchRob) problem. For unit anchoring weights, it has been identified as a polynomial
case in Bendotti et al. [2019] by an equivalence with a problem on posets for which a min/max
theorem is known [Schrijver, 2003].

For (U-AnchRob) our main result is a characterization of the polytope through formulation
(Dom). It relies on the polyhedral result of Theorem 3. Let (J,≺) be a poset with s (resp. t)
a least (resp. greatest) element. Consider the inequalities

zi − zs ≥ 0 ∀i ∈ J (a)
zt − zi ≥ 0 ∀i ∈ J (b)
zt ≤M (c)
zj − zi ≥ hj ∀i, j ∈ J , i ≺ j (d)
zj ≥ 0 ∀j ∈ J (e)
hj ≤ 1 ∀j ∈ J (f)
hj ≥ 0 ∀j ∈ J (g)

13

and let P = {(z, h) ∈ RJ × RJ : (a)− (g)}.

Theorem 3. The polytope P is integer.

Proof. Consider the polytope P formed with all pairs (z, h) ∈ RJ+×RJ+ satisfying the constraints
(a)–(g). To prove integrality of P, the main idea is to define an auxiliary extended polyhedron
where h variables can be expressed linearly from z variables and additional z′ variables. Let us

define the auxiliary polyhedron P ′ formed with all triplets (z, z′, h) ∈ RJ+ ×RJ+ ×RJ satisfying
the constraints

zj − zi ≥ 0 ∀(i, j) ∈ A (i)
z′j − z′i ≥ 0 ∀(i, j) ∈ A (ii)
z′j − zi ≥ 1 ∀(i, j) ∈ A (iii)
zj − z′j ≥ −1 ∀j ∈ J (iv)
zj − z′j ≤ 0 ∀j ∈ J (v)
zt ≤M (vi)
hj = 1 + zj − z′j ∀j ∈ J (vii)

Let us prove the following claim. Claim 1. P = Projz,h(P ′).
First, given (z, h) ∈ P, let us prove the existence of z′ such that (z, z′, h) ∈ P ′. Define z′j =
1 + zj − hj for every j ∈ J , and z′s = zs, z

′
t = 1 + zt. Then the (in)equalities (i) to (vii) can be

checked for the triplet (z, z′, h) as follows.
– (i) and (vi) hold by assumption on z, and (vii) by definition of z′;
– (ii): if j 6= t then z′j−z′i = zj−zi−hj+hi ≥ hi ≥ 0 by (d); if j = t then z′j−z′i = zt−zi+hi ≥
hi ≥ 0 by (b);
– (iii): if j 6= t then z′j − zi = 1 + zj − hj − zi ≥ 1 by (d); if j = t, follows from (b);
– (iv) and (v): zj − z′j = −1 + hj ∈ [−1, 0] since hj ∈ [0, 1].
Conversely, let (z, z′, h) ∈ P ′. Let us check inequalities (a)–(g) for (z, h).
– (a) holds by sum of (i) along an s−i path;
– (b) holds by sum of (i) along an i−t path;
– (c) is clear;
– (d): for i ≺ j we have zj−zi = zj−z′j+z′j−zk+zk−zi, where k is the last vertex distinct from
j on a path from i to j in the precedence graph (possibly k = i). Then (k, j) ∈ A so z′j − zk ≥ 1
by (iii). Also zk−zi ≥ 0 by summing (i) along the i−k path. Hence zj−zi ≥ zj−z′j+1+0 = hj
by (vii). Hence (d) is satisfied;
– (f) (resp. (g)) comes from (vii) and (iv) (resp. (vii) and (v)).
This completes the proof of Claim 1. �

Now we prove: Claim 2. P ′ is integer.
Let (z, z′, h) be an extreme point of P ′. It satisfies the n equalities (vii) and it saturates
2(n + 2) linearly independent inequalities among (i)–(vi). Thus (z, z′) is an extreme point of

{(z, z′) ∈ RJ+ × RJ+ : (i)-(vi)}. The constraint matrix of (i)–(vi) is totally unimodular, and the
right-hand side is integer since M is integer. Hence (z, z′) is integer and so is (z, z′, h). This
ends the proof of Claim 2. �

By Claim 1, P = Projz,h(P ′). It holds that for any extreme point (z, h) of P there exists z′

such that (z, z′, h) is an extreme point of P ′. By Claim 2, such (z, z′, h) is integer, hence (z, h)
is integer. This proves the integrality of P. �

Theorem 3 implies the following polyhedral characterization

Proposition 5. Formulation (Dom) yields a polyhedral characterization for (U-AnchRob).

14

Proof. Let us prove that the linear relaxation of (Dom) correponds to the polytope P from
Theorem 3. For (U-AnchRob) for every i, j ∈ J such that i ≺ j we have L0

ij = 0 since p = 0.

The worst-case longest paths values are as follows. For every j ∈ J , L∆
sj = 0 if j has no

predecessor except s, and L∆
sj = 1 otherwise. For every i ≺ j with i 6= s, L∆

ij = 1. For a pair
i ≺ j with i 6= s, inequality (3) thus writes zj − zi ≥ hj , which is inequality (d) or (b) from
the definition of P. For a pair s ≺ j, inequality (3) writes zj − zs ≥ 0 if j has no predecessor
in J , and zj − zs ≥ hj otherwise. If j has no predecessor in J , it is inequality (a) from the
definition of P. Otherwise j has a predecessor k ∈ J and inequality zj − zs ≥ hj is dominated
by inequalities zk − zs ≥ 0 and zj − zk ≥ hk. Hence it is satisfied by any element of P. Thus
PDom = P.

By Theorem 3, P is integer, hence Projh(P) is integer. Namely, each extreme point of
Projh(P) is the incidence vector of an anchored set. Thus Projh(PDom) = Projh(P) = Q, and
(Dom) yields a polyhedral characterization for the problem. �

Note that Proposition 5 implies also the integrality of schedule variables z, which are not
required to be integer in general.

As a corollary, a complexity result is that Theorem 3 generalizes the polynomial case of
(U-AnchRob) proven in Bendotti et al. [2019] for unit anchoring weights, to any non-negative
anchoring weights.

The polyhedral characterization from (Dom) can be projected out to obtain a complete
description of Q using h variables only. Namely, the inequalities from the projection stated in
Proposition 3 are

∑
i∈C hi ≤M for every chain C of the subposet (J∗,≺), where J∗ is the set of

jobs with at least a predecessor different from s. It is a family of inequalities with exponential
size. In that regard, (Dom) is a compact extended formulation with additional variables z: with
O(n) continuous additional variables, it is possible to describe the polytope Q with a polynomial
O(n2) number of inequalities.

4.2.2 Critical precedence graphs

Let us now consider processing times p ∈ RJ+. Recall that the precedence graph G(p) is critical
if the length of all s−t paths is the same. A case where G(p) is critical is when processing times
are equal to zero, since the length of all s−t paths is zero. For non-zero processing times, it
can also be proven that for some precedence graphs, if G(p) is quasi-critical then it is critical.
This holds for series-parallel precedence graphs; the result is proven in A and used for numerical
results in Section 5 to generate critical precedence graphs.

Let us now consider a critical precedence graph G(p), and extend the polyhedral character-

ization result obtained in Section 4.2.1. It is assumed that M = L0
st + δ̂0M

′ with M ′ integer.

Indeed M can be tightened to L0
st+ δ̂0

⌊
(M − L0

st)/δ̂0

⌋
w.l.o.g. Under this assumption we prove

that

Theorem 4. For 1-disruption uncertainty and critical precedence graph, formulation (Dom)
yields a polyhedral characterization of (AnchRob).

Proof. Let I denote an instance of (AnchRob) for 1-disruption uncertainty with deviation δ̂0,
critical precedence graph G(p), and deadline M . Let z∗ be the earliest schedule of G(p), namely
z∗i = L0

si for every i ∈ J . Since G(p) is critical, for every i ≺ j it holds that L0
si + L0

ij +

L0
jt = L0

sj + L0
jt, hence L0

ij = z∗j − z∗i . Also L∆
ij = z∗j − z∗i + δ̂0. Inequalities (3) then write

zj − zi ≥ (z∗j − z∗i) + δ̂0hj , or equivalently
zj−z∗j
δ̂0
− zi−z∗i

δ̂0
≥ hj . Similarly the deadline constraint

15

is equivalent to
zt−z∗t
δ̂0
≤ M−z∗t

δ̂0
. Consider a new instance I ′ of (U-AnchRob) defined by: the

precedence graph G, zero processing times, and M ′ =
M−L0

st

δ̂0
. Then M ′ is integer by assumption

onM . Solution (z, h) is feasible for (Dom) in instance I if and only if solution (z−z
∗

δ̂0
, h) is feasible

for (Dom) in instance I ′. Hence if (z, h) is an extreme point of PDom then (z−z
∗

δ̂0
, h) is extreme

for the (U-AnchRob) instance. By Proposition 5, vector h is integer. Hence the claimed result.
�

Theorem 4 thus yields a polyhedral characterization of polynomial size for this special case.
We mention that this is a polynomial case of (AnchRob) that was not identified in Bendotti
et al. [2019].

5 Numerical results

We investigate the impact of theoretical polyhedral results from Section 4 on the performance
of formulations (Lay), (Std), (Dom) for various instance classes. In Section 5.1, instances and
settings are presented. Section 5.2 is dedicated to budgeted uncertainty, and Section 5.3 to
partition-budgeted and mixed-budgeted uncertainty sets.

5.1 Instances and settings

Instances are randomly generated as follows. We consider instance classes with a four-field label
F1 F2 F3 F4:

• Field F1 concerns precedence graph G

– ER: precedence graphs randomly generated according to Erdos-Renyi model, i.e., arc
(i, j) is in G with probability pr = 10/n.

– SP: Series-Parallel precedence graphs, inductively generated by drawing randomly
series or parallel compositions.

• Field F2 denotes processing times p

– pZero: pi = 0 for every i ∈ J ;

– pRand: pi is randomly generated in range [5, 20];

– pQCri: p is obtained by applying the following procedure: start from the values
generated for class pRand; increase the processing time of a randomly selected job
until every job is on a critical path. Hence G(p) is quasi-critical.

• Field F3 denotes deviation δ̂

– dRand: for instances pRand and pQCri, δ̂i is randomly generated in [1, 1
2pi] for every

i ∈ J ; for instances pZero, δ̂ is equal to the values generated for instances pQCri;

– dUnif: δ̂i = δ̂0 for every i ∈ J . Value δ̂0 is randomly selected in the deviation values
of instances dRand.

• Field F4 denotes the uncertainty set

– Γ1, Γ2, Γ3 correspond to budgeted uncertainty with deviation defined by F3 and
Γ = 1, 2, 3 respectively.

16

– Partition: jobs are partitioned into two subsets J1 and J2, every job being in J1

with probability 0.75. Given the deviation δ̂ defined by F3, the deviation vector of
the Partition instance is b0.1δ̂ic for every i ∈ J1, and δ̂i for every i ∈ J2. Budgets
are Γ1 = 10 and Γ2 = 1.

– Mixed: ∆ = ∆1 ∪∆2 where ∆1 has deviation δ̂ defined by F3 and Γ1 = 1, and ∆2

has deviation τ δ̂, with τ = 0.2 and δ̂ defined by F3 and Γ2 = 10.

Each label corresponds to a class of 10 instances. For completeness, a formal definition of
series-parallel precedence graphs is given in A. It is also proven in the Appendix that instance
classes SP pQCri yield critical precedence graphs.

The number of jobs is set to n = 300. Anchoring weights are unitary. Deadline M is set
to M

1
2 = 1

2 (LG(p)(s, t) + LG(p+δ̂)(s, t)), that is, it is halfway between the min makespan of any

schedule of G(p) and the min makespan of a static-robust schedule. Unreported results showed

that choosing a deadline other than M
1
2 leads to similar results in terms of the comparison

of formulations. For budgeted uncertainty, the budget is Γ ∈ {1, 2, 3}. The choice of a small
uncertainty budget was previously motivated in the literature, see, e.g., [Bendotti et al., 2019,
Herroelen and Leus, 2004].

For each instance, formulations (Dom), (Std), and (Lay) have been implemented using Julia
0.6.2, JuMP 0.18.5. Mixed-integer programs are solved with CPLEX 12.8 on a PC under
Windows 10 with Intel Core i7-7500U CPU 2.90GHz and 8 Go RAM. The time limit is 300
seconds.

The valid inequalities (4) appear to be added by CPLEX on the fly. Thus they are not
hardcoded in formulations.

5.2 Impact of instance parameters for budgeted uncertainty

Let us first investigate the case of budgeted uncertainty. Table 1 and Table 2 present the results
for ER and SP instances respectively. Each table presents results relative to 8 instance classes:
the first 6 instance classes are with Γ = 1 and with all combinations of processing times and
deviations, and the last 2 instance classes are with Γ = 2 and Γ = 3. For each instance class,
checkmarks in the first three columns indicate if the assumptions of Theorem 4 are matched:

– crit.: the precedence graph G(p) is critical;

– unif.: deviation δ̂ is uniform;
– Γ1: Γ = 1.

The tables feature:
– opt: average optimal value for instances solved optimally;
– for each formulation (Lay), (Std) and (Dom):

– #solved: number of instances, out of 10, solved optimally within the time limit;
– gap: average final gap of unsolved instances;
– time: average computation time for solved instances in seconds;

– LPGap: average gap b−opt
opt between integer optimum opt and linear bound b;

– CPXGap: average gap obtained by CPLEX at root node.

The computation times do not include the preprocessing time for computing L∆
ij values. The

computation is done by a dynamic programming algorithm linear in Γ|A|. Its running time is
negligible with respect to MIP computation time: on average 0.153 seconds for ER instances and
0.161 seconds for SP instances.

17

Let us now comment on the impact of the instance parameters.

Polyhedral characterization cases. Instance classes ER pZero dUnif Γ1, SP pZero dUnif Γ1,
and SP pQCri dUnif Γ1, correspond to polyhedral characterization cases. As expected, formu-
lation (Dom) solves the problem in less than one second and LPGap = 0%. Formulation (Lay)
has non-zero LPGap, but CPLEX adds suitable cuts to close the gap at root node.

Impact of uniform deviation. Consider now the 6 instance classes F1 F2 dUnif Γ1. These are
the first three row entries of Table 1 and the first three row entries of Table 2. On these 6 instance
classes, formulations (Dom) and (Lay) still behave well. (Dom) solves all instances in less than
one second. In particular, its LPGap is still very small: at most 0.42%. (Lay) also performs well,
the LPGap of (Lay) is larger, but CPXGap is comparable for (Dom) and (Lay). We note that
uniform deviation has an important impact on the performance of formulations. Consider, e.g.,
instance classes SP pZero dUnif Γ1 and SP pZero dRand Γ1. For uniform deviation (Dom) is
integer ; for non-uniform deviation it has 9.70% CPXGap and solves only 4 instances out of 10
within the time limit. By contrast with (Dom) and (Lay) on these instances, formulation (Std)
performs very poorly and solves only 41 instances out of 120 (vs. 107 out of 120 for (Dom)).

Impact of the precedence graph. The impact of the precedence graph being critical is limited,
as shown for example by the comparison of instances ER pZero and ER pQCri. Both are efficiently
solved, while the precedence graph is critical for the former, and not critical for the latter.
Even more, instances with pRand appear to be easy instances, while they do not have critical
precedence graphs. An interpretation is that for such instances, a large number of jobs are not
on critical paths and thus they can be anchored; note, e.g., that the optimal value is greater for
pRand instances than for others.

Impact of uncertainty budget. When Γ is increased, the performance of (Lay) deteriorates.
It gets even worse than (Std) for ER instances, see ER pZero dUnif Γ3 where (Std) solves 3
instances and (Lay) solves 1 instance. Importantly, the size of formulation (Lay) increases with
Γ. For (Dom) and (Std) only the values of the coefficients L∆

ij depend on the budget, and not
the size of the formulation.

18

instance crit. unif. Γ1 opt #solved gap time(s) LPGap CPXGap
ER pZero dUnif Γ1 X X X 271.90 (Lay) 10 - 1 9.20% 0.90%

(Std) 1 1.19% 144 5.14% 3.07%
(Dom) 10 - <1 0% 0%

ER pQCri dUnif Γ1 X X 274.30 (Lay) 10 - 26 8.39% 0.87%
(Std) 0 2.05% - 8.04% 4.29%

(Dom) 10 - 1 0.42% 0.24%
ER pRand dUnif Γ1 X X 290.40 (Lay) 10 - <1 3.06% 0.06%

(Std) 10 - 30 3.02% 1.62%
(Dom) 10 - <1 0.10% 0%

ER pZero dRand Γ1 X X 214.77 (Lay) 9 2.84% 21 34.15% 7.93%
(Std) 9 4.92% 65 28.53% 4.68%

(Dom) 9 1.81% 11 21.13% 3.28%
ER pQCri dRand Γ1 X 225.80 (Lay) 8 0.98% 21 28.54% 7.70%

(Std) 6 2.30% 41 30.25% 5.41%
(Dom) 10 - 31 18.09% 3.69%

ER pRand dRand Γ1 X 290.20 (Lay) 10 - <1 3.00% 0.36%
(Std) 10 - <1 3.02% 1.74%

(Dom) 10 - <1 0.82% 0.07%
ER pZero dUnif Γ2 X X 255.50 (Lay) 2 1.88% 113 15.11% 9.93%

(Std) 1 4.20% 237 10.93% 7.58%
(Dom) 10 - 53 3.91% 2.46%

ER pZero dUnif Γ3 X X 243.50 (Lay) 1 4.41% 111 19.77% 13.69%
(Std) 3 5.48% 153 15.76% 7.78%

(Dom) 10 - 105 7.18% 3.51%

Table 1: ER instances, budgeted uncertainty

instance crit. unif. Γ1 opt #solved gap time(s) LPGap CPXGap
SP pZero dUnif Γ1 X X X 255.90 (Lay) 10 - <1 17.09% 0%

(Std) 0 3.34% - 8.64% 6.81%
(Dom) 10 - <1 0% 0%

SP pQCri dUnif Γ1 X X X 255.90 (Lay) 10 - <1 17.09% 0%
(Std) 0 6.88% - 14.82% 8.96%

(Dom) 10 - <1 0% 0%
SP pRand dUnif Γ1 X X 262.80 (Lay) 10 - <1 14.19% 0.42%

(Std) 0 6.86% - 13.36% 7.29%
(Dom) 10 - <1 0.05% 0%

SP pZero dRand Γ1 X X 247.00 (Lay) 4 3.72% 3 32.46% 16.43%
(Std) 2 18.60% 11 25.97% 20.07%

(Dom) 4 9.12% 15 16.42% 9.70%
SP pQCri dRand Γ1 X X 247.00 (Lay) 4 3.52% 3 32.38% 16.72%

(Std) 2 23.58% 30 35.21% 27.94%
(Dom) 4 9.83% 14 16.54% 9.90%

SP pRand dRand Γ1 X 268.60 (Lay) 10 - 3 11.51% 6.97%
(Std) 1 6.09% 193 11.05% 9.34%

(Dom) 10 - 16 2.26% 0.92%
SP pQCri dUnif Γ2 X X 246.66 (Lay) 7 0.85% 45 22.65% 10.58%

(Std) 0 11.80% - 20.92% 16.63%
(Dom) 9 0.77% 31 2.44% 1.35%

SP pQCri dUnif Γ3 X X 246.14 (Lay) 5 2.77% 57 26.40% 16.38%
(Std) 1 17.42% 215 25.47% 20.68%

(Dom) 7 2.19% 38 3.92% 3.29%

Table 2: SP instances, budgeted uncertainty

5.3 Beyond budgeted uncertainty

Let us now present results when ∆ is an uncertainty set with several budgets.

19

5.3.1 Partition-budgeted uncertainty set

Table 3 and Table 4 give computational results for ER and SP instances under Partition uncer-
tainty. In this case, the L∆

ij values were computed by a dynamic programming algorithm with

complexity linear in Γ1Γ2|A|. The computation was done in 4.364 seconds on average for ER

instances, and 4.916 seconds on average for SP instances.
It comes that (Dom) solves all 60 ER instances, and 54 SP instances, which is better than

for budgeted uncertainty. For SP instances, the results are comparable to those of budgeted
uncertainty. By contrast, ER instances appear to be very easy for this uncertainty set. Hence
solving the MIP formulation (Dom) for Partition uncertainty does not seem harder than for
budget Γ1. This highlight that (Dom) can be readily used to handle several budget constraints.

instance crit. unif. Γ1 opt #solved gap time(s) LPGap CPXGap
ER pZero dUnif Partition X X 286.50 (Lay) - - - - -

(Std) 10 - <1 2.17% 0.07%
(Dom) 10 - <1 0% 0%

ER pQCri dUnif Partition X 284.30 (Lay) - - - - -
(Std) 10 - 1 4.92% 0.22%

(Dom) 10 - <1 1.53% 0%
ER pRand dUnif Partition X 294.50 (Lay) - - - - -

(Std) 10 - <1 1.72% 0.05%
(Dom) 10 - <1 0.34% 0%

ER pZero dRand Partition X 246.10 (Lay) - - - - -
(Std) 10 - <1 22.03% 0%

(Dom) 10 - <1 20.22% 0%
ER pQCri dRand Partition 260.70 (Lay) - - - - -

(Std) 10 - <1 14.45% 0%
(Dom) 10 - <1 12.13% 0%

ER pRand dRand Partition 293.10 (Lay) - - - - -
(Std) 10 - <1 2.14% 0%

(Dom) 10 - <1 0.77% 0%

Table 3: ER instances, Partition uncertainty

instance crit. unif. Γ1 opt #solved gap time(s) LPGap CPXGap
SP pZero dUnif Partition X X 274.70 (Lay) - - - - -

(Std) 8 1.36% 14 4.48% 2.01%
(Dom) 10 - <1 0% 0%

SP pQCri dUnif Partition X X 273.44 (Lay) - - - - -
(Std) 4 7.42% 43 10.57% 8.29%

(Dom) 9 3.22% 14 1.43% 0.84%
SP pRand dUnif Partition X 284.90 (Lay) - - - - -

(Std) 8 2.12% 57 4.89% 2.71%
(Dom) 10 - <1 0.17% 0%

SP pZero dRand Partition X 246.87 (Lay) - - - - -
(Std) 7 11.40% 1 23.12% 4.54%

(Dom) 8 4.05% 33 19.43% 2.79%
SP pQCri dRand Partition X 247.42 (Lay) - - - - -

(Std) 7 13.46% 1 27.36% 5.16%
(Dom) 7 3.28% <1 19.33% 2.66%

SP pRand dRand Partition 279.10 (Lay) - - - - -
(Std) 7 4.89% 44 7.10% 5.05%

(Dom) 10 - 1 1.85% 0.41%

Table 4: SP instances, Partition uncertainty

20

5.3.2 Mixed-budgeted uncertainty sets

Table 5 and Table 6 give computational results for ER and SP instances under Mixed uncertainty.
In this case ∆ = ∆1∪∆2 where ∆1 is the uncertainty set corresponding to instance classes with
fourth field Γ1. The L∆

ij values were precomputed by the same dynamic programming algorithm
as for budgeted uncertainty. This computation was done in 0.152 seconds on average for ER

instances, and 0.154 seconds on average for SP instances.
First, (Dom) solves optimally 59 ER instances and 42 SP instances for Mixed, in comparison

with 59 ER instances and 48 SP instances for budgeted uncertainty (Γ = 1). That is, the
performance of the formulation is not very sensitive to the change of uncertainty set.

Some conclusions given in Section 5.2 also hold for Mixed uncertainty. Namely, instances
with dUnif are easier than instances with dRand. It can be related to the influence of uniform
deviation on the performance of (Dom), in connection with the polyhedral characterization
result.

The optimal number of anchored jobs is often the same for ∆ or ∆1. Namely, the value
of opt can be compared between Table 1 and Table 5 for ER instances, and between Ta-
ble 2 and Table 6 for SP instances. For example for instance classes SP pZero dRand Γ1 and
SP pZero dRand Mixed the average optimal value is equal to 247.00, hence all instances have
the same optimal value for uncertainty set ∆ and ∆1. This means that the uncertainty set can
be extended from ∆1 to ∆ = ∆1 ∪∆2 without deteriorating the number of anchored jobs.

instance crit. unif. Γ1 opt #solved gap time(s) LPGap CPXGap
ER pZero dUnif Mixed X X 271.90 (Lay) - - - - -

(Std) 1 1.17% 286 5.14% 3.06%
(Dom) 10 - <1 0% 0%

ER pQCri dUnif Mixed X 274.20 (Lay) - - - - -
(Std) 0 2.13% - 8.08% 4.28%

(Dom) 10 - 1 0.45% 0.24%
ER pRand dUnif Mixed X 290.40 (Lay) - - - - -

(Std) 10 - 26 3.02% 1.62%
(Dom) 10 - <1 0.10% 0.03%

ER pZero dRand Mixed X 214.77 (Lay) - - - - -
(Std) 9 5.35% 66 28.53% 4.61%

(Dom) 9 1.83% 13 21.13% 3.22%
ER pQCri dRand Mixed 225.80 (Lay) - - - - -

(Std) 7 2.61% 77 30.19% 5.09%
(Dom) 10 - 22 18.09% 3.49%

ER pRand dRand Mixed 290.20 (Lay) - - - - -
(Std) 10 - <1 3.02% 1.78%

(Dom) 10 - <1 0.82% 0.07%

Table 5: ER instances, Mixed uncertainty

21

instance crit. unif. Γ1 opt #solved gap time(s) LPGap CPXGap
SP pZero dUnif Mixed X X 255.70 (Lay) - - - - -

(Std) 0 3.60% - 8.72% 6.84%
(Dom) 10 - 1 0.06% 0%

SP pQCri dUnif Mixed X X 246.75 (Lay) - - - - -
(Std) 2 24.10% 37 35.77% 24.48%

(Dom) 4 10.15% 13 16.59% 9.99%
SP pRand dUnif Mixed X 262.80 (Lay) - - - - -

(Std) 0 6.74% - 13.36% 7.64%
(Dom) 10 - 1 0.05% 0%

SP pZero dRand Mixed X 247.00 (Lay) - - - - -
(Std) 2 19.25% 16 26.63% 19.47%

(Dom) 4 9.43% 13 16.40% 10.19%
SP pQCri dRand Mixed X 247.00 (Lay) - - - - -

(Std) 2 23.86% 30 35.52% 25.37%
(Dom) 4 9.15% 12 16.26% 10.19%

SP pRand dRand Mixed 268.40 (Lay) - - - - -
(Std) 1 6.03% 179 11.00% 9.48%

(Dom) 10 - 26 2.34% 1.08%

Table 6: SP instances, Mixed uncertainty

5.4 Conclusion on numerical experiments

In the numerical experiments, we evaluated the performance of formulations for budgeted un-
certainty sets, and uncertainty sets obtained by union or intersection of budgeted uncertainty
sets. For budgeted uncertainty sets, numerical tests showed that (Dom) outperforms the previ-
ously known formulation (Lay), that was dedicated to budgeted uncertainty. An advantage of
formulation (Dom) over (Lay) is that the size of (Dom) is independent of the budget Γ, while
(Lay) has O(nΓ) variables.

We then investigated the impact of the parameters on the performance of (Dom). The
influence of uniform deviation and small uncertainty budget is important, while the impact of
critical precedence graphs is not significant on the efficiency of the formulation. Interestingly
(Dom) is efficient for instances that are not matching the polyhedral characterization case, but

where deviation δ̂ is uniform and Γ is small.
The proposed approach is to precompute the L∆

ij values, then solve the obtained MIP for-
mulation. This allowed us to solve the problem for a variety of uncertainty sets for which no
linear formulation was previously investigated. The precomputing time remains small (at most
5 seconds for partition-budgeted uncertainty sets) on the considered instances, and the MIP
computation time for (Dom) is comparable to that under budgeted uncertainty. While it was
expected that (Dom) would outperform standard linearization (Std), the computational interest
of applying the dominance is highlighted by the number of solved instances: on a total number
of 400 instances, 358 are solved by (Dom), only 191 by (Std).

6 Conclusion

In the present work we investigated a versatile mixed-integer programming approach for the
(AnchRob) problem. This led to a linear formulation that is applicable to any uncertainty
set, provided that an algorithm for precomputing the worst-case longest paths values is avail-
able. This widens the range of uncertainty sets for which MIP formulations for (AnchRob) are
known. The keypoint for establishing a strong MIP formulation is the analysis of the combi-
natorial properties of (AnchRob), among which a dominance property. This property allows

22

for a characterization of the anchored sets polytope in interesting special cases. The theoreti-
cal positive results for the dominance-based formulation also go together with good numerical
performances around the polyhedral characterization case, for both budgeted uncertainty and
uncertainty sets with several budgets.

An interesting research direction is to benefit from the obtained polyhedral results to solve
large-scale instances. Another direction is to extend these results and tackle project scheduling
under resource constraints. Resource constraints are indeed very salient in applications. It is
worth investigating how anchored jobs may interfere with resource constraints, and see whether
dominance may help again in the design of efficient linear formulations. Another perspective
is to identify other problems where an anchor-robust counterpart could be defined, and solved
efficiently with mixed-integer programming.

A Series-parallel precedence graphs

Series-parallel digraphs are defined recursively as follows. A digraph is series-parallel with
terminals s and t if one of the three assertions is satisfied:

• Its vertex-set is {s, t} and its arc-set is {(s, t)};

• (Series composition.) It is formed with two series-parallel digraphs G1 and G2, where
terminals t1 and s2 have been identified;

• (Parallel composition.) It is formed with two series-parallel digraphs G1 and G2, where
the two pairs of terminals s1 and s2, and t1 and t2, have been identified. We assume that
G1 and G2 have strictly more than 2 vertices.

Series-parallel precedence graphs are series-parallel digraphs with terminals the dummy jobs s
and t.

Proposition 6. If G is series-parallel and G(p) is quasi-critical, then G(p) is critical.

Proof. If G is a path, then G(p) is critical. If G is obtained by series composition of G1 and
G2; then any s−t path is formed by an s1−t1 path in G1 and an s2−t2 path in G2. Hence if
G1 and G2 are critical, it follows that G is critical. If G is obtained by parallel composition of
G1 and G2, both critical, let i ∈ G1 and j ∈ G2. Then every s−t path going through G1 (resp.
G2) has length LG1(s, t) = LG1(s, i) + LG1(i, t) (resp. LG2(s, t) = LG2(s, j) + LG2(j, t)). If G
is quasi-critical, LG(s, i) + LG(i, t) = LG(s, j) + LG(j, t), and it follows that all s−t paths of G
have same length. �

References

Josette Ayoub and Michael Poss. Decomposition for adjustable robust linear optimization sub-
ject to uncertainty polytope. Computational Management Science, 13(2):219–239, 2016. doi:
10.1007/s10287-016-0249-2.

Aharon Ben-Tal, A. P. Goryashko, E. Guslitzer, and Arkadi Nemirovski. Adjustable robust
solutions of uncertain linear programs. Mathematical Programming, 99(2):351–376, 2004. doi:
10.1007/s10107-003-0454-y.

Pascale Bendotti, Philippe Chrétienne, Pierre Fouilhoux, and Alain Quilliot. Anchored reactive
and proactive solutions to the CPM-scheduling problem. European Journal of Operational
Research, 261(1):67–74, 2017. doi: 10.1016/j.ejor.2017.02.007.

23

Pascale Bendotti, Philippe Chrétienne, Pierre Fouilhoux, and Adèle Pass-
Lanneau. The Anchor-Robust Project Scheduling Problem. May 2019. URL
https://hal.archives-ouvertes.fr/hal-02144834.

Pascale Bendotti, Philippe Chrétienne, Pierre Fouilhoux, and Adèle Pass-Lanneau. Anchored
rescheduling problems under generalized precedence constraints. In Mourad Bäıou, Bernard
Gendron, Oktay Günlük, and Ali Ridha Mahjoub, editors, Combinatorial Optimization. ISCO
2020, volume 12176 of Lecture Notes in Computer Science, 2020. doi: doi.org/10.1007/978-
3-030-53262-8 13.

Dimitris Bertsimas and Constantine Caramanis. Finite adaptability in multistage linear
optimization. IEEE Transactions on Automatic Control, 55(12):2751–2766, 2010. doi:
10.1109/TAC.2010.2049764.

Dimitris Bertsimas and Melvyn Sim. The price of robustness. Operations Research, 52:35–53,
2004. doi: 10.1287/opre.1030.0065.

Alain Billionnet, Marie-Christine Costa, and Pierre-Louis Poirion. 2-stage robust MILP
with continuous recourse variables. Discrete Applied Mathematics, 170:21–32, 2014. doi:
10.1016/j.dam.2014.01.017.

Christoph Buchheim and Jannis Kurtz. Robust combinatorial optimization under convex and
discrete cost uncertainty. EURO Journal on Computational Optimization, 6(3):211–238, 2018.
doi: 10.1007/s13675-018-0103-0.

Gianlorenzo D’Angelo, Gabriele Di Stefano, Alfredo Navarra, and Cristina Pinotti. Recoverable
robust timetables: An algorithmic approach on trees. IEEE Transactions on Computers, 60:
433–446, 2011. doi: 10.1109/TC.2010.142.

Virginie Gabrel, Cécile Murat, and Aurélie Thiele. Recent advances in robust optimiza-
tion: An overview. European Journal of Operational Research, 235(3):471–483, 2014. doi:
10.1016/j.ejor.2013.09.036.

Willy Herroelen and Roel Leus. Project scheduling under uncertainty: Survey and re-
search potentials. European Journal of Operational Research, 165:289–306, 2002. doi:
10.1016/j.ejor.2004.04.002.

Willy Herroelen and Roel Leus. The construction of stable project baseline schedules. European
Journal of Operational Research, 156(3):550–565, 2004. doi: 10.1016/S0377-2217(03)00130-9.

Christian Liebchen, Marco Lübbecke, Rolf Möhring, and Sebastian Stiller. The concept of
recoverable robustness, linear programming recovery, and railway applications. Robust and
Online Large-Scale Optimization, 5868:1–27, 2009. doi: 10.1007/978-3-642-05465-5 1.

Michel Minoux. Robust linear programming with right-hand-side uncertainty, duality and ap-
plications. In Encyclopedia of Optimization, Second Edition, pages 3317–3327. 2009. doi:
10.1007/978-0-387-74759-0 569.

M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer, Boston, MA, 4th edition,
2002. doi: 10.1007/978-1-4614-2361-4.

Alexander Schrijver. Combinatorial Optimization – Polyhedra and Efficiency. Springer-Verlag
Berlin Heidelberg, 2003.

24

Onur Şeref, Ravindra K. Ahuja, and James B. Orlin. Incremental network optimization: Theory
and algorithms. Operations Research, 57(3):586–594, 2009. doi: 10.1287/opre.1080.0607.

Allen L. Soyster. Technical note – convex programming with set-inclusive constraints and ap-
plications to inexact linear programming. Operations Research, 21(5):1154–1157, 1973. doi:
10.1287/opre.21.5.1154.

Bo Zeng and Long Zhao. Solving two-stage robust optimization problems using a column-and-
constraint generation method. Operations Research Letters, 41(5):457 – 461, 2013. ISSN
0167-6377. doi: https://doi.org/10.1016/j.orl.2013.05.003.

25

