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ABSTRACT

The specific nature of zero-inflated proportion data (ZIPD; that are dependent, continuous and
bounded) is against using classical supervised methods like linear regression and decision tree to
identify impacting factors on a response variable with a ZIPD form. In this article we propose a
by-block permutation-based methodology (i) to identify factors (discrete or continuous) that are
significantly correlated with ZIPD, and (ii) to define a performance indicator quantifying the per-
centage of correlation explained by the subset of significant factors. The methodology is illustrated
on simulated data and on two real datasets dealing with epidemiology. In the first dataset, ZIPD
correspond to estimated probabilities of Influenza transmission within a population of horses. In the
second dataset, ZIPD are estimated probabilities that the COVID-19 mortality dynamics in a given
geographic entity is similar to those observed in other geographic entities.

1 Introduction

Proportion data are encountered in many fields such as biology, epidemiology and marketing. A common objective is
the identification of external factors impacting these data. In marketing, a typical study could be the identification of
factors impacting the proportions of products sold to different age groups of customers. In biology, an analogous study
could be the analysis of proportions of cures with certain drugs by age groups. In epidemiology, one can be interested
in identifying the external factors impacting the transmission of a virus within a host population when the knowledge
about the transmissions (i.e., who infected whom) is uncertain (hence, in this case, the probability of transmission
from host A to host B can be viewed as a proportion datum). In these typical examples, the ‘age groups and products’,
the ‘age groups and drugs’ or the ‘hosts’ can be viewed as the nodes of a network whose edges are weighted by the
aforementioned proportions measuring the links between age groups and products / drugs or the links between hosts.
The edges from the ‘contributing nodes’ (i.e., the source hosts transmitting the virus, the products or the drugs) toward
a specific ‘target node’ (i.e., a recipient host or an age group) correspond to a vector of proportions whose sum is equal
to one (or eventually lower than one if some contributing nodes are unobserved). Note that in the epidemiological
example, recipient hosts can also be source hosts and vice versa (i.e., a host can be both a target and a contributing
node).

In this article, we are specifically interested in epidemiological applications. As recently illustrated with the
COVID-19 pandemic, grounding strategies for the management of infectious diseases on accurate knowledge about
risk factors is paramount for effectively preventing an health crisis. Indeed, assessing the influence of social,
biological and environmental factors in the spread of epidemics contributes to identifying levers for controlling
the disease dynamics. The spread of epidemics can be approached via the quantification of epidemiological links
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between hosts or, more generally, nodes. Typical examples of epidemiological links that we have in mind are:
probabilities of disease transmission between individuals (Alamil et al., 2019), and similarity measures of disease
dynamics in several geographic entities (Soubeyrand et al., 2020b). Such measures of epidemiological links (i) have
an intrinsic correlation structure and (ii) are usually estimated (i.e., uncertain). These features make the investigation
of the relationship between epidemiological links and risk factors challenging. Here, we focus on epidemiological
links defined as proportions and we aim to provide a statistical methodology reducing the bias of estimation when
explaining epidemiological links (hereafter, the response variable) by multiple potentially impacting factors.

Many statistical methods can be used to identify the correlation between factors and a response variable. Parametric
prediction models can identify the set of factors impacting the response through statistical tests. When the response is
normally distributed, or when data are transformed to make it fit a Gaussian distribution (Weisberg, 2005), the linear
regression model (Hastie et al., 2009) predicts response values and identifies influencing factors. When the response
variable follows another usual distribution (e.g., binomial or Poisson), the generalized linear models (GLM) described
in Nelder and Wedderburn (1972) can be considered. When one prefers to avoid making a distributional assumption
for the response variable, non-parametric predictive models (Hastie et al., 2009) may be a solution. However, non-
parametric models do not standardly provide direct testing procedure to identify impacting factors.

In the case of zero-inflated data, Estabrooks et al. (2004) introduce the so-called resampling methods for balancing
classes. These methods are mainly used for categorical responses. For a continuous response, the model is often
defined as a mixture of two processes: the first process generating zeros, the second process being governed by a
usual distribution; see for instance the definition of the zero-inflated Poisson, zero-inflated beta or even zero-inflated
binomial distributions in Stasinopoulos et al. (2007). For such zero-inflated models, the influencing factors can also
be identified via statistical tests, e.g., in the framework presented by Rigby and Stasinopoulos (2005).

The above-mentioned parametric models are defined for independent and identically distributed (i.i.d.) realizations.
However, proportion data are not independent since they sum to a fixed value equal to or lower than one. Such
data are often referred to as compositional data, whose mathematical framework is described by Aitchison (1982).
Douma and Weedon (2019) propose a classification of compositional data according to the nature of the response
(proportions arising from counts versus from continuous measurements). Regarding the case of a zero- and/or one-
inflated continuous response, the zero- and/or one-inflated beta regression is a solution when the proportions work
in pairs (e.g., the proportions of males and females for a given species). When the number of observed categories is
greater than two, the Dirichlet’s regression can be used. For instance Tang and Chen (2019) propose an adaptation of
the zero-inflated Dirichlet regression (ZIDR) model for microbiome compositional data.

Statistical tests are generally associated with the parametric approaches mentioned above for quantifying the
significance of a factor (the test generally depends on the type of factors: discrete versus continuous). The statistical
test accompanying the linear model can treat all types of factors. ANOVA can handle discrete factors with more than
2 levels. The GLM (including zero-inflated data) and the ZIDR can treat continuous factors as well as discrete factors
with only 2 levels, even if this restriction is minor since a factor with multiple levels can be treated as several factors
with 2 levels each.

In this article, we investigate the relationship between zero-inflated, non-Gaussian, correlated proportion data and
several factors of any type. In the epidemiological contexts that we are interested in, this objective translates into
the investigation of the impact of individual, environmental, economical, climatic... factors on epidemiological links.
Epidemiological links connect pairs of target and contributing nodes, and are measured by inferred probabilities. The
structure of the data and the objectives generate constraints on the statistical approach to be used. The response takes
values between 0 and 1 (inclusive) and is generally zero-inflated (the zero-inflation makes classical transformations
yielding normally-distributed variables inapplicable). Moreover, the realizations are dependent due to the constraint
over the sum of probabilities for a given target. Furthermore, factor values for a given target node not only depend
on the characteristics of this node but also on the characteristics of the contributing nodes and the target-contributor
interaction. Common methods do not match all of these constraints, as illustrated by Table 1. Therefore, we propose
a model-free (or more exactly a distribution-free) approach based on permutation tests (Pesarin and Salmaso, 2010)
aiming (i) to identify factors (discrete or continuous; characterizing the target, the contributor or the target-contributor
pair) that are significant, and (ii) to define a performance indicator quantifying the proportion of correlation explained
by the subset of significant factors. We define a by-block permutation test where the permutations are constrained by
the dependence structure of data and the test statistic depends on the factor type (the statistic is based on Spearman’s
correlation if the factor is continuous, and on a difference in mean ranks if it is discrete). The test is applied for each
factor separately, but significant factors are then jointly used to compute a performance indicator quantifying the
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percentage of correlation explained by the selected set of factors. Figure 1 presents each step of the procedure.

Table 1: Model comparison in their ability to match the constraints considered in this manuscript .

Methods
Response Factor

DependencyDistribution [0, 1] Zero Tests

free inflated Discrete Continuous

Linear regression
3a 3(Hastie et al., 2009)

Beta regression
3 3 3 3(Stasinopoulos et al., 2007)

Dirichlet regression
3 3 3 3 3(Tsagris and Stewart, 2018)

Decision tree
3 3 3(Breiman et al., 1984)

a ANOVA and ANCOVA

Figure 1: Workflow of the by-block permutation-based methodology.

In what follows, the framework and notations are set in Section 2.1. Section 2 presents the procedure based on
permutation tests to identify the factors correlated to the response as well as the performance indicator. Finally, the
method is applied to simulations (Section 3) and to real data dealing with Equine Influenza and COVID-19 epidemics
(Section 4).

2 Identification and quantification of impacting factors

2.1 Framework and notations

Hereafter, let nt be the number of target nodes, nc the number of contributing nodes and d the number of factors.

3
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The response variable Zij is a random variable measuring the (directed) epidemiological link between the target i ∈
{1, . . . , nt} and the contributor j ∈ {1, . . . , nc}. The higher the value, the stronger the link and the weaker the other
links. We assume that:

• Zij is continuous,

• Zij ∈ [0, 1],

• the distribution of Zij is zero-inflated,

• for a fixed target node, the sum over all contributors cannot exceed 1, i.e.:
nc∑
j=1

Zij ≤ 1. (1)

The factors characterize any target-contributor pair (i.e., the two nodes and their interaction). We denote by
X = (x1, . . . ,xd) ∈ Rntnc×d the set of d factors (d ∈ N∗). Thus, any pair (i, j) is described by

(
x

(i,j)
1 , . . . , x

(i,j)
d

)
.

In practice, factors often provide information about the target node i and the contributing node j separately, but not
about the pair (i, j). In this case, x(i,j)

k can be defined from any application g:

g : E × E → R
(ei, ej) 7→ g(ei, ej) = x

(i,j)
k

where E is an Euclidean space, ei (resp. ej) is a factor or a set of factors characterizing the target node i (resp. the
contributing node j). A classical example of g is the Euclidean distance in Rp (p ∈ N∗):

‖.‖2 : Rp × Rp → R
(ei, ej) 7→ x

(i,j)
k = ‖ei − ej‖2.

If p = 1, ei = xik and ej = xjk, this distance becomes:

|.| : R× R → R
(xik, x

j
k) 7→ x

(i,j)
k = |xik − x

j
k|.

(2)

We propose a general methodology to identify factors that are correlated to the response. First, we introduce a
permutation-based approach to identify the factors with significant impact. Then, we build an optimal performance
indicator that quantifies the proportion of correlation explained by the selected factors.

2.2 A by-block permutation-based approach to identify influencing factors

The specific characteristics of our response variable make the use of classical correlation tests impossible; see e.g.
Hollander et al. (2013) for Spearman’s test. Indeed, the response has numerous ties (zeros). Kendall (1945) proposes
a solution to treat ties in ranking problems. When ties are numerous, some hypotheses on the moments have to be
satisfied and checking them may be laborious. Furthermore, the response is dependent within each target-contributors
block (see Equation (1)) and classical correlation tests do not take into account such a dependence structure. By-block
permutation tests appear to be a possible alternative to take into account these constraints.

Let xk ∈ Rntnc , k = 1, . . . , d, be the observations of the factor to be tested and let z ∈ Rntnc be the observations of
the response, whose element (i, j) denoted by zij is the observed value of Zij . We adapt the Conditional Monte Carlo
(CMC) algorithm described in Pesarin and Salmaso (2010) for block-permutation to test the correlation between the
response and the factor. We denote T the statistic of the test, which depends on the type of factor, and λk(z) the p-value.

A conditional Monte Carlo algorithm for block-permutation test:

1. Compute the statistic Tk on the original data set (xk, z).

2. Do B independent repetitions of: randomly permute the response by block of target nodes, define a new
response vector denoted zb, b = 1, . . . , B, and compute the statistic T bk on the permuted dataset (xk, z

b).

4
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3. Estimate the p-value by λ̂k(z) = 1
B

∑B
b=1 1{T b

k≥Tk}.

Note that the Tk statistic must be positive to calculate the p-value using the CMC algorithm. In addition, block
permutations are required to minimize the second species risk of the test (see Supporting Text S1).

By omitting the subscript k, for a continuous factor x, the statistic T is defined from the non-parametric Spearman’s
correlation, say rs(x, z), between x and z. The Spearman’s correlation is defined as the Pearson’s correlation between
the rank variables (Spearman, 1904):

rs(x, z) = ρ(Rx, Rz)

where ρ is the Pearson correlation, Rx is the random vector that gives the ranks of the elements of x and Rz is the
random vector that gives the ranks of the elements of z. Hence, we define the following tests H0: “the response and
factor ranks are not correlated” versus

(i) H1: “the response and factor ranks are correlated”, and in this case the test statistic is T = r2
s(x, z);

(ii) H1: “the response and factor ranks are positively correlated”, and the statistic is T = rs(x, z);
(iii) H1: “the response and factor ranks are negatively correlated”, and the statistic is T = −rs(x, z).

For a discrete factor x (still omitting the subscript k) with Q levels, the test hypotheses are H0: ”level-by-level mean
ranks are equal” versus H1: ”mean ranks are different for at least two levels” and the statistic corresponds to the one
defined in the H-test (Kruskal and Wallis, 1952):

T = (ntnc − 1)

∑Q
q=1 nq

(
R̄z·q − R̄z

)2∑nt

i=1

∑nc

j=1(Rzij − R̄z)2
, (3)

where Rzij denote the rank of the element (i, j) of z, R̄z = 1
ntnc

∑nt

i=1

∑nc

j=1Rzij , nq =
∑nt

i=1

∑nc

j=1 1q(x
(i,j)),

R̄z·q = 1
nq

∑nt

i=1

∑nc

j=1Rzij1q(x
(i,j)) and 1q(x

(i,j)) = 1 if x(i,j) = q, 1q(x(i,j)) = 0 otherwise.

If the p-value is low enough such that the factor is considered as significant (i.e., below the significance level), “post-
hoc” tests can be constructed to test the impact of factor levels. Let q and q̃ be two levels, we can then make the
following tests H0: “there is no difference between the two mean ranks” versus

(i) H1: “there is a difference between the two mean ranks” and the statistic is T = (R̄z.q − R̄z.q̃ )2;

(ii) H1: “the mean ranks of the level q is lower than the mean ranks of q̃” and the statistic is T = R̄z.q̃ − R̄z.q ;

(iii) H1: “the mean ranks of the level q is greater than the mean ranks of q̃” and the statistic is T = R̄z.q − R̄z.q̃ .

Note that the statistics are the difference in mean ranks defined by Dunn (1964). In addition, if the discrete factor has
more than two levels, the problem becomes a multiple comparison problem. A correction can be applied accordingly
to control the occurrence of false positives, e.g., the Bonferroni correction which consists in multiplying the p-values
by the number of comparisons, or the less conservative ‘improved Bonferroni correction’ introduced by Hochberg
(1988). As an illustration, we provide the basic and the Hochberg-corrected p-values for the post-hoc tests performed
in the application dealing with equine influenza.

2.3 A performance indicator to quantify the monotonous dependency

The previous section presents an approach to identify factors that are individually correlated to the response. However,
the multivariate aspect of the correlation is not taken into account. Here we deal with it by developing a performance
indicator that simultaneously takes into account all discrete and continuous factors previously identified. The set of
factors is represented by a single linear combination of all factors. We set the linear combination as in a regression
without the intercept, which has no impact since the indicator is based on ordering. The indicator is defined as the ratio
between the Spearman correlation and its upper bound. This bound represents the maximum Spearman correlation
that can be obtained with the given set of factors by taking into account the structure of the response (zero inflation
and ties). The indicator can be viewed as a surrogate for the coefficient of determination used in linear regression. It
represents the monotonous relationship between the combination of factors and the response while taking into account
the particular structure of the response. The closer the indicator to 1, the stronger the relationship.

Thus the expression of the performance indicator satisfies:

Iβ(X, z) = r2
s(MXβ, z)(1 + ∆MXβ,z), (4)

5
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where the upper bound is 1
1+∆MXβ,z

and the elements of the design matrix MX ∈ Rntnc×d′ are defined by:

MX(`, k) =


x

(i,j)
k −min{xk}

max{xk} −min{xk}
, if xk is a continuous factor(

1q(x
(i,j)
k )

)
q=1,...,Qk

, if xk is a discrete factor,

` = (i− 1)nc + j represents the `-th row and k the k-th column of the design matrix MX, min{xk} (resp. max{xk})
is the minimum (resp. maximum) element of the vector xk, d′ =

∑d
k=1Qk, Qk = 1 if xk is a continuous factor and

Qk is equal to the number of levels if xk is a discrete factor. Note that MX(`, k) ∈ [0, 1]. The indicator Iβ(X, z)
varies in [0, 1]; the larger Iβ(X, z), the larger the correlation between the set of factors X and the response variable.
We then have to estimate the set of parameters β which maximizes the indicator. The values of the components of β
associated with the factors identified as insignificant are set to zero, and the optimization is carried out with respect to
the remaining subset of parameters (of dimension d′′ ≤ d′) using the genetic algorithm described by Mebane Jr et al.
(2011). Hence, we estimate β as follows:

β̂ = arg max
Rd′′

r2
s(MXβ, z), (5)

and we calculate the performance indicator by pluging-in β̂:

Iβ̂(X, z) = r2
s(MXβ̂, z)(1 + ∆MXβ̂,z

), (6)

where ∆x,y, ∀(x,y) ∈ Rn × Rn, is defined by

∆x,y =

∑
i∈I0(R2

xi
−R2

yi)

(n− 1)σ̂2
Ry

(7)

with σ̂2
Ry

the variance of Ry and I0 = {i|yi = 0} (see Supporting Text S2 for details).

The solution of the maximization (5) is obviously not unique (if β0 is a solution, aβ0 is also a solution for all real
value a 6= 0), but this is not an issue in the proposed framework since only the rank are taken into account and
Iβ0

(X, z) = Iaβ0
(X, z), ∀a 6= 0.

2.4 Rank prediction

The approach presented in this paper can give a prediction of the ranks of known or unknown contributors for
unknown targets. The factors used to estimate the performance indicator must be available for the new individuals
studied. For example, for different targets and a set of potential contributors, the predicted rank vector is given by
R̂z = MXβ̂. The matrix MXi

is computed on the set of selected factors for the selected target contributor pairs.

Rank prediction can also be performed using classical prediction methods such as linear regression or regression
trees. The models give a prediction of the response. The ranks are calculated based on this prediction. However, these
methods do not work directly on the ranks. The article of Kloke and McKean (2012) proposes a R package allowing
estimation based on ranks for linear models. In this context, the models are built using the factors identified by the
tests presented in the subsection 2.2. The difference between the linear model and the rank-based linear model lies in
the method of parameter estimation.

To investigate the robustness and the quality of the performance indicator, we compared our multivariate analysis
(MA) with the linear regression model (LM), the linear regression model based on rank (LMRank) and the decision
tree (Tree) using cross-validation. Target hosts are randomly divided into a train sample with 80% of the targets and
a test sample with 20% of the targets. The tests for selecting the factors are applied to the global sample (union of
train and test samples), and the performance indicator as well as the contributor ranking indicator (CR) are computed
from both the train sample and the test sample. This procedure is independently repeated 100 times. The CR indicator
is the average over the targets of ‘the proportion of the N i

j contributors with positive transmission probabilities for
target i that are ranked in the top N i

j contributors by the predictor under consideration (MA, LM, LMRank or Tree)’;
see Supporting Text S5.

R codes to implement the methods have been incorporated into the package ZIprop, which is available at https:
//gitlab.paca.inrae.fr/meribaud/ziprop.
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3 Simulation study

In this section, we carry out a simulation study to investigate the performance of the proposed method.

3.1 Simulated data

The simulated response has to satisfy the constraints described in Section 2.1. Hence, we simulate data accordingly
and, for the constraint over the sum, we consider that it is exactly equal to one. The algorithm applied to simulate the
response and the factors is described below:

1. Set values for nc > 1, nt > 2, m ∈ [1/nc, 1] (the proportion of non-negative values for the responses zij),
d > 1 and β ∈ Rd′.

2. Randomly and uniformly draw n0 = d(1 − m)ncnte indices in {1, . . . , ntnc} (where d·e is the ceiling
function); I0 gives the set of drawn indices corresponding to responses equal to zero.

3. Generate the response vector z ∈ Rntnc such that its elements zij are independently drawn from the beta
distribution B(0.1, 0.9) if i /∈ I0 or set at zero if i ∈ I0 and then scaled as follows for each target i ∈
{1, . . . , nt}: zij ←

zij∑nc
j=1 z

i
j
. Therefore, the response is simulated in such a way that for a given target

i ∈ {1, . . . , nt}:
a. ∃j ∈ {1, . . . , nc} such that zij > 0,
b.
∑nc

j=1 z
i
j = 1.

4. Generate the matrix X = (x1, . . . ,xd) ∈ Rntnc×d such that the components of the ntnc-uplet xk, k ∈
{1, . . . , d}, are independently drawn from the uniform distribution U(0, 1) over the interval [0, 1] if xk is a
continuous factor and from the uniform distribution U({0, 1}) over the set of two values {0, 1} if xk is a
discrete factor, and such that

rank
(

(Xβ)(i,j)
)

= rank(zij), ∀zij 6= 0, ∀(i, j) ∈ {1, . . . , nt} × {1, . . . , nc},

where (Xβ)(i,j) is the term (i, j) of Xβ.

3.2 Simulation specification

We test the effect of each factor and compute the performance indicator for different models, setting the num-
ber of contributing nodes nc = 20, the number of target nodes nt = 22, the proportion of non-zero data
m ∈ {0.1, 0.15, 0.2, 0.25} and the number of factors d = 20. The first d/2 factors are continuous, the last d/2
factors are discrete and the vector β satisfies:

β = (β1, β2, β3,−β4,−β5, 0, 0, 0, 0, 0,

β1, 0, β2, 0, β3, 0, 0, β4, 0, β5, β5, β5, 0, 0, 0, 0, 0, 0, 0, 0)

where β ∈ R3d/2 and βk, k = {1, . . . , 5}, are independently drawn from the uniform distribution U(5, 10). The first
10 components of β correspond to the continuous factors, the 10 following pairs of components of β correspond to
the discrete factors (each factor having two modalities).

3.3 Estimated errors of permutation tests

Here, we first assess the performance of the two-tailed permutation test for continuous and discrete factors and different
proportions of non-zero data. Figure 2 shows the distribution of p-values for each factor and each value of m. The
factors X1:5 and X11:15 are generally identified as correlated to the response while X6:10 and X16:20 are not (i.e., the p-
values of X1:5 and X11:15 are generally below the significance level α = 0.05 whereas the p-values of X6:10 and X16:20

are generally above α). The estimated type I errors of the test at the risk level 0.05 are given in Table 2 for different
values of m, and show that the test is relatively well calibrated for the diverse configurations that are considered. The
type II errors provided by Table 3 are very small for discrete factors whatever the value of m. In contrast, the type II
errors for continuous factors are larger (0.12 in average) and decrease with m. Hence, the power of the test is very
large for discrete factors and is correct for continuous factors (with values of β that we consider).

We carried out the same analysis for the one-tailed permutation tests. Very similar results are obtained as shown by
Supporting Tables S1–S4.
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Figure 2: P-values of two-tailed permutation tests for each factor with m ∈ {0.1, 0.15, 0.2, 0.25}. The factors xk are
continuous for k = {1, . . . , 10} and discrete for k = {11, . . . , 20}. The data are simulated 1000 times for each value
of m.

Table 2: Estimated type I errors of the two-tailed permutation tests with 1000 repetitions.

Continuous factors Discrete factors

m x6 x7 x8 x9 x10 x16 x17 x18 x19 x20

0.1 0.055 0.044 0.049 0.033 0.045 0.057 0.041 0.048 0.049 0.053
0.15 0.041 0.048 0.048 0.040 0.054 0.059 0.046 0.045 0.043 0.050
0.2 0.059 0.049 0.051 0.060 0.049 0.054 0.040 0.051 0.063 0.054
0.25 0.050 0.053 0.062 0.042 0.046 0.054 0.039 0.045 0.038 0.055

Table 3: Estimated type II errors of the two-tailed permutation tests with 1000 repetitions.

Continuous factors Discrete factors

m x1 x2 x3 x4 x5 x11 x12 x13 x14 x15

0.1 0.174 0.194 0.189 0.190 0.205 0.004 0.001 0.002 0.001 0.000
0.15 0.128 0.157 0.127 0.112 0.110 0.000 0.000 0.001 0.000 0.002
0.2 0.090 0.093 0.089 0.095 0.091 0.001 0.000 0.000 0.000 0.000
0.25 0.064 0.066 0.054 0.075 0.076 0.000 0.001 0.000 0.000 0.000

3.4 Performance indicator

For each repetition performed form = 0.25 (yielding the largest test power for continuous variables), the performance
indicator is computed for the k factors with the lowest p-values, k varying from 2 to 20. Figure 3 (left) shows the
distribution of the performance indicator with respect to k. The indicator increases until it reaches a plateau at the
value one (which is the maximum value of the indicator) approximately when k = 10 (red line), which corresponds to
the actual number of factors having a significant effect. The indicator is robust in the sense that adding more factors
than the actual number of factors with significant effects does not affect the performance. This robustness is consistent
with the adequate estimation of β. Indeed, Figure 3 (right) shows that estimated coefficients for insignificant factors

8



PREPRINT - FACTOR IDENTIFICATION - JANUARY 29, 2021

are close to zero, while estimated coefficients for significant factors take values between approximately 5 and 10 (or
-10 and -5), i.e., the range of actual values of β1, . . . , β5. During the optimization procedure the range of variation of
the parameters β is [−10; 10]. It is possible to widen this range of variation and in this case the estimated values will
be pushed towards the limits of the range. The vector of estimated parameters on the expanded domain De will be
approximately equal to a constant to the vector of the restricted domain Dr i.e. β̂De = c× β̂Dr , c ∈ R. Therefore, the
value of the estimator will remain the same.

The main conclusion of this simulation study is that the by-block permutation-based approach is a powerful method
to identify factors of any type (discrete or continuous) correlated to the response regardless the zero-inflated feature of
the data. The performance indicator is efficient to quantify the monotonous dependence between the set of factors and
the response. The value of the indicator increases until all the correlated factors are taken into account in the set of
explaining factors. In addition, the indicator is robust to the inclusion of non-correlated factor thanks to the adequate
estimation of β.
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Figure 3: Left: Distribution of the performance indicator for varying number of included factors (factors are suc-
cessively incorporated by first including those with lowest p-values). Right: Distribution of estimated coefficients
(appearing in β) for each factor. The data are simulated 100 times.

3.5 Cross validation

In this sub-section, we will compare by cross-validation the methodology proposed in this article (MA) with the three
other methods introduced in the sub-section 2.4 (LM, LMRank and Tree). The prediction methods are computed on
the set of factors selected by the permutation tests.

Figure 4 and S6 shows the good performance of the multivariate analysis (MA). The linear models (LM and LMRank)
gives good results too. This result can be explained by the way the simulations were constructed. Indeed, we assume
that the ranks of the response are equal to the ranks of a linear combination of the factors. The decision tree (Tree)
gives poor results in this context. In addition, the two indicators remains stable along train samples and test samples.
We observe that the two indicators have quite similar values.

4 Applications

4.1 Equine Influenza

Here we consider the Equine Influenza outbreak in New Market in 2003 throughout a population of race horses
distributed in several yards. Genomic data collected during this outbreak from 48 hosts were presented and studied
by Hughes et al. (2012) to explore the virus transmissions across the observed horse population. These data and the
BadTrIP software (De Maio et al., 2018) were used to jointly estimate the probabilities of the disease transmission

9
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Figure 4: Boxplots of the performance indicator calculated from the train and test samples for MA, LM, LMRank and
Tree in the simulations.

between infectious and susceptible hosts (see also Alamil, 2020, chap. 3). The estimated transmission probabilities
(shown in Supporting Figure S2) are used in the present study as response proportion data. Many of the estimated
transmission probabilities are equal to zero, which means that, for each target, BadTrIP identified only a small number
of potential contributors. Moreover, we use variables related to age, sex and training yard as potentially explaining
factors. We considered four discrete factors and one continuous factor:

1. “Same Yard”: 1 if the target and contributor are trained in the same yard, 0 otherwise;
2. “Same Sex”: 1 if the target and contributor have the same sex, 0 otherwise;
3. “Diff Age”: 0 if the target and contributor have the same age, 1 for a one-year difference and 2 for more than

one year;
4. “Dist Yard”: geographic distance (in km) between the training yards of the target and the contributor;
5. “Trans Sex”: “F→F” if a female infected another female, “M→F” if a male infected a female, “F→M” if a

female infected a male and “M→M” if a male infected another male.

Some of these factors are missing for some source-receptor pairs (see Supporting Table S5). Hence, the tests for
assessing the effect of a given factor on the transmission probability are applied on the subset of complete data for this
factor.

Factors “Same Yard”, “Same Sex”, “Dist Yard” and “Trans Sex” are significantly correlated to the transmission prob-
ability whereas “Diff Age” is not; see Table 4. The test statistics of “Same Yard” and “Dist Yard” being negative,
horses trained in the same yard or in nearby yards have a higher chance to be linked by a transmission. This is a
clearly intuitive result certainly due to higher contact rate in shared training areas. The statistics of post-hoc univari-
ate tests for factor “Same Sex” is also negative, which means that the virus better circulates between horses with the
same sex. Moreover, the post-hoc tests on the “Trans Sex” modalities show that only the difference between “F→M
- M→M” (and “M→F - M→M” when one considers the corrected p-values) are not significant. The results on the
p-values and the sign of the statistics show that transmissions between females are favored compared to all other
possible combinations (F→F transmissions have positive probabilities 1.8 times more than expected under complete
randomness; see Supporting Table S6). In addition, there is more intersex transmission when females are the sources.
Supporting Text S4 shows that the significance of gender-related factors is neither confounded with the effect of the
other factors available in the data set nor a consequence of heterogeneous sex frequencies.

The calculation of the performance indicator leads to the value 0.21 using the four selected factors. This relatively
low value, which indicates that there is a moderate correlation between the combination of the four factors and the
transmissions, can actually be viewed as quite large given the fact that we only consider very basic factors to predict
the transmissions.

10
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Table 4: Test results for the equine influenza application. Top: Statistic (T ), p-value (pv) and Spearman’s correlation
(rs; for the continuous factor only) associated with the two-sided permutation tests performed for the five factors.
Bottom: Statistic (T ), p-value (pv), Hochberg-corrected p-value (pv∗; for discrete factors with more than 2 levels)
associated with the post-hoc permutation tests applied to significant discrete factors. Lines with a significant p-value
are highlighted in gray.

Factor T pv rs

Same Yard 0.05 0
Same Sex 0.007 0.031
Diff Age 0.001 0.8
Dist Yard 0.05 0 −0.22
Trans Sex 0.042 0

Factor Factor level T pv pv∗

Same Yard 0 - 1 -444 0
Same Sex 0 - 1 -24.77 0.04
Trans Sex F→F - F→M 65 0 0.01

F→F - M→F 111 0 0
F→F - M→M 80 0 0
F→M - M→F 46.2 0.01 0.02
F→M - M→M 15 0.33 0.33
M→F - M→M -31.1 0.04 0.08

To investigate the robustness and the quality of the performance indicator, we compared our multivariate analysis
by cross-validation, see sub-section 2.4. Figure 5 and Figure S7 show that the three methods are relatively robust
in the sense that the indicators take similar average values in the train and test samples. The decision tree slightly
outperform the two other methods in terms of prediction measured by the performance indicator, possibly because
most of the factors are discrete (3 over 4) and the only continuous factor (“Dist Yard”) takes only 37 different values
out of 650 observations. When one measures the prediction ability with the CR indicator, our multivariate analysis
and the decision tree have similar performance.
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MA LM LMRank Tree

0
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0
.4

0
.8

Performance Indicator (test)

Figure 5: Boxplots of the performance indicator calculated from the train and test samples for MA, LM and Tree in
the equine influenza study.
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4.2 COVID-19

Soubeyrand et al. (2020b) proposed a data-driven method to predict the mortality curve of a target country with a
mixture of the mortality curves of countries that are ahead of time in terms of mortality rate. The mixture is more
exactly formed by the mortality curves of contributing countries as well as an additional parametric predictor, and
the method is essentially grounded on the estimation of the mixture probabilities. Real-time predictions based on this
method are available for more than 100 countries via the following web application: http://covid19-forecast.
biosp.org/.

Here, we use the estimated mixture probabilities as proportion data. Targets are states from the USA and provinces
from Canada; contributors are members of the European Economic Area (EEA) and the European Free Trade Associ-
ation (EFTA). We only consider geographic entities with at least 5,000,000 inhabitants (leading to 25 targets and 21
contributors) and the first epidemic wave by using data up to June 6, 2020. Mortality data used to estimate the mixture
probabilities were collected from the Johns Hopkins University Center For Systems Science and Engineering (?) and
The Covid Tracking Project (https://covidtracking.com). The choice of considering Northern American targets
and European contributors was made because Europe was in average ahead of time in terms of mortality rate, at least
during the first COVID-19 epidemic wave.

To explain the mixture probabilities (i.e., the similarity between targets and contributors in terms of mortality dynam-
ics), we consider 29 factors related to economy, demography, health, healthcare system and climate (see Supporting
Table S9 and Soubeyrand et al., 2020a). More precisely, our objective is to identify factors negatively correlated with
the response, i.e., the lower the distance between two geographic entities with respect to a given relevant factor, the
higher the mixture probability. Consequently, the statistical test used is univariate test (iii) for continuous variable and
the factors related to a specific pair (US state - EU country) are computed from Equation (2).
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Figure 6: Comparison of the p-values (black dots) for the univariate tests (iii) associated to each factor and the sig-
nificance level α = 0.05 (red line). The Spearman correlation is given by the framed value for factors with a p-value
below the threshold.

Figure 6 shows the p-values obtained for each factor and the Spearman’s correlation for significant factors. We iden-
tified eleven impacting factors: hospibed, smokers, lung, healthexp, gdp capita, fertility, urbanpop, nurses per 1K,
gdp2019, pop female 0 14, and pop tot 0 14. The figure shows that Spearman’s correlation is negative for significant
factors. This result is consistent with our objective (to identify the significant factors negatively correlated to the
response). Then, we applied the multivariate analysis to the eleven impacting factors. The optimal indicator is
Iβ̂(X, Z) = 0.73. The indicator value shows that a high monotonous dependency exists between the probability and
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these factors.
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Figure 7: Boxplots of the performance indicator calculated from the train and test samples for MA, LM and Tree for
the COVID-19 study.

Finally, a cross-validation step described in sub-section 2.4 is realized to ensure the robustness of the methodology.
Figure 7 and S8 shows the good performance of the multivariate analysis (MA) compare to linear regression (LM)
and decision tree (Tree). In addition, the two indicators remains stable along train samples and test samples. We
observe that the two indicators have very similar values.

In conclusion, the factors hospibed, smokers, lung, healthexp, gdp capita, fertility, urbanpop, nurses per 1K, gdp2019,
pop female 0 14, and pop tot 0 14 have a high monotonous link with the similarity measure between US states and
EU countries. Our methodology gives very good results for the orderly classification of contributors when the classical
prediction methods (LM, LMRank and Tree) not. The boxplot for the performance indicator of LMRank method is
absent because the prediction gives only null probabilities (the calculation of the correlation is therefore impossible).
The cross validation shows that the method developed in this paper can be used to reliably predict the rank order of
contributor countries for each target country when correlated factors have been previously identified.
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5 Discussion

In this paper we propose a methodology to deal with zeros-inflated proportion response with dependency structure.
The proposed method is validated on simulations. We apply each proposed test on continuous and discrete factors.
We calculate the type I and type II errors. On average, the type I error is less than or equal to the threshold. The type
II error is very satisfactory for all the tests (< 0.2) but is smaller for the tests on discrete factors. Therefore, false
positives are very well controlled for all tests. False negatives are very well controlled for discrete factors and suffi-
ciently controlled for continuous factors. We then calculated the evolution of the performance indicator following the
sequential and orderly addition of significant factors. The results show that the average optimal indicator is obtained
when all significant factors are added. Moreover, the indicator is robust to the addition of non-significant factors. The
values of the parameters in the linear combination correspond on average to the simulated parameters. In order to
estimate these parameters, we used a time-consuming genetic algorithm. It would be interesting to reduce this com-
putational cost by using for example linear algebra and analysis tools as presented in the paper of Alfons et al. (2016).
Finally, the cross validation shows that our method gives slightly better results than linear regressions in this con-
text of simulations. In conclusion, the developed methodology is validated and can be applied on the two real data sets.

The first concerns the Equine Influenza epidemic in New Market in 2003 and the second the Covid19 pandemic
around the world. The results obtained in the case of equine influenza allowed us to confirm the importance of direct
contact between hosts for the virus transmission. Indeed, the more horses were in regular contact (close or identical
yard), the higher the probability of transmission. Concerning the factors related to sex, the interpretation is more
complex. We have ruled out the possibility of a confounding effect with a factor presented in our data set. In view
of the results, we are leaning towards an environmental explanation (transport, groom, jockey, ...), behavioral or
linked to the immune response. Moreover, the low value of the indicator (0.21) shows that there are certainly other
determining factors to explain the transmission probabilities. Validating or invalidating these hypotheses on other
equine influenza datasets would be very interesting to improve the prevention of this virus. Finally the cross validation
study shows the stability of the method regardless to the prediction method. In this application, the decision tree
gives the best performance indicator. The decision tree and the multivariate analysis gives the same performance to
identify the contributors with the higher probabilities for each target. However, the value of the two indicators are
too low to give an accurate prediction of the ranks of the contributors regardless of the chosen method. The results
obtained on the probabilities of similarity of the covid19 mortality curve show that certain macroscopic factors are
correlated with these probabilities. We find three factors related to demography (urban population, population and
women under 14 years old) and two related to GDP. We also find many factors related to the health of the population
(smokers, mortality rates related to lung disease, fertility rates) but also to the means put in place by the state for
health (expenditures, nurses and number of hospital beds). The high value of the performance indicator (0.73),
allows us to validate this set of factors even if it remains an unexplained part of the rank correlation. Finally, the
cross-validation study confirms the robustness of this study. The results of the comparison with the decision trees and
the linear regression model confirm the necessity of the developed method. These results may allow each state to find
several benchmark countries that are similar to it in terms of factors. Then, state could adopt, based on the results of
the benchmarked countries, a similar or dissimilar strategy in the management of the epidemic. We obtained these
results for probabilities calculated only on June 6, 2020. It would be interesting to study the evolution of the factors
potentially impacting at different times of the epidemic.

In conclusion, the proposed method allows the reliable identification of factors correlated with a zeros-inflated propor-
tion response with dependency structure. In addition, the cross-validation steps applied in three very different contexts
show that the prediction of ranks using the performance indicator gives stable and promising results.

Supporting information

S1 Why by-block permutations?

In this subsection, a degenerate case is presented to show the huge loss of power when classical permutations are done
instead of permutations by blocks.
The notations are the same as the ones presented in the paper. Let ntnc realizations of a factor X such that x1,1 >
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x1,2 > . . . > xnt,nc and ntnc realizations of the response Z such that for a fixed receiver i:
zi1 ≤ . . . ≤ zinc

(S1)
nc∑
j=1

1zij>0 = c, c ≤ nc (S2)

nc∑
j=1

zij =
i

nt
(S3)

This simulated case can be representative of a real case. For example, in plant epidemics when the spread follows
wind gradients, e.g. from East to West and target and contributing nodes are placed as illustrated in Figure S1. The
response are the probabilities of transmission and the factor is the distance between hosts. The closer is a contributor
to a target, the higher is the probability of transmission (Equation (S1)). Only a given number of hosts are potential
contributors (Equation (S2)). The Equation (S3) can comes from an external contributor that transmits the virus from
West to East by another path like underground river. This example is reductive but in Alamil et al. (2019) the authors
add a penalization to favor short-distance (geographic or genetic) transmissions.

Figure S1: Schematic representation of the position of the trees.

In this context, the factor x has a huge impact on the response z, then we are under the alternative hypothesis H1.
Let’s see how this data set structure impacts the power of permutation tests. Let 1− β be the power of the test and π a
permutation by block of receiver:

1− β = 1− P(H0|H1)

= 1− P(Tπ ≥ T ∗), P(Tπ ≥ T ∗) = 0

= 1

where T is the squared Spearman’s correlation. Let πn a permutation without block constraint:
1− β =1− P(H0|H1)

= 1− P(Tπn ≥ T ∗), P(Tπn ≥ T ∗) >> 0

<< 1

In order to illustrate it, let’s take nt = 10, nc = 20 and c = 5 with 1000 simulated responses. The response is
computed as follows, ∀i ∈ {1, . . . , nt}:

1. Generate c realizations of the random variable Y ∼ U([0; 1]) written y1 ≤ . . . ≤ yc

2. Compute the simulated response: (zi1, . . . , z
i
nc

) = i
nt

∑c
k=1 yk

(0, . . . , 0, yc, . . . , y1)

The factor x is equal to ntnc, ntnc − 1, . . . , 2, 1.

The estimate power of the by block-permutations tests is 1 and 0.05 without block (at α = 0.05).

In conclusion, the by block-permutations are crucial to identify factors that are correlated to the response variable.
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S2 ∆x,y calculation

This parameter comes from the optimal Spearman’s correlation when the rank of two vectors y0 ∈ Rn+ and x0 ∈ Rn
are equal except on a given set of indices. In our context, this set correspond to the zeros of the response. Du Bois
(1939) gives some formulas for the Spearman’s correlation. Kendall (1945) details the calculation of the Spearman’s
correlation when the vectors y0 and x0 have consecutive ties. Here, the elements of calculation are close but it is not
exactly the same context.

Let yi = Ry0i , xi = Rx0
i
, I0 = {i|y0

i = 0} with n0 = #{I0}. The rank vectors are assumed to be equal: xi = yi for
all i /∈ I0. We have yi = n0+1

2 for all i ∈ I0 then
∑n
i=1 xi =

∑n
i=1 yi.

The Spearman’s correlation of y0 and x0 is equal to the Pearson correlation of y and x:

r̂2
s(x,y) = r̂2(x,y)

=
Ĉov

2
(x,y)

σ̂2
xσ̂

2
y

Ĉov(x,y) =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ)

=
1

n− 1

[
n∑
i=1

xiyi − nx̄ȳ

]

=
1

n− 1

[
y0

n0∑
i=1

xi +

n∑
i=n0+1

y2
i −

1

n

n∑
i=1

xi

n∑
i=1

yi

]

=
1

n− 1

y0

n0∑
i=1

yi +

n∑
i=n0+1

y2
i −

1

n

(
n∑
i=1

yi

)2


=
1

n− 1

[
n0∑
i=1

y2
i +

n∑
i=n0+1

y2
i − nȳ2

]

=
1

n− 1

[
n∑
i=1

y2
i − nȳ2

]
= σ̂2

y

σ̂2
x =

1

n− 1

[
n∑
i=1

x2
i − nx̄2

]

=
1

n− 1

[
n0∑
i=1

x2
i +

n∑
i=n0+1

y2
i − nȳ2

]

=
1
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[
n∑

i=n0+1

y2
i +

n0∑
i=1

y2
i − nȳ2 +

n0∑
i=1

x2
i −

n0∑
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y2
i

]

= σ̂2
y +

1
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[
n0∑
i=1

(x2
i − y2

i )

]
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1

r̂2
s(x,y)

=

(
σ̂2
y + 1

n−1

[∑n0

i=1(x2
i − y2

i )
])
σ̂2
y

σ̂4
y

=
σ̂2
yσ̂

2
y

σ̂4
y

+

(∑n0

i=1(x2
i − y2

i )
)
σ̂2
y

(n− 1)σ̂4
y

= 1 +

∑n0

i=1(x2
i − y2

i )

(n− 1)σ̂2
y

r̂2
s(x,y) =

1

1 + ∆x,y

where ∆x,y =
∑n0

i=1(x2
i−y

2
i )

(n−1)σ̂2
y

.
Consequently, under the same hypothesis for the vector y ∈ Rn+ we have:

r̂2
s(x,y) ≤ 1

1 + ∆x,y
⇔ r̂2

s(x,y)(1 + ∆x,y) ≤ 1

for all vector x ∈ Rn.

In addition, if y is such that yi 6= yj for all (i, j) /∈ I2
0 , i 6= j and x is such that xi 6= xj for all (i, j) ∈ {1, . . . , n}2,

i 6= j the parameter ∆x,y could be define in a simple way.

σ̂2
y =

1

n− 1

[
n∑
i=1

y2
i − nȳ2

]

=
1
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[
n0∑
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(
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2

)2
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i2 − n
(
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2

)2
]

=
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4
+
n(2n+ 1)(n+ 1)

6
− n0(2n0 + 1)(n0 + 1)

6
− n(n+ 1)2

4

]
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1

12(n− 1)
[n(n+ 1)(n− 1)− n0(n0 + 1)(n0 − 1)]

n0∑
i=1

(x2
i − y2

i ) =

n0∑
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x2
i − n0y

2
0

=

n0∑
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i2 − n0(n0 + 1)2

4

=
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12
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=
n0(n2
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0 − 1)
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S3 Estimated errors of one-tailed permutation tests

Table S1: Estimated type I errors of the one-tailed (ii) permutation tests with 1000 repetitions.

Continuous factors Discrete factors

m x6 x7 x8 x9 x10 x16 x17 x18 x19 x20

0.1 0.055 0.044 0.049 0.033 0.045 0.057 0.041 0.048 0.049 0.053
0.15 0.041 0.048 0.048 0.040 0.054 0.059 0.046 0.045 0.043 0.050
0.2 0.059 0.049 0.051 0.060 0.049 0.054 0.040 0.051 0.063 0.054
0.25 0.050 0.053 0.062 0.042 0.046 0.054 0.039 0.045 0.038 0.055

Table S2: Estimated type I errors of the one-tailed (iii) permutation tests with 1000 repetitions.

Continuous factors Discrete factors

m x6 x7 x8 x9 x10 x16 x17 x18 x19 x20

0.1 0.052 0.044 0.047 0.041 0.054 0.067 0.038 0.038 0.058 0.045
0.15 0.034 0.050 0.059 0.054 0.064 0.054 0.048 0.048 0.053 0.044
0.2 0.058 0.053 0.047 0.055 0.055 0.054 0.040 0.052 0.060 0.045
0.25 0.048 0.051 0.065 0.039 0.047 0.052 0.048 0.058 0.048 0.051

Table S3: Estimated type II errors of the one-tailed (ii) permutation tests with 1000 repetitions.

Continuous factors Discrete factors

m x4 x5 x14 x15

0.1 0.116 0.129 0.000 0.000
0.15 0.062 0.069 0.000 0.000
0.2 0.069 0.053 0.000 0.000
0.25 0.042 0.043 0.000 0.000
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Table S4: Estimated type II errors of the one-tailed (iii) permutation tests with 1000 repetitions.

Continuous factors Discrete factors

m x1 x2 x3 x11 x12 x13

0.1 0.113 0.127 0.119 0.000 0.000 0.000
0.15 0.081 0.097 0.079 0.000 0.000 0.000
0.2 0.057 0.057 0.045 0.000 0.000 0.000
0.25 0.031 0.047 0.030 0.000 0.000 0.000
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Figure S2: Transmission tree for the equine influenza outbreak inferred with BadTrIP. Blue ellipses: hosts; arrows:
transmission links; Figures accompanying arrows: transmission probabilities. aı̈e mes yeux ;-)
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Table S5: Description of equine influenza data. Left: Counts of hosts with non-missing information for each observed
variable. Right: counts of potential source-receptor pairs without non-missing information for pairwise factors.

#
All 48
Yard 48
Age 27
Sex 26 (9 females, 17 males)

#pairs
All 2256
Same Yard 2256
Dist Yard 2256
Diff Age 702
Same Sex 650
Trans Sex 650
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S4 Exploration of the significance of factors related to sex

Here, we investigate eventual confounding effects related to the significant effects of “Same Sex” and “Trans Sex”
factors on the transmission probability. Even if our permutation tests do not require balanced classes, we firstly explore
whether the trend for higher probabilities of F→F transmissions coincides with an excess of female horses. Actually,
the number of females is about the half of the number of males (Figure S3, left). Therefore, under complete (uniform)
randomness, we would expect about two times more M→F transmissions than F→F transmissions (and two times more
M→M than F→M). When we only consider the occurrences of “Trans Sex” corresponding to positive probabilities
(without accounting for null probabilities), we clearly see the excess of F→F and F→M transmissions compared
to their expected values under complete randomness (Figure S3, right). To complete this observation, transmission
probabilities were inferred to be positive for only 19% of all the possible M→F pairs (0.7 times less than expected
under complete randomness), 53% for F→F (1.8 times more than expected under complete randomness); see Table
S6. Hence, gender distribution is not likely to be involved in the significant effect of the factors related to sex.
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Figure S3: Left: gender distribution (female and male) in the equine influenza study. Center and right: distributions of
the variables “Same Sex” and “Trans Sex” corresponding to pairs associated with positive transmission probabilities.

Table S6: Statistics about “Trans Sex” modalities for the equine influenza study. Line 1: Transmission probabilities
inferred to be positive for all the possible source-receptor pairs with respect to each modality of the “Trans Sex”
variable. Lines 2 and 3: Risk ratio and odds ratio, respectively, for each “Trans Sex” modality between the observed
situation and the hypothetical case of completely random transmissions.

Statistic F→F F→M M→F M→M
% of positive proba. 53 33 19 28
Risk ratio 1.8 1.2 0.7 1.0
Odds ratio 2.9 1.3 0.4 0.9

Secondly, we explore the eventual existence of confounding factors among those we have considered. As shown by
Figure S4, “Same Sex” and “Trans Sex” are not correlated with “Same Yard” and “Dist Yard”, and “Trans Sex” is
only slightly correlated with “Diff Age”. The absence of link between the two yard variables and the two gender
variables is confirmed by Figure S5 and Table S7. Hence, there seems to be no confounding factors in the data set, and
the significance of gender-related factors has to be explained by external processes (e.g., the indirect contacts between
hosts via groom, jockey or transport, the behavior of horses in herds, or different immune responses depending on the
sex).
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Figure S4: Matrix of Pearson’s correlations between factors in the equine influenza study.

Table S7: Result of the independence chi-squared test applied to qualitative factors considered in the equine influenza
study.

Factors χ2-test statistic p-value

Same Yard : Same Sex 0.04 0.85
Same Yard : Trans Sex 1.76 0.62
Same Yard : Diff Age 4.3 0.12
Same Sex : Trans Sex 650 < 2.2e−16

23



PREPRINT - FACTOR IDENTIFICATION - JANUARY 29, 2021

0
2

4
6

Same_Sex = 1

D
is

t_
y
a
rd

 (
k
m

)

0
2

4
6

Same_Sex = 0

D
is

t_
y
a
rd

 (
k
m

)

0
2

4
6

Trans_Sex = F−>F

D
is

t_
y
a
rd

 (
k
m

)

0
2

4
6

Trans_Sex = M−>M

D
is

t_
y
a
rd

 (
k
m

)

0
2

4
6

Trans_Sex = F−>M

D
is

t_
y
a
rd

 (
k
m

)

0
2

4
6

Trans_Sex = M−>F

D
is

t_
y
a
rd

 (
k
m

)

Figure S5: Distribution of the variable “Dist Yard” by modality of the variable “Same Sex” and “Trans Sex” in the
equine influenza study.
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S5 Cross validation method to compare multivariate analysis (MA), linear regression
(LM) and regression tree (Tree)

The objective of the cross validation step is to compare our methodology to the linear regression and the decision
tree. The least square error is minimized on each train set for the additive linear regression. The L2 norm of least
squares estimation is replaced by a pseudo-norm which is a function of the ranks of the residuals for the additive linear
regression based on rank. The model is :

Z = β′X + ε

where ε ∼ N (0, σ2). Note that this model assumptions are not satisfied by these data (which are not normality
distributed and not independent). However, only the estimated parameters are used. The regression tree learns on the
training set with the CART algorithm (Breiman et al. (1984)).

In this cross validation, we use two indicators to compare our methodology. The first indicator is the performance
one. The performance indicator is equal to I(ẑ, z) where ẑ is equal to MXβ for multivariate analysis (MA) and is
the prediction of the response computed for linear regression (LM) and decision tree (Tree). The second indicator is
related to the rank of the target-contributor couples that has a strictly positive probability. For a fixed target i, we order
the contributors such that

(
R̂`=1

zj
i

< R̂`=2
zj
i

< . . . < R̂`=nc

zj
i

)
and we compute:

CRi =
1

#Ei

nc∑
`=nc−#Ei

1(` ∈ Ei)

where Ei = {j|zij > 0} and R̂zj
i

is the predicted rank of the couple (i, j). For example, let 10 contributors (1, . . . , 10)
and the fixed target i. There is only the first three couples with a strictly positive probability. The probabilities are
given by the first row of the Table S8. The second row gives the true ranks and the three last rows some possible
predicted ranks. The indicator CRi is shown on the last column.

Table S8: An illustrative example for the computation of the indicator CRi.

1 2 3 4 5 6 7 8 9 10 CRi

zij 0.3 0.2 0.3 0 0 0 0 0 0 0
Rzij 9 8 10 4 4 4 4 4 4 4 1
R̂zij 9 10 8 3 7 3 3 6 3 3 1
R̂zij 7 10 8 3 9 3 3 6 3 3 2/3
R̂zij 6 4 7 4 9 10 4 8 4 4 0

This indicator quantifies the quality of identification of the contributors with the highest ranks. The order of these
within the group does not matter and the order of others outside the group does not matter.

Finally the Contributor Ranking (CR) indicator is:

CR =
1

nt

nt∑
i=1

CRi

In conclusion, the performance indicator gives an idea of the method’s ability to order probabilities globally. The
second indicator (CR) focuses on the positive probabilities per target. It is very useful in the context of our
applications. Indeed, the higher the indicator, the more the method will be able to give with certainty the potential
contributors for each target.

The following figures show the CR criterion calculated for the four models on the training sets and on the test sets for
the simulations and two application cases (equine influenza and covid-19).
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Figure S6: Boxplots of the contributor ranking indicator calculated from the train and test samples for MA, LM and
Tree in the simulations.
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Figure S7: Boxplots of the contributor ranking indicator calculated from the train and test samples for MA, LM and
Tree in the equine influenza study.
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Figure S8: Boxplots of the contributor ranking indicator calculated from the train and test samples for MA, LM and
Tree for the COVID-19 study.
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A.3. Description of factors for Covid-19 application

Table S9: Explanatory factors for the Covid-19 application.

Category Variable Description Unit

Economy
gdp2019 Gross domestic product in 2019 M$
gdp capita Gross domestic product per capita in 2019 $
healthexp Health expenditure M$

Demography

pop Total population units
density Population density units per km2

urbanpop Percentage of population living in urban areas %
popmale Percentage of male %
pop tot 0 14 Percentage of population in the age group 0-14

(male, female, total)
%

pop tot 15 64 Percentage of population in the age group 15-64
(male, female, total)

%

pop tot 65 up Percentage of population in the age group 65 or
more (male, female, total)

%

mediange Median age years
life expectancy Life expectancy at birth years

Health

lung Death rate for lung diseases per 100,000 people units
fertility Average number of children per woman units
obesity Percentage of obese people within the popoulation %
smokers Percentage of smokers within the population %

Healthcare System
hospibed Number of hospital beds per 1,000 people units
physicians per 1K Number of physicians per 1,000 people units
nurses per 1K Number of nurses per 1,000 people units

Climate

tmin Average minimum temperature in the first semester ◦C
tmax Average maximum temperature in the first semester ◦C
prec Average precipitation in the first semester mm
avghumidity Average relative humidity %
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