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Abstract

Most current numerical simulations on sloshing impact loads do not take into

account the possibility of evaporation and condensation of the fluid. Thus, in

order to evaluate the influence of phase change the goal of this work is to develop

a numerical model able to simulate a wave impact with phase change. Such a

model should describe compressible multiphase flows with separate phases, in-

cluding non-equilibrium interfacial phase change. A first prototype is presented

in this paper based on an isothermal Volume-Of-Fluid-type model for the rep-

resentation of the liquid-vapor interface and a non-conservative advection term

for the modelling of phase change. Discretization of the model is made in the

Finite Volume framework using a Roe-type scheme. Some original numerical

test cases for the validation of the code are discussed and preliminary results

for a simplified impact test case are presented.

1. Introduction

In the transportation of Liquefied Natural Gas (LNG) in tanks on floating

structures, such as LNG carriers, one of the principal current technologies is to

store the LNG at ambient pressure and cryogenic temperature using a membrane

containment system that completely covers the inner sides of the tank walls.5
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When the sea is rough, the motion of the ship induces significant movement of

the liquid in the tank, which can induce violent impacts on the containment

system. When designing such containment systems, Gaztransport & Technigaz

(GTT) has to ensure that these impacts do not cause any damage during the

working life of the floating structure. Typically, sloshing assessment is based10

on tests using a model tank, normally at scale 1:40. The tank is filled with

water and a heavy gas, and is placed on a hexapod platform which allows it

to be moved with six degrees of freedom. The heavy ullage gas is chosen such

that the gas-to-liquid density ratio is the same as at full scale. Measurements

are made using several pressure sensors that are placed in the impact areas.15

A complex methodology based on a long-term approach [1] is followed, which

enables the probability of failure for any limit state of the containment system

to be derived.

However, the complete physics of a real wave impact are not modeled in such

an experiment. In particular, phase change (evaporation and condensation) is20

expected to occur in the full-scale LNG tank since the fluid is close to ther-

modynamic equilibrium. Unfortunately, its influence on impact loads has not

been studied in detail, until now. The final goal of this work is to add a phase

change model to a numerical simulation of wave impact and better understand

the influence of phase change.25

Sloshing tests with boiling water and vapor in conditions close to the phase

boundary have been performed [2]. Statistically, the pressure at the impact

wall was found to be smaller with water and vapor than with water and non-

condensible gases. Hence, the authors attributed the pressure reduction to phase

change.30

Simulating a wave impact with phase change adds a new layer of difficulty to

an already complex problem. Indeed, the numerical model with phase change

should already include complex properties of the two fluids like their compress-

ibility [3]. Furthermore, it is impossible to directly validate such simulations

because experimental results of wave impact tests (or sloshing tests with a sin-35
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gle impact) show a high variability of the local pressure measurements. This

variability is due to the development of free surface instabilities triggered by the

escaping gas flow, even when the global wave shape is accurately reproduced

(see also for example [4]). More details on wave impact physics can be found in

[5].40

The only attempts (to our knowledge) to create such a simulation with phase

change have been made by [6] for the scenario of a liquid block free falling onto a

solid surface and by [7] for two single impact waves obtained by sloshing model

tests (without experiment as a reference). Their results seem to be in line with

those observed by [2] during sloshing tests with water and vapor.45

The problem of phase change influence on sloshing wave impacts is related

to the problem of sloshing influence on boil-off evaporation in cryogenic tanks.

In the latter boil-off problem, a slow steady heat flow from the exterior of the

cryogenic tank can warm up the content of a tank. As a consequence, the

liquid evaporates and the pressure rises inside the tank. Sloshing influences this50

phenomenon, as studied by [6] and [8], among others. However, these problems

differ because the spatial scale of the boil-off problem is the size of the tank

and the time scale is hours or days, whereas the spatial scale of our problem is

the region of impact and the time scale is the duration of the impact. Different

modelling approaches should thus be used to describe these two problems.55

A great variety of phase change models exists for two-fluid CFD codes, de-

pending on the kind of flow that is being modeled. These models can be sorted

using the characteristic size and characteristic duration of the problems they

are designed for. The spatial characteristic size of the problem changes the rep-

resentation of the interface: from a microscopic interface of finite thickness (e.g.60

[9]) to an industrial averaged macroscopic model (e.g. [10, 11]). The description

of interfacial phase change needs to be adapted to the description of the inter-

face. Independently, the characteristic time scale of the problem determines how

the relaxation towards liquid-vapor equilibrium is modeled: from instantaneous
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liquid-vapor equilibrium (e.g. [12]) to total non-equilibrium. (Other references65

used in this work on the modelling of phase change includes [13] and [14].)

The specific space and time scales of the wave impact problem described

earlier set the frame of reference of our model. Although a wave impact may

involve a complex flow made of droplets and bubbles caused by free surface

instabilities, all the numerical studies of wave impacts described previously con-70

sidered only a relatively smooth zero-thickness interface between pure phases.

Existing phase change models at this macroscopic scale include [15] and [16].

However, a wave impact is a very brief and violent phenomenon. Thus, unlike

in [15] and [16], both fluids are modeled as compressible and no equilibrium

hypothesis is made between phases at the interface.75

For slow evaporation and condensation the evolution of the interface can be

modelled using a Stefan model [17]. In such a model the mass flow rate can be

seen as a Lagrange multiplier ensuring the instantaneous equilibrium condition

p = psat(T ) at the interface. Since an equilibrium hypothesis at the interface

might not be applicable to the wave impact problem, a non-equilibrium model80

of the Hertz-Knudsen model type [18, 19] will be considered instead. The mass

flow rate in this model is proportional to the distance to equilibrium and the

interface is brought back to equilibrium in finite time.

In the present paper, the compressible flow with two separate phases is

modelled using a Volume-Of-Fluid-type model that is similar to those of [20],85

[21] or [22]. The liquid gas interface is implicitly captured as liquid-gas mixtures

cells, forming a numerically “diffuse” interface, without any special numerical

treatment. Although this kind of model can be less accurate than alternatives,

such as interface tracking schemes, they are easier to develop and implement,

especially in two or three-dimensions. In this paper, our goal is to add non-90

equilibrium interfacial phase change into such a model. Since diffusion at the

interface is a numerical bias, one of the objectives of this work is to ensure that

the phase change rate is as independent as possible of the interface profile.

Phase change is a complex process involving pressure variations, large local
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temperature variations, as well as a velocity discontinuity at the interface. The95

temperature variations are due to the large latent heat released or captured

by the mass that changes phase, whereas the pressure variations and velocity

jump are due to the density ratio between phases. Correctly including all of this

phenomena in a diffuse interface model is a difficult task. During the derivation

of our model in the next section, the hypothesis of an isothermal flow will be100

made to simplify the task. This hypothesis is very strong, as the wave impact

cannot be expected to be an isothermal process. However, this work should be

seen as only a first step towards more realistic models of wave impacts with

phase change. The same kind of approximation for the study of wave impacts

is used in other state-of-the-art work, such as [23].105

The simplifying assumption of a pure chemical species (either pure water or

pure methane) will also be made. Actual LNG is a mixture of several compo-

nents, where the exact composition has an effect on the phase change behavior

of the fluid. However, for the sake of simplicity, multispecies mixtures will not

be discussed here.110

Only phase change at the interface between liquid and gas are discussed in

this paper. Nucleation, that is the appearance of new droplets in the gas or new

bubbles in the liquid, is not expected to be necessary for the understanding of

the influence of phase change on wave impacts [24, 25].

Among the existing compressible-flow models with phase change, the closest115

to the model presented in this paper are the exact Riemann solver of [26] and

[27] and the stiff source term models of [28] and [29]. The former describes the

liquid-vapor with phase change by adding one more discontinuity to the solution

of the Riemann problem between two phases. This discontinuity follows the

Rankine-Hugoniot conditions for a non-zero mass flow rate which is the phase120

change rate. The model presented in this paper gives a similar solution to the

Riemann problem (see [24]). However, at the core of our model we place the

hyperbolic set of equations instead of the Riemann problem solution. The work

of [28] and [29] describe numerically the interface as a liquid-vapor mixture zone

in which phase change is modelled as a source term. Our model also involves a125
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numerical mixture zone at the interface. Instead of a stiff source term of order

zero, we describe phase change using a first order term, as will be seen in the

following sections. The behavior of the first order term is expected to be less

dependent on numerical diffusion at the interface. The relation between these

models and our approach has also been discussed in [30].130

In the first few paragraphs of the next section, a model describing the evolu-

tion of a flow with two separated phases is presented. Simulation of the model

is made using the Finite Volume method, where the model is averaged using a

new description of the averaged phase change term. After some simplifications

(including the hypothesis of an isothermal flow), a non-conservative hyperbolic135

system describing the averaged two-phase flow is derived. The numerical scheme

used for the simulation of this system is described in Section 3. In particular,

the discretization of the non-conservative phase change terms is discussed. The

resulting Roe-type scheme is a variant of the scheme proposed in [31].

This scheme is applied in the next section to several simple validation test140

cases, which illustrate some of the benefits and limitations of the model and

its discretization. In particular, it shows that the thickness of the numerical

mixture layer at the interface has almost no consequence for the phase change

simulation. Finally, in the last section of this paper, the model is applied to

idealized wave impact test cases. Preliminary conclusions on the influence of145

phase change on wave impact loads can then be derived.

The present work is part of a series of contributions to modelling of wave

impacts with phase change. The present model has been introduced in [24]

along with another interface reconstruction scheme (which will be published in

a subsequent article) and a surrogate model updating the model presented in150

[32]. These different works explore various approaches and shed light on different

aspects of phase change modelling. A summary of the models and some partial

physical conclusions are presented in [33].
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2. Physical model

In this section, the mathematical description of two-fluid flow with interfacial155

phase change will be discussed.

2.1. A sharp interface model

The two phases are flagged using the order parameter χ(x, t) that describes

the local phase: χ = 1 for the gas and χ = 0 for the liquid.

At an interface, the evolution of χ can be written as follows [24]:160

∂tχ+ (u− J/ρ) · ∇χ = 0, (1)

where the vector J denotes the interfacial surfacic mass flux aligned with the

normal vector at the interface. Note that even when both fluids are at rest

(u = 0), the interface between the two phases can evolve due to phase change.

Using the standard conservative equations for the fluid (mass, momentum

and total energy - see (2a) to (2c) below), the balance equations for two fluid

phases separated by a free surface can thus be written as:

∂tρ+∇ · (ρu) = 0, (2a)

∂t(ρu) +∇ · (ρu⊗ u+ p I) = 0, (2b)

∂t (ρE) +∇ · ((ρE + p)u+ q) = 0, (2c)

∂t(χρ) +∇ · (χρu)− J · ∇χ = 0, (2d)

where ρ, u, p, and E = e+ |u|2/2 denote respectively density, velocity, pressure

and specific total energy of the fluid. Equation (2d) has been obtained by165

combining (1) with (2a).

In general, the diffusive heat flux q is given by Fourier’s law. More terms

can be added on the right-hand side of (2) to describe, for instance, gravity,

inertial accelerations or viscosity. In this paper, we focus only on the transport

terms of the equations (including the phase change term J · ∇χ).170

As discussed in [24, 30], this model is hyperbolic without the heat diffusion

term. The solution of the Riemann problem for this system contains four waves:
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two sonic waves with velocity u ± c, one contact discontinuity with velocity u

and one liquid-vapor interface with velocity u − J/ρ. The Rankine-Hugoniot

conditions around the latter are the usual boundary conditions around an inter-175

face with phase change (see e.g. [34]). If the flow is assumed to be isothermal,

this solution is similar to the one described in [26].

We can write

J = Jl→g νl→g = Jl→g∇χ/|∇χ|, (3)

where Jl→g is the evaporation mass flux and νl→g is the unit normal vector at

the interface oriented from the liquid to the gas phase. (Note that the above180

notation of |∇χ|νl→g = ∇χ as νl→g = ∇χ/|∇χ| should be approached with care

since ∇χ is a Dirac distribution.) Equation (2d) can then be reformulated as

∂t(χρ) +∇ · (χρu) = Jl→g|∇χ|. (4)

In this form, the phase change term can be understood as a source term for this

gas mass balance equation. The term |∇χ| can be seen as an interfacial area

term localizing the interface. In this article, the notation of (2d) is preferred185

because it is closer to the form of a usual system of conservation equations.

The extra variable J has been introduced to the equations and thus one more

closure relation is needed. This can take the form of an expression relating the

interfacial mass flux J to the local thermodynamical state:

J = Jl→g(pg, Tg, pl, Tl) νl→g , (5)

where Jl→g is an expression for the evaporation mass flux as a function of the190

local pressures and temperatures pg, Tg, pl and Tl, respectively in the gas and

the liquid.

The expression for Jl→g must be compliant with the second law of ther-

modynamics to ensure the physical relevance of the model (and thus the good

behavior of the numerical code). This point will not be discussed in more depth195

in this paper. Later in this paper, we will focus on an isothermal evolution at

temperature T0 and the mass flux across the interface will thus be of the form

J ∝ (psat(T0)− pg) νl→g ,
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where psat denotes the saturation pressure of the considered chemical species.

The influence of the liquid-vapor interface on the domain boundary condi-

tions will not be tackled here. In 1D, it is simply assumed that the interface200

does cross not the boundary of the domain. Thus, only the usual boundary

conditions for the Euler equations apply (see e.g. [35]). In 2D, the description

of the boundary conditions may require the study of the physics of the liquid-

vapor-wall contact point, which is out of the scope of this paper. Symmetry

boundary conditions are assumed at the domain edges for the 2D test case in205

Section 4.2.

From system (2) it is possible to deduce the conservation equations:

∂t (χρ) +∇ · (χρu)− J · ∇χ = 0, (6a)

∂t (χρu) +∇ · χ(ρu⊗ u+ pI)− (u⊗ J + pI)∇χ = 0, (6b)

∂t (χρE) +∇ · χ((ρE + p)u+ q)− (JE + pu+ q) · ∇χ = 0. (6c)

They are the balance laws for gas mass, gas momentum and gas total energy

[24]. The corresponding equations for the liquid can be derived by subtracting

(6) from (2).

2.2. Averaging210

Equations (6) will now be averaged for numerical resolution in an Eulerian

finite volume framework. The reader can refer to [11] for a complete study on

the derivation of such an averaged model. In this paper, we will focus on the

phase change terms of the form J · ∇χ, for which a different approach to [11]

will be proposed.215

2.2.1. Averaged phase change term

This approach is motivated by the consistency of the averaged model, in the

sense that the averaged model should converge to the exact model when the

size of the averaging volume goes to zero. A lack of consistency in an averaged

model is not necessarily a problem. For a complex flow (as for instance in220

[10], [11] or [36]), the resolution of the computation will never be increased to
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capture scales at which the phases are separated. It is thus more important to

ensure that the chosen approximations are experimentally valid at large scale

rather than asymptotically consistent. However, this is not the case when the

averaged model is aimed at the description of a cell (or a few cells) of a liquid-225

vapor interface between two separated fluids, such as in [21], [22] or [28]. In

these references, as well as in our work, the mixture is a numerical bias at

the interface. Several numerical techniques can be used to limit the size of

the mixture layer, but this size is never perfectly controlled. Our objective is

that phase change should be as independent as possible of the thickness of the230

numerical mixture layer at the interface, and that consistency with the exact

model (6) is maintained when the thickness goes to zero.

The averaging operator will be denoted by in the following paragraphs. In

the usual approach, as seen in e.g. [11], the phase change term is averaged as

J · ∇χ ' Jl→gAi ,

where Jl→g is a local average interfacial evaporation mass flux and Ai is a local235

interfacial area density, which is typically a function of the gas volume fraction

αg = χ.

The resulting phase change term is of order 0 (i.e. it does not contain

derivatives of the state variables). The interface evolves in a similar way to a

reaction-diffusion equation. It is possible to check if the total exchanged mass is240

strongly influenced by the thickness of the mixture layer. Moreover, it is not an

easy task to write a reaction-diffusion equation which converges asymptotically

towards a discontinuous wave front (see e.g. [37, 38]).

Besides, let us note that the “standard” averaged model without phase change

(see e.g. [31]) is consistent. The term p∇χ in (6b), that can be seen as an245

interfacial condition between the two fluids (pressure force of one upon the

other), is usually averaged as p∇αg (plus other source terms), which naturally

degenerates into p∇χ.

The interfacial phase change is also described in (2) and (6) as a first order
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term. To take an average in a consistent way, it seems reasonable to use a first250

order term. We will follow the example of p∇χ and average the term J · ∇χ

under the following form

J · ∇χ ' J · ∇αg.

As for the pressure term, additional source terms could have been added to

the approximation, but since it is assumed that these terms become negligible

when the averaging volume goes to 0 (that is αg −→ 0 or 1), they will not be255

considered here. In the remainder of this paper, the notation is simplified by

using J instead of J .

2.2.2. Average balance equations

In this paragraph, the usual notation is used for two phase flows (α := αg

is the void fraction, ρg and ρl are the densities of the gas and liquid phases, ug260

and ul their velocities, Eg and El their total specific energies) and the following

standard approximations are made

χ(ρu⊗ u+ p) ' αg (ρgug ⊗ ug + pg),

χ((ρE + p)u+ q) ' αg ((ρgEg + pg)ug + qg),

where pg is the gas pressure, given by the equation of state pg = p(ρg, eg), and

similarly for the liquid phase.265

After averaging of equations (6) and their counterparts for the liquid phase,

and neglecting the diffusive and source terms, the following six equations system

is found:

∂t(αkρk) +∇ · (αkρkuk) + J · ∇αk = 0 , (7a)

∂t(αkρkuk) +∇ · (αk(ρkuk ⊗ uk + pkI))− P∇αk = 0 , (7b)

∂t(αkρkEk) +∇ · (αk((ρkEk + pk)uk + qk))−Q · ∇αk = 0 , (7c)

for k = l or g. The momentum flux (or stress tensor) P across the interface

between two phases is P∇αg = (u⊗ J + pI)∇χ, and the energy flux Q is defined

as Q · ∇αg = (JE + pu+ q) · ∇χ.
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2.2.3. Closure

In n spatial dimensions, this problem depends on 9 + 6n variables (αg, ρg,270

ug, Eg, pg, qg, αl, ρl, ul, El, pl, ql, Jl→g, P∇α, Q · ∇α).

The system (7) to which αg +αl = 1, two equations of state and the Fourier

laws in both phases are added, contains in total 7 + 4n equations. Hence 2 + 2n

closure relations are missing.

The mass and energy fluxes can be related to the local thermodynamic states275

at the interface (see [24]) in the form:

J = Jl→g(pg, Tg, pl, Tl) νl→g, Q = Ql→g(pg, Tg, pl, Tl) νl→g.

The following closure relation for P can be added:

P∇α = (ug ⊗ J + pg I)∇α = (ul ⊗ J + pl I)∇α, (8)

which is a generalization of the single-pressure closure pg = pl. This expression

for P∇α ensures the consistency of the averaged model.

2.3. Single-velocity hypothesis280

The averaged model described in the previous paragraphs will not be studied

in more depth in this paper. Instead, a simplified model derived from it will be

discussed.

2.3.1. Derivation

The single-pressure and single-velocity hypotheses (pg = pl and ug = ul) are285

often used for modelling flows with two separated phases when the numerical

method involves mixture cells for the description of the interface (as for instance

in [21] or [22]). These hypotheses are consistent with the boundary conditions

around an interface without phase change. However, at an interface with phase

change this is no longer true.290

Indeed, at a liquid-vapor interface with phase change, the flow respects the

following jump conditions (see e.g. [34]):

pg − pl = J · (ul − ug) , (9)
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(ug − ul) · νl→g = J

(
1

ρg
− 1

ρl

)
. (10)

The velocity jump in (10) is due to the difference in densities: a change in

velocity compensates for the change in density to keep a continuous mass flow295

across the interface. The pressure jump in (9) can be seen as the corresponding

Venturi effect.

The usual single-velocity and single-pressure hypotheses are replaced with

relations (9) and (10). This is completed with the following standard condition

for the tangential velocities:300

ug · ν⊥ = ul · ν⊥, (11)

for any tangential vector ν⊥ at the interface.

These simplifying hypotheses will be applied to the following isothermal

system directly derived from (7) and (8):

∂t(αkρk) +∇ · (αkρkuk)− J · ∇αk = 0, (12a)

∂t(αkρkuk) +∇ · (αk(ρkuk ⊗ uk + pkI))− (uk ⊗ J + pkI)∇αk = 0, (12b)

for k = l, g.

The averaged quantities ρm and um are defined such that:

ρm =
∑

αkρk , ρmum =
∑

αkρkuk.

Using this notation, the single-velocity hypothesis (10) can be rewritten as

um −
J

ρm
= uk −

J

ρk
. (13)

Mass fraction ξ is defined as ξkρm = αkρk. for k = l, g and from definition305

of ρm, ξg + ξl = 1.

Finally, the two mean pressures p and p are introduced as

p =
∑

αkpk , p =
∑

ξkpk.

For simplicity, the following notation is used for the rest of the article:

ξ := ξg, α := αg.
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Using this notation and hypotheses (9), (10) and (11), system (12) can be

rewritten as [24]

∂tρm +∇ · (ρmum) = 0, (14a)

∂tρmum +∇ ·
(
ρmum ⊗ um + pI +

(
p− p

)
νl→g ⊗ νl→g

)
= 0, (14b)

∂tξρm +∇ · (ξρmum + J(α− ξ))− J · ∇α = 0. (14c)

In 1D, this system becomes

∂tρm + ∂x(ρmum) = 0, (15a)

∂tρmum + ∂x(ρmu
2
m + p) = 0, (15b)

∂tξρm + ∂x(ξρmum + J(α− ξ))− J · ∂xα = 0. (15c)

2.3.2. Simplification and summary

The system presented in the previous paragraphs is complicated and in this310

form its resolution (in particular in 2D or 3D) would be difficult. Therefore,

some simplifications will be made.

The hypotheses (9) and (10) can be written as

ug − ul = O(J), pg − pl = O(J2).

For small mass flux J the pressure difference at the interface is neglected. More-

over the following assumption is made:

∇ (J(α− ξ))− J · ∇α ' −J · ∇ξ.

Hence, the simplified system becomes:

∂tρm +∇ · (ρmum) = 0, (16a)

∂t(ρmum) +∇ · (ρmum ⊗ um + p I) = 0, (16b)

∂t(ξρm) +∇ · (ξρmum)− J · ∇ξ = 0. (16c)

Only system (16) will be used to compute the test cases that follow. This315

averaged system is conveniently similar to the isothermal version of the original

14



system (2), and so the discussion on the hyperbolicity of the isothermal system

and its solution to the Riemann problem are still valid.

System (16) is completed by the following closure relations:

ρg = Rg(p), ρl = Rl(p), α =
ξρm
ρg

, ρm = αρg + (1− α)ρl, (17)

where functions Rg and Rl are isothermal equations of state for the two phases.320

When the phase change kinetics in (5) are included, the system contains 6 + 2n

equations for 6 + 2n variables (ρm, um, p, ξ, ρg, ρl, α, J).

The variables ρm, um and ξ are the averaged equivalents of the exact vari-

ables ρ, u and χ. The averaged versions are expected to converge to their exact

counterparts when the size of the averaging volume goes to zero. In the rest of325

this paper, only the averaged quantities will be considered and the m index will

be dropped for the sake of readability.

Note that two averaged versions of the order parameter χ have actually been

introduced: the mass fraction ξ and the volume fraction α. Due to the density

ratio, both values can be fairly different (as seen for example in Figure 4 below).330

Some of the difficulties of this model come from this difference as we will see in

Section 4

3. Discretization

In this section the discretization of the system (16) will be discussed.

3.1. Discretization of the non-conservative terms335

The model (16) involves a non-conservative term of the form J · ∇ξ. The

discretization strategy is to approximate the term locally using a conservative

term. This approach is inspired by (but different from) the strategy of [31]. This

approximation is presented in the general case of a system with non-conservative

terms of the form340

∂tv +∇ · F (v) + C(v) : ∇v = 0, (18)
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Cell K

sub-cell KL

Cell L

Figure 1: Example decomposition of the cells (solid red lines) into sub-cells (dashed blue lines)

for the integration of 2D non-conservative terms.

where C(v) is a tensor and : denotes the tensor-matrix product such that the

result is a vector. However in this paper only our simple phase change term will

be tested.

Each cell will be decomposed into sub-cells for the linearization of the non-

conservative terms. The final scheme does not depend on the chosen decompo-345

sition, as it is only a technical tool for the derivation of the discretized equation.

Let K be a cell with its neighbors denoted by N (K). Cell K is divided

into #N (K) sub-cells {KL}L∈N (K), such that KL is only in contact with the

neighboring cell L (see Figure 1 for an example). If K is a convex polygon (or

polyhedron), such a partition of K is easily achieved by joining the center of350

mass of the cell to each of its corners.

The existence of a flux function G is assumed on the two neighboring sub-

cells, which approximates the non-conservative term around each face, in the

following way:

∀x ∈ KL ∪ LK , C(v) : ∇v ' ∇ ·GK,L(v). (19)

In the spirit of [31] we could have taken355

GK,L(v) = C(µK,L)A−1(µK,L)F (v)
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where µK,L is an average state between vK and vL and

A(v) =
∂F

∂v
.

For our phase change model (16), we will instead choose the simpler

∀x ∈ KL ∪ LK , J · ∇ξ ' ∇ · (Jl→g(vK , vL) (νl→g)K,L ξ) , (20)

where Jl→g is the physical evaporation mass flux as defined in (5) and (νl→g)K,L

is the normal vector to the liquid-vapor interface as approximated at the mesh

face.360

Using the approximation (19), the spatial derivative of the partial differential

equation system can be integrated as follows [24]:∫
K

(∇ · F + C : ∇v) dx '
∑

L∈N (K)

|∂K ∩ ∂L| [ΦK,L −GK,L(vK)] · νK,L, (21)

where ΦK,L denotes the numerical flux approximating F +GK,L at the interface

between K and L, |∂K ∩ ∂L| is the area of the interface and νK,L is its normal

unit vector.365

3.2. Numerical flux

Let us now discuss the approximation of the flux at the interface. The

discretization proposed below is based on the Roe-type scheme of [31].

In the previous section it has been seen how an equation is locally approx-

imated with non-conservative terms as a conservation equation. Let us thus370

consider a conservation equation of the form

∂tv + ∂xF (v) = 0. (22)

Multiplying this equation by A(v) = ∂F
∂v , we get

∂tF (v) +A(v)∂xF (v) = 0. (23)

At an interface between cells K and L this equation is approximated in the

form

∂tF (v) + Ã(vK , vL)∂xF (v) = 0, (24)
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where the matrix Ã is such that375

Ã(v, v) = A(v).

Equation (24) is linear, so it is easily solved exactly to find the flux between the

cells.

This approach is similar to the Roe scheme, although we aim to avoid the

need for a Roe matrix condition Ã(vK , vL)·(vK−vL) = (FK−FL) by linearizing

(23) instead of (22) (see also [31]).380

In [31] an average state µK,L at the interface is used to define Ã. At a

liquid-vapor interface the definition of an intermediate state between liquid and

gas might be problematic (for instance, it is not clear how to define the equa-

tion of state of this average state). Thus below, a matrix Ã is defined, which

depends minimally on any intermediate state. This choice will be validated by385

demonstrating good properties of the resulting scheme (see Section 3.3).

We denote λk as the k-th eigenvalue of A, lk as an associated left eigen-

vector and L = (lk)1≤k≤n as a matrix of left eigenvectors, such that A =

L−1 diag(λk)L.

We call “upwind-l” Finite Volume with Characteristic Flux (FVCF) scheme390

the finite volume scheme which uses the following numerical flux on the face

between cells K and L in the direction of the unit normal vector νK,L:

φK,L =
F (vK) + F (vL)

2
· νK,L + sgn Ã (vK , vL)

(
F (vK)− F (vL)

2
· νK,L

)
,

(25a)

where

sgn Ã (vK , vL) = L̃(vK , vL)−1 diag (sgn (λk (µK,L))) L̃(vK , vL). (25b)

For all k, the k-th line of the eigenvector matrix L̃ is defined by

(
L̃(vK , vL)

)
k·

=


lk(vK) if λk(µK,L) > 0,

lk(vL) if λk(µK,L) < 0,

lk(µK,L) else,

(25c)
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and µK,L is an average state between vK and vL.395

This numerical flux corresponds to the following upwind resolution of (24):lk(vK)φK,L = lk(vK) (F (vK) · νK,L) if λk (µK,L) > 0,

lk(vL)φK,L = lk(vL) (F (vL) · νK,L) if λk (µK,L) < 0.

(26)

The case when λk (µK,L) = 0 has not really been studied in this work, but it is

expected to be unimportant in most simulations.

The reader is referred to [35] for a discussion on the discretization of the

boundary conditions with this kind of scheme.400

The application of numerical flux (25) to the linearized non-conservative

system described in Section 3.1 gives

ΦK,L =
(F +GK,L)(vK) + (F +GK,L)(vL)

2
· νK,L

+ sgn
[
ÃK,L(vK , vL)

] (F +GK,L)(vK)− (F +GK,L)(vL)

2
· νK,L,

(27)

where

AK,L(v) =
∂(F +GK,L)

∂v
.

3.3. Maximum principle

As mentioned previously, this scheme has good properties with respect to405

the maximum principle of the variable ξ as studied for instance in [39]. For the

sake of clarity, only the 1D case will be presented here.

Assuming

max
(

Φρj+1/2 − Jj+1/2, 0
)
−min

(
Φρj−1/2 − Jj−1/2, 0

)
−Jj−1/2+Jj+1/2 ≤ ρj

∆x

∆t
,

(28a)

and

∀j, sgn

[(
u− J

ρ

)(
µj+1/2

)]
= sgn

[
Φρj+1/2 − Jj+1/2

]
, (28b)

this scheme respects the local discrete maximum principle of ξ, that is410

∀j, ∀n, min(ξnj−1, ξ
n
j , ξ

n
j+1) ≤ ξn+1

j ≤ max(ξnj−1, ξ
n
j , ξ

n
j+1). (29)
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The first condition (28a) is a cfl-like condition on u−J/ρ. In most practical

cases, this should be less restrictive than the cfl condition for u± c, where c is

the speed of sound.

The second condition (28b) is an implicit condition on sgn
(
λ2
(
µj+1/2

))
.

For the “upwind-l” FVCF scheme, this is the only role played by the averaged415

state µj+1/2. Using the velocity of the acoustic solver

uj+1/2 =
ρjcj uj + ρj+1cj+1 uj+1

ρjcj + ρj+1cj+1
+

pj − pj+1

ρjcj + ρj+1cj+1
,

as the velocity of the intermediate state µj+1/2 is sufficient in most practical

cases.

Equation (29) is important because it ensures that non-physical mass frac-

tions, ξ < 0 or ξ > 1, do not appear. For instance, the numerical scheme of [20]420

does not respect this property and non-physical mass fractions can appear, even

for simple 1D advection problems without phase change. These non-physical

values often cause the simulation to fail. The development of the new variant of

the FVCF scheme presented in the previous paragraphs was motivated by this

property.425

4. Validation test cases

Some simple test cases are presented in this section that aim to validate the

model and its implementation. In particular, one of our objectives is to create

a model for which phase change is as independent as possible of the thickness

of the numerical mixture layer at the interface. However, no reference test case430

for this kind of model was found in the literature, thus original test cases will

be proposed.

4.1. 1D forced oscillating phase change

The purpose of this first test case is to validate the ability of the code to

describe the interface and deal with non-trivial density ratios. In order to focus435

on these points, the mass flux will be independent of the system evolution. Using
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this hypothesis, an analytical solution will be provided for comparison with the

numerical results.

Liquid Gas

H

hg,0

x

Figure 2: Initial conditions for the test cases given in Sections 4.1 and 4.3.

Considering a tube of section S and length H that is closed at both ends.

The tube is initially filled with a volume S × hg,0 of gas and S × (H − hg,0) of440

liquid (see Figure 2). These phases respectively follow the isothermal ideal gas

and isothermal stiffened gas equations of state, that is:

ρg(p) =
p

c2g,0
, ρl(p) = ρl,0 +

p− p0
c2l,0

,

where cg,0 and cl,0 are the respective sound speeds in the gas and liquid. We

denote by ρg,0 and ρl,0 the densities at the reference pressure p0 (that is p0 =

ρg,0 c
2
g,0).445

4.1.1. Choice of Jl→g

An evaporation mass flux Jl→g(t) is set at the interface to be Jl→g(t) =

A sin(ωt) with constant coefficients A and ω. The choice of A and ω is governed

by the following constraints:

• The pressure must remain positive (and thus the densities also remain450

positive). For this, it is sufficient to set

A > 0. (30a)

• The fluid velocity must be subsonic ∀t, u(t) < c, with the following upper

bound for the escaping gas velocity

max(ug) ≤
max(|Jl→g|)

min(ρg)
=

A

ρg,0
< cg,0. (30b)
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Note that this upper bound is actually never reached during the simulation

because maximum |Jl→g| does not occur at the same time as minimum455

ρg.

• In order to compare with the analytical solution, the variations in mass

flux must be slow enough for the homogeneous pressure hypotheses to be

valid:

ω � cg,0
H

. (30c)

4.1.2. Dimensionless form460

The previous equations can be rewritten in dimensionless form. Dimension-

less variables are denoted with a tilde and they are defined as

hg = hg,0 h̃g, ρg = ρg,0 ρ̃g, ρl = ρg,0 ρ̃l, t =
hg,0
cg,0

t̃,

p = p0 p̃, Jl→g = ρg,0 cg,0 J̃l→g.

The equations of state then read:

ρ̃g = p̃, ρ̃l =
1 + cr(p̃− 1)

dr
.

where dr and cr are respectively the density ratio and compressibility ratio,465

defined as follows:

dr =
ρg,0
ρl,0

, cr =
ρg,0 c

2
g,0

p0
× p0
ρl,0 c2l,0

=
ρg,0 c

2
g,0

ρl,0 c2l,0
.

The total length of the domain is written in dimensionless form as the aspect

ratio H̃

H̃ =
H

hg,0
.

The mass flux can be written as

J̃l→g = Ma sin
(
ω̃t̃
)
,

where470

ω̃ =
ω hg,0
cg,0

, Ma =
A

ρg,0cg,0
.
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The dimensionless number Ma can be understood as the Mach number associ-

ated with the maximal escaping gas velocity in equation (30b).

The initial conditions can be written in dimensionless form as

p̃(0, x̃) = 1,

ξ(0, x̃) = 1 if 0 < x̃ < 1,

ξ(0, x̃) = 0 if 1 < x̃ < H̃.

where the dimensionless abscissa x̃ is defined as hg,0 x̃ = x.

Finally, conditions (30) become475

0 < Ma < 1, ω̃H̃ � 1.

The problem depends on five parameters, which are dr, cr, H̃, Ma and ω̃.

Table 1 proposes some values for these parameters, where the values of dr and

cr are inspired by the properties of water and steam.

dr 10−3

cr 4 · 10−5

H̃ 2

Ma 0.1

ω̃ 0.05

Table 1: Dimensionless parameters used for the numerical resolution.

4.1.3. Analytical solution

Assuming a homogeneous pressure in the tube, the dimensionless pressure480

is the solution of: [24]

(1 + cr (p̃− 1))

(
H̃ − 1 + m̂(t)

p̃

)
− H̃ + 1 + dr m̂(t) = 0 (31)

where m̂(t) is the dimensionless exchanged mass:

m̂(t) =

∫ t̃

0

J̃l→g(s) ds.

In practice, the role of liquid compressibility is negligible for the studied

fluids. Thus, it can be neglected and the dimensionless pressure p̃(t) can be
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written as485

p̃ =
1 + m̂(t)

1 + dr m̂(t)
+O(cr). (32)

4.1.4. Results and comments

1

2

3

4

5

M̃

Reference solution
30 cells
60 cells
120 cells
240 cells

0 50 100 150 200 250 300 350 400

t̃

1

2

3

4

5

p̃

Reference solution
30 cells
60 cells
120 cells
240 cells

Figure 3: Evolution of dimensionless total mass of gas (top) and dimensionless pressure in the

middle of the domain (bottom) as functions of dimensionless time for the numerical simulations

and the reference solution. Parameters are given in Table 1. The period is 2π/ω̃ ' 125.

In Figure 3 the time variation of total mass of gas and pressure in the domain

is shown. Due to the liquid being very dense and almost incompressible, the

volume of gas is nearly constant and the pressure is thus proportional to the

total mass of gas (equal in dimensionless magnitude). The numerical results are490

in good agreement with the exact solution, except for the coarser meshes with

30 and 60 cells.

The inaccuracy of the coarser meshes can be explained by studying the
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Figure 4: Profiles of mass fraction ξ and of volume fraction α after one period (at t̃ ' 125),

for the same numerical computations as in Figure 3.
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mass fraction profile, shown in Figure 4. Numerical diffusion in the coarser

simulations has enlarged the interface, so that it reaches the boundary of the495

domain. In this situation the total exchanged gas mass is no longer the same

(
∫
|∇ξ|dx 6= 1). The numerical diffusion is reduced for finer meshes and the bias

that occurs due to the interface interacting with the boundary appears later in

the computation.

Within a single period, the numerical diffusion rate changes with the phase500

change rate. However, on average over several periods, the thickness of the

diffused interface will grow according to
√
t∆x. Indeed, for a first order upwind

scheme such as ours, the numerical diffusion coefficient is proportional to the

cell size ∆x (see [40] for a derivation of the equivalent equation). Thus, the

time taken for the interface to reach the domain boundary will be proportional505

to the number of cells in the mesh, as seen in Figure 3 between the 30 and 60

cell cases.

Except for this limiting case in which the mixture layer covers the whole gas

domain, the numerical solution stays consistent with the analytical solution,

despite the change in the thickness of the mixture layer.510

The diffusion of the volume fraction α is almost symmetrical around the

expected position of the interface. Due to the low density ratio, the profiles of

ξ and α appear to be significantly different.

In Figure 5, the velocity profile is shown at a time of maximal evaporation

rate. Gas is escaping the interface to the right, which is demonstrated by a515

positive velocity. The velocity of the liquid is almost zero (the liquid is in

fact slightly compressed by the pressure rise). A jump in velocity appears at

the interface, as presented in (10). The jump is diffused along the profile in a

similar way to ξ. A zero velocity is imposed by the boundary condition at the

walls, causing a linear velocity gradient in the gas phase.520

Finally, the gas velocity profile is shown in Figure 6. The gas velocity ũg is

computed from the mixture velocity ũ ≡ ũm with the help of (13). In the diffuse

interface (approximately between x̃ = 1.0 and x̃ = 1.3), the gas velocity is not

affected by the mixture and is the exact gas velocity at the interface in these
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Figure 5: Profiles of dimensionless mixture velocity at t̃ ' 155 (approximately 5/4 of a period,

at a time when the evaporation mass flux is maximal) for the same numerical computations

as in Figure 3.
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Figure 6: Profiles of dimensionless gas velocity and mixture velocity at t̃ ' 155 (at 5/4 of a

period when the evaporation mass flux is maximal) for the numerical computation with 120

cells. The gas velocity is computed from the mixture velocity using (13). On the left hand

side, the mixture is pure liquid and the velocity of the gas is irrelevant.
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conditions. The gas velocity profile converges towards the mixture velocity, as525

seen in Figure 5, when the diffusion of the interface tends to zero.

4.2. 2D forced oscillating phase change

This test case is an extension of the 1D test case in the previous section in

two dimensions. Its purpose is to prove the multi-dimensional validity of the

model.530

4.2.1. Setup

Gas

Liquid

L

r0

Figure 7: Schematic of the 2D forced phase change test case. By symmetry, only the top right

corner will be solved numerically.

Consider a gas bubble of initial radius r0 surrounded by liquid (see Figure 7)

enclosed in a square domain. As for the previous test case, the fluids are de-

scribed by the isothermal ideal gas and isothermal stiffened gas equations of

state.535

Assuming that the pressure is homogeneous in the whole domain and that

the liquid is heavy and incompressible (that is dr � 1 and cr � 1), then the

pressure satisfies:

p(t) = p0

(
1 +

2

ρg,0r0

∫ t

0

Jl→g(s) ds

)
. (33)
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4.2.2. Interface normal vector evaluation

The surfacic mass flux at the interface is given by the same arbitrary expres-540

sion Jl→g(t) = A sin(ωt) as used in the 1D case. However, in 2D the linearization

of the phase change term J ·∇ξ also requires the computation of the unit normal

at the liquid vapor interface νl→g, as seen in (20).

The simplest method is a first order approximation of the following form:

(νl→g)K,L =

+νK,L if ξK > ξL ,

−νK,L else.
(34)

This choice of discretization of νl→g may reduce the quality of the solution by545

affecting the total exchanged mass. Namely, the approximation of the interface

orientation influences the total length (in 3D the total surface) of the interface.

This phenomenon is illustrated in Figure 8. In this case, the total length of the

interface is 4/π times longer than the actual length. The total exchanged mass

will thus be larger for a given surfacic mass flux. To illustrate this phenomenon,550

the following numerical results are compared to the following variant of (33),

which takes this bias into account:

p = p0

(
1 +

2

ρg,0r0

4

π

∫ t

0

Jl→g(s) ds

)
. (35)

Figure 8: Approximation of an arc circle on a Cartesian mesh. If the radius of the circle is 1,

the length of the discrete interface (in red) is always 2, for any grid resolution. The discrete

interface length does not converge towards the actual length of the interface, which is π/2.
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The unit normal at the interface may be expressed as νl→g ' ∇ξ
|∇ξ| . For

a higher order numerical resolution, this can be evaluated with the following

formula:

∂ξ

∂x
' (ξNE − ξNW) + (ξSE − ξSW)

4 ∆x
(36a)

∂ξ

∂y
' (ξNW − ξSW) + 2(ξN − ξS) + (ξNE − ξSE)

4 ∆x
(36b)

where the notation is given in Figure 9. The complete study of this kind of dis-

cretization (including, for instance, the behavior at the boundary of the domain)

is beyond the scope of this paper.555

ξNW ξN ξNE

ξSW ξS ξSE

∇ξ

Figure 9: Notation used for the numerical evaluation of the unit normal vector at the liquid-

vapor interface on a Cartesian mesh as given in (36). The cells are squares of size ∆x×∆x.

Here, we wish to linearize the phase change term at the interface between cells N and S.

Finally, for this particular test case, let us notice that the exact shape of the

interface is always known. Due to the problem having spherical symmetry, the

normal vector is always given by:

νl→g =
1√

(x− x0)2 + (y − y0)2

x− x0
y − y0

 , (37)

where (x0, y0) is the center of symmetry of the problem.

These three methods for the computation of νl→g will be used in the following560

numerical simulations and their results will be compared.

4.2.3. Results and comments

Several computations have been carried out with the same parameters as

the 1D case (see Table 1). Figure 10 displays the evolution of the pressure as a

function of time for various discretizations of the unit normal at the interface.565

All computations have been made with cfl = 0.25.
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Figure 10: Evolution of the dimensionless pressure (at the center of the domain) as a function

of dimensionless time for various mesh sizes and different approximations of the unit normal

at the liquid-vapor interface. The plain and dashed red lines are the reference analytical

solutions.

As expected, the first order reconstruction of the interface normal (34) is

close to the biased analytical solution (35), while the second order reconstruction

(36) gives a result that is closer to the exact solution. However, only the exact

value of the normal, as given by (37), gives the same pressure as the analytical570

pressure (33).

In the 1D case, the effective interfacial area
∫
|∇ξ|dx remains the same when

the interface is diffused (providing the boundaries of the domain are not crossed).

So the total mass exchanged between the phases is not affected by numerical

diffusion.575

The situation is more complex for the 2D problem because smearing of the

liquid-vapor mass fraction distribution actually affects the effective interfacial

area. Figure 11 shows the spatial distribution of ξ and α after one oscillation.

Due to the density ratio, the gradients of mass fraction ξ and volume fraction
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Figure 11: Level set for the mass fraction ξ (in blue) and the volume fraction α (in red) after

one period (t̃ = 125) for an 80 × 80 cell mesh using the discretization given by (34). To be

compared with Figure 4.

α are not superimposed (as in Figure 4). Although the effective interfacial580

area
∫
|∇α|dx remains fairly constant, the effective interfacial area

∫
|∇ξ|dx

changes. Since the ∇ξ term is playing the role of locating the interface in

(16), the total quantity of exchanged mass is thus reduced and any pressure

oscillations are damped after the first peak.

Some good properties of the code have been demonstrated using the 1D test585

case, particularly regarding the independence of the numerical solution with

regard to the thickness of the mixture layer. However, the 2D case is more

difficult and some work should still be done to better capture the solution.

Although ∇ξ naturally appeared in the derivations of Section 2, checks could

be made to show whether its replacement with ∇α would improve the quality of590

the model. This replacement is actually a major change in the implementation:

the approximation (20) has to be modified and the diagonalization of the advec-

tion matrix in the scheme (25) might be significantly affected. In preliminary

33



tests, this replacement led to a less smooth and less stable velocity profile at

the interface in comparison with Figure 5. The term ∇ξ appeared in Section 2595

as a consequence of the single velocity hypothesis (2.3) and it is thought to be

the reason of the good behavior of our code with respect to the velocity jump

in 1D.

4.3. 1D return to equilibrium

Finally, a simple test case is given that challenges the ability of the code to600

deal with less trivial expressions for the mass flux.

4.3.1. Setup

As mentioned in Section 2.1, the relaxation mass flux will take the following

form:

Jl→g = ρg,0 cg,0 Ω
p0 − pg
p0

. (38)

A constant dimensionless relaxation rate Ω > 0 is chosen according to sim-605

ilar constraints as (30b). Here, we set Ω = 0.1 and p(t = 0) − p0 ∼ 0.1 p0, and

thus max(|J |) ∼ 0.01ρg,0 cg,0. This is the highest relaxation rate that could be

simulated for a 120 cell mesh with a cfl number of 0.8, which corresponds to

∆t̃ ' 2 · 10−3. A higher relaxation rate can be achieved by reducing the time

step. However, in our tests, this time step is still several orders of magnitude610

below the characteristic relaxation time 1/Ω. The validity range of the hypothe-

ses given in Sections 2.3.2 and 3.3 should be investigated further, as well as the

stability of the explicit Euler time discretization.

Two variants of the initial condition are used with different interface dif-

fusions to check the robustness of the numerical scheme and the influence of615

the interface thickness. These initial conditions are shown in Figure 12. The

equations of state and initial condition are similar to the test case in Section 4.1

and Table 1. The magnitudes ξ and α cannot both have symmetrical profiles:

it has been chosen to have symmetrical α magnitude to ensure that the total

mass of gas and liquid are the same with or without the diffused interface.620
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Figure 12: Initial profiles of mass fraction ξ (solid blue lines) and volume fraction α (dashed

red lines), for the sharp initial condition (left) and the diffuse initial condition (right). On the

left, the mass fraction and the volume fraction curves are superimposed.

Four different initial pressures will be tested for both evaporation (p < p0)

and condensation (p > p0).

Assuming the pressure to be homogeneous in the gas phase and the volume

available for the gas phase to be constant (due to the low density ratio), the

dimensionless pressure can be shown to respect:625

dp̃

dt̃
= Ω (1− p̃). (39)

This analytical solution will be compared to the numerical results.

4.3.2. Results and Discussion

Figure 13 presents the evolution of the mass and pressure. In all cases, the

system relaxes to the p = p0 equilibrium state. Both mesh refinement and initial

diffusion of the interface do not lead to any difference in the evolution of the630

total gas mass. However, the pressure at the center of the domain is slightly

affected, although the mean pressure over the whole domain is the same at all

resolutions.

The staircase like behavior of the pressure evolution for the cases with a

sharp initial interface is caused by pressure waves emitted by the phase change635

at the interface. These waves take a finite amount of time to travel through the

gas phase to the boundary of the domain and return to the interface.
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Figure 13: Evolution of dimensionless total gas mass (top) and dimensionless pressure at the

center of the domain (bottom) as a function of dimensionless time for four different initial

pressures, two initial interface diffusions and two different mesh refinements (16 cases in total).

The pressures are compared to the analytical solution in (39). The mass evolution curves are

superimposed for a given initial pressure.

For a diffuse initial interface the compression wave emitted by the interface

is smoother than the sharp shock emitted by the sharp interface. Moreover,

the interaction of a pressure wave with a diffuse interface can lead to pressure640

oscillations inside the diffuse interface, probably due to spatial gradients in

the speed of sound. This effect does not seem to influence the phase change

relaxation.

The staircase effect would probably not appear experimentally since real

liquid-vapor phase change is not isothermal: it is directed by the thermal diffu-645

sion of the latent heat as well as the pressure evolution.
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5. Application to a simplified 2D impact case

Vapor

Liquid

H

L

h1

h

l1 l

g Dimensions

H 15 m

h 8 m

h1 2 m

L 20 m

l 10 m

l1 5 m

Figure 14: Scheme of the simplified impact test case from [41].

In order to evaluate the effect of phase change on a 2D liquid impact, the

numerical test case of [41] is now studied. It is a simple impact scenario consist-

ing of a free falling rectangular liquid block within a much larger rectangular650

tank of gas (see Figure 14). This test was first proposed by [41] and was used as

a benchmark study organized within the ISOPE conferences in 2010 and 2013.

Despite its simplicity, this test case shows the different steps of a liquid impact

on a solid surface, including the incompressible and then compressible escape of

the gas from the space between liquid and wall. Previously, this test case has655

been studied with phase change by [6].

The fluids are modeled by the same isothermal equations of state (isother-

mal ideal gas and isothermal stiffened gas) as in the previous test cases. The

acceleration due to gravity (g = 10 m s−1) is modeled classically as a momen-

tum source term on the right hand side of (16) and discretized using the Euler660

forward method.

For a more efficient numerical resolution of the problem, an adaptive mesh

refinement method, based on a quad-tree approach has been used. An example

result at the time of maximum pressure is shown in Figure 15 along with the

mesh. The mesh is refined when either the norm of the gradient of mass fraction,665
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the norm of the gradient of volume fraction or the norm of the gradient of

pressure are above an arbitrary threshold. Though the finest mesh cells are

2−4 m = 62.5 mm in size, the result is still far from mesh convergence. Due to

the coarseness of the mesh in comparison with the highest resolution results of

[4], for example, and due to the formation of a numerical mixture layer at the670

interface, a strong mitigation of the impact pressure is observed. Anyway, since

here the gas is modeled as isothermal, the impact time and pressure would be

different to the reference adiabatic simulations. Nonetheless, we can compare

our own simulations with and without phase change.

In Figure 16, the evolution of the pressure at the center of the impact wall675

is shown for three different values of the phase change coefficient Ω as defined

in (38). Despite the promising properties of the numerical scheme, direct sim-

ulation of the higher relaxation rate is not possible, as already mentioned for

the previous test case. The dashed lines in Figure 16 are the cases where it was

necessary to add the following fix to get an answer:680

ξn+1∗ = min
(
1,max

(
0, ξn+1

))
.

Although a supplementary numerical bias might have been introduced in our

solutions, this gives a clear idea of the expected qualitative behavior for higher

phase change rates. Further work, such as an implicit resolution of the stiff

phase change term, may be required here.

A magnification of the pressure peak due to phase change is observed. These685

results are comparable to the tendencies observed by [6] for the same test case.

A more violent impact is observed due to gas vanishing by condensation, which

is in addition to gas escaping between the free surface and the wall. Put simply,

there is a lower resistance to the falling liquid when more gas escapes, which

causes the impact velocity to be higher.690

The maximal pressure observed is actually not the pressure of the direct

impact of the liquid, but is instead the pressure in a thin gas pocket which

is holding the liquid away from the surface, as is visible in Figure 15. The

formation of this gas pocket is affected by the entrapment of gas in the diffuse

38



Figure 15: Mesh (left) and density (right) (in kg m−3) initially (above) and at the time of

maximum pressure (below).
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interface, but it is not only a numerical artifact as it has been observed in other695

work, such as [41]. A shortening of the oscillation period of the gas pocket

pressure is observed due to phase change. This can be explained by condensation

causing a reduction in the volume of trapped gas during the impact. Indeed, for

the problem of a piston oscillating on a gas pocket [42], the period of oscillation

is shown to change with the size of the gas pocket. The effect of phase change700

on the piston problem has also been discussed in [24] and [32].
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Figure 16: Pressure at the center of the impact wall as a function of time. Without phase

change (Ω = 0) and for several relaxation rates Ω with phase change.

6. Conclusion

A physical model that describes a flow with two separate phases including

phase change has been presented and an averaged version of the model has then

been derived. Unlike other averaged models that are commonly used, phase705

change is described by a non-conservative advection term. At the interface, this

approach limits the influence of the numerical mixture layer thickness on phase
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change.

A Roe-type scheme for the discretization of this model is also presented,

which is a new variant of the FVCF scheme from [31]. By using an alterna-710

tive upwinding matrix, the scheme has improved behavior with respect to the

maximum principle of the mass fraction. The alternative matrix allows us to

solve stiffer problems than in previous computations of a similar type, such as

[20]. Indeed, such models that do not respect the maximum principle discussed

in Section 3.3, often see the appearance of non-physical negative mass frac-715

tions which cause the simulation to end prematurely, even for constant-velocity

advection problems without phase change.

This result has several shortcomings and can only be considered as prelim-

inary. Improvements are still necessary, especially for the stiffest phase change

problems, and implicit resolution of the stiff phase change term could be the720

next step. Also, higher order discretization in space and further study of the

automatic mesh refinement criteria could help to improve the quality of the

solution with and without phase change.

Thus far, only an isothermal version of the model has been derived and

implemented. Such a strong hypothesis is not physically justified for liquid-725

vapor phase change, and particularly not for the problem of liquid impacts on

solid walls. This model is nonetheless useful to help understand the behavior

of a numerical code when dealing with strong changes in fluid density. The

model and discretization presented in this paper are able to simulate relatively

high evaporation rates at the interface between separated fluids with realistic730

densities.

In the final section of this paper, the effect of phase change on a simple wave

impact test case has been computed. Phase change causes gas to disappear

which results in a higher impact velocity of the liquid on the wall. However, the

isothermal hypotheses may cause an overestimation of the magnitude of this735

effect. According to surrogate models [24], the latent heat may indeed be a

limiting factor. The simulations shown in the final section have several other

shortcomings (such as relatively high diffusion of the liquid-vapor interface) and
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should therefore be considered as a prototype.

Instead of the isothermal hypothesis, a model with a similar level of com-740

plexity could have been built by considering an adiabatic evolution in which

the latent heat is artificially set to zero. Such a model would have brought re-

sults closer to the usual wave impact models in the case without phase change.

However, such a model would be as approximate as the current model when

it comes to evaluating the influence of phase change. Besides, the isothermal745

phase change hypothesis is more common in the literature and it has allowed us

to compare our model to [26] in [24].

A further challenge for phase change simulations is dealing with a high latent

heat. The mixture model defined in this paper makes the evaluation of the

entropy creation at the interface difficult. Thus, it is not easy to distribute the750

latent heat in the diffused interface in a way that is compatible with the second

law of thermodynamics. In [25], a naive extension of (16) that includes the

energy equation has nonetheless been used. However, this system has not been

rigorously derived and the treatment of the latent heat across a diffuse interface

might present some difficulties.755

The results presented in this work are in contradiction to the experimental

results of [2] discussed earlier, in which a pressure reduction was noticed. In this

paper, only a single aspect of the influence of phase change on wave impacts has

been discussed: that is the effect on the compressed escaping gas in front of the

liquid before the impact. Other works using different approaches [24, 32, 33]760

have shown a pressure reduction in the entrapped gas pockets after the impact.

Further work is necessary to have a complete description of the total effect of

phase change during a complete impact.

Let us finally note that a realistic wave impact involves free surface insta-

bilities, which have not been taken into account in this work. Phase change in765

aerated liquids leads to a reduction in the acoustic pressure for a given impact

velocity. If the developed instabilities are roughly modeled as a layer of aerated

liquid, it may then be possible to observe both a increase in the impact velocity,

as in Section 5, and a decrease in the maximal pressure. Improved understand-
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ing of the physics of wave impacts in the presence of free surface instabilities is770

thus needed to make conclusions on the effect of phase change.
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