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Abstract

It is widely accepted nowadays that polyzetas are connected by polynomial relations. One

way to obtain relations among polyzetas is to consider their generating series and the rela-

tions among these generating series. This leads to the indexation of the generating series

of polylogarithms, recently described in [6,5,13]. But, in order to understand the bridge

between the extension of this “polylogarithmic calculus” and the world of harmonic sums,

a local theory of domains has to be done, preserving quasi-shuffle identities, Taylor expan-

sions and Hadamard products. In this contribution, we present a sketched version of this

theory.

As an example of generating series, one can consider the eulerian gamma function,

Γ(1+ z) = exp

(
−γz+ ∑

n≥2

ζ (n)
(−z)n

n

)

and this may suggest to regularize the divergent zeta value ζ (1), for the quasi-shuffle struc-

ture, as to be Euler’s γ constant. In the same vein, in [5], we introduce a family of eulerian

functions,

Γyk
(1+ z) = exp

(
∑
n≥1

ζ (kn)
(−zk)n

n

)
, for k ≥ 2,yk ∈Y = {yn}n≥1.

This being done, in this work, via their analytical aspects, we establish, on one side, their

existence and the fact that their inverses are entire. On the other side, using the same

symmetrization technique, we give their distributions of zeroes 1 .
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1 Introduction

This work is partly the continuation of [6,5,13] where it has been established that

the polylogarithms, indexed by the r-tuples (s1, . . . ,sr) ∈ Cr, are well defined lo-

cally by

Lis1,...,sr(z) := ∑
n1>...>nr>0

zn1

n
s1

1 . . .nsr
r
, for |z|< 1, (1)

could be extended, in case (s1, . . . ,sr) ∈ Nr
+, to some series, over the alphabet X =

{x0,x1} generating the monoid X∗ with the neutral element 1X∗ [1]. More precisely,

(i) we start to consider [10]

∀w = x
s1−1
0 x1 . . .x

sr−1
0 x1 ∈ X∗x1, Liw = Lis1,...,sr , (2)

(ii) then extend 2 Li• as the ⊔⊔-morphism (C〈X〉,⊔⊔,1X∗) −→ (C{Li}w∈X∗,×,1)
by adding Lix0

(z) = log(z). This morphism is injective and satisfies [14]

∀S,T ∈ C〈X〉, LiS⊔⊔ T = LiS LiT . (3)

(iii) For the sake of symbolic calculations, it is important that, on the one hand,

these series should belong to some “computable spaces” and, on the other

hand, that the new domain (a) be closed by shuffle products and (b) that the

Li• correspondence should preserve the shuffle identity (3).

To this end a theory of global domains was presented in [6,5,13]. Here we focus

on what happens in the neighbourhood of zero, therefore, the aim of this work is

manyfold. Let us highligh the many facets of this matter.

(i) Propagate the extension to local Taylor expansions 3 as in (1) and the coeffi-

cients of their quotients by 1− z, namely the harmonic sums, denoted H• and

defined, for any w ∈ X∗x1, as follows 4 [12]

Liw(z)

1− z
= ∑

N≥0

HπX (w)(N)zN, (4)

by a suitable theory of local domains which assures to carry over the com-

putation of these Taylor coefficients and preserves the stuffle indentity, again

true for polynomials over the alphabet Y = {yn}n≥1, i.e.

∀S,T ∈ C〈Y 〉, HS T = HSHT , (5)

2 This paper uses extensively shuffle and stuffle products (noted ⊔⊔ and respectively). For readers

unfamiliar with these subjects their definitions are recalled at the end of this text, see paragraph 2.2.
3 Around zero.
4 Here, the conc-morphism πX : (C〈Y 〉,conc,1Y∗)−→ (C〈X〉,conc,1X∗) is defined by πX(yn) =
xn−1

0 x1 and πY its inverse on Im(πX). See [6,5,13] for more details and a full definition of πY .
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meaning that H• : (C〈Y 〉, ,1Y ∗)−→ (C{Hw}w∈Y ∗,×,1), mapping any word

w = ys1
. . .ysr ∈ Y ∗ to

Hw = Hs1,...,sr = ∑
N≥n1>...>nr>0

1

n
s1

1 . . .nsr
r
, (6)

is a injective -morphism [12].

(ii) Extend these correspondences (i.e. Li•,H•) to some series (over X and Y ,

respectively) in order to preserve the identity 5 [12]

LiπX (S)(z)

1− z
⊙

LiπX (T )(z)

1− z
=

LiπX (S T )(z)

1− z
. (7)

true for polynomials S,T ∈ C〈Y 〉.

(iii) Taking the definition of polyetas as in (1) at z = 1 or in (6) at +∞, one sees

that, for any s1 > 1, Abel’s theorem, one has

ζ (s1, . . . ,sr)= lim
z→1

Lis1,...,sr(z) (8)

= lim
N→+∞

Hs1,...,sr(N) (9)

= ∑
n1>...>nr>0

1

n
s1

1 . . .nsr
r
. (10)

However, this theorem does not hold in the divergent cases. and we will recall

some regularization process based on the computation of a -character with

polynomial values and specialize it to obtain a character [3,4]

γ• : (Q〈Y 〉, ,1Y∗)−→ (Z [γ],×,1), (11)

where Z := spanQ{ζ (s1, . . . ,sr)}r≥1,s1≥2,s2,...,sr≥1.

(iv) To this end, we use the explicit parametrization of the conc-characters ob-

tained in [6,5,13] and the fact that, under stuffle products, they form a group.

We show the linear independence of the Kleene stars (zkyk)
∗ and show that γ•

provides a group morphism between the group of conc-characters (endowed

with ) and that of Taylor series g (with radius R = 1) such that g(0) = 1.

This morphism maps each star y∗k precisely to

1

Γyk
(1+ z)

= exp

(
− ∑

n≥1

ζ (kn)
(−zk)n

n

)
, for k ≥ 2. (12)

and y∗1 to the classical inverse Gamma:

Γ−1
y1
(1+ z) = Γ−1(1+ z). (13)

5 Here ⊙ stands for the Hadamard product [9].
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We will prove that all these “new” functions are entire and linearly indepen-

dant.

To summarize, the present work concerns the whole project of extending H•

over a stuffle subalgebra of rational power series on the alphabet Y , in particular

the stars of letters and some explicit combinatorial consequences of this extension.

2 Domains and extensions

All starts with the (multiindexed) polylogarithm defined, for |z| < 1, by (1). It

is (multi-)indexed by a list (s1, . . . ,sr) ∈ Nr
≥1 which can be reindexed by a word

x
s1−1
0 x1 . . .x

sr−1
0 x1 ∈ X∗x1. From this, introducing two differential forms

ω0(z) = z−1dz and ω1(z) = (1− z)−1dz, (14)

we get an integral representation of the functions (1) as follows 6 [10]

Liw(z) =





1H (Ω) if w = 1X∗∫ z

0
ω1(s)Liu(s) if w = x1u

∫ z

1
ω0(s)Liu(s) if w = x0u and |u|x1

= 0,w ∈ x∗0∫ z

0
ω0(s)Liu(s) if w = x0u and |u|x1

> 0,w /∈ x∗0,

(15)

where Ω is the simply connected domain C \ (]−∞,0]∪ [1,+∞[), over which we

consider the algebra of analytic functions, H (Ω), with the neutral element 1H (Ω).

This provides not only the analytic continuation of (1) to Ω but also extends the in-

dexation to the whole alphabet X , allowing to study the complete generating series

L(z) = ∑
w∈X∗

Liw(z)w (16)

and show that it is the solution of the following first order noncommutative differ-

ential equation




d(S) = (ω0(z)x0 +ω1(z)x1)S, (NCDE)

lim
z∈Ω,z→0

S(z)e−x0 log(z) = 1H (Ω)〈〈X〉〉, asymptotic initinial condition,
(17)

where, for any S ∈ H (Ω)〈〈X〉〉, for term by term derivation, one gets [8]

d(S) = ∑
w∈X∗

d

dz
(〈S | w〉)w. (18)

6 Given a word w ∈ X∗, we note |w|x1
the number of occurrences of x1 within w.

5



This differential system allows to show that L is a ⊔⊔-character [14], i.e.

∀u,v ∈ X∗, 〈L | u⊔⊔ v〉= 〈L | u〉〈L | v〉 and 〈L | 1X∗〉= 1H (Ω). (19)

Note that, in what precedes, we used the pairing 〈• | •〉 between series and

polynomials, classically defined by, for T ∈ C〈〈X〉〉 and P ∈ C〈X〉 7

〈T | P〉= ∑
w∈X∗

〈T | w〉〈P | w〉, (20)

where, when w is a word, 〈S | w〉 stands for the coefficient of w in S. With this at

hand, we extend at once the indexation of Li from X∗ to C〈〈X〉〉 by

LiP := ∑
w∈X∗

〈P | w〉Liw = ∑
n≥0

(
∑

|w|=n

〈P | w〉Liw

)
. (21)

In [6,5,13], it has been established that the polylogarithm, well defined locally

by (1), could be extended to some series (with conditions) by the last part of formula

(21) where the polynomial P is replaced by some series.

As was said previously, we focus here on what happens in the neighbourhood of

zero. Therefore, the aim of this paragraph concerns the two first points of Section

1. which we summarize here

(i) Propagate the extension to local Taylor expansions 8 of polylogarithms and

the coefficients of their quotients by 1− z, namely the harmonic sums, by a

suitable theory of local domains.

(ii) Extend these correspondences (i.e. Li•,H•) to some series in order to preserve

the identity (7).

2.1 Polylogarithms: from global to local domains

The map Li• in general has been extended to a subdomain of C〈〈X〉〉, called

Dom(Li•) (see [6,5,13]). It is the set of series

S = ∑
n≥0

Sn,where Sn := ∑
|w|=n

〈S | w〉 (22)

such that ∑
n≥0

LiSn
is unconditionally convergent for the standard topology on H (Ω)

[17].

Example 2.1 [[10]] For example, the classical polylogarithms: dilogarithm Li2,

trilogarithm Li3, etc... are defined and obtained through this coding by

7 Here R is any commutative ring (like H (Ω),C,Z [γ], ...).
8 Around zero.
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Lik(z) = ∑
n≥1

zn

nk
= Li

xk−1
0 x1

(z) = 〈L(z) | xk−1
0 x1〉

but for t ≥ 0 (real), the series (tx0)
∗x1 belongs to Dom(Li•) iff 0 ≤ t < 1.

Dom(Li) Crat〈〈X〉〉A

C〈〈X〉〉

Above A = C〈X〉⊔⊔Crat〈〈X〉〉 and Crat〈〈X〉〉
is the set of rational series [6,5,13].

This definition has many merits 9 and can easily be adapted to arbitrary (open

and connected) domains. But this definition, based on a global condition of a fixed

domain Ω, does not provide a sufficiently clear interpretation of the stable symbolic

computations around a point, in particular at z = 0. One needs to consider a sort

of “symbolic local germ” worked out explicitely. Indeed, as the harmonic sums

(or MZV) are the coefficients of the Taylor expansion at zero of the convergent

polylogarithms divided by 1− z, we only need to know locally these functions. In

order to gain more indexing series and to describe the local situation at zero, we

reshape and define a new domain of Li around zero to Domloc(Li•). The first step

will be provided by the following theorem.

Theorem 2.2 Let S ∈ C〈〈X〉〉x1⊕C1X∗ such that

S = ∑
n≥0

[S]n where [S]n = ∑
w∈X∗,|w|=n

〈S | w〉w,

([S]n are the homogeneous components of S), we suppose that 0 < R ≤ 1 and that

∑
n≥0

Li[S]n is unconditionally convergent (for the standard topology) within the open

disk |z |< R. Remarking that
1

1− z
∑

n≥0
Li[S]n(z) is unconditionally convergent in the

same domain, we set

9 As the fact that, due to special properties of H (Ω) (it is a nuclear space [17], see details in

[6,5,13]), one can show that Dom(Li) is closed by shuffle products.
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1

1− z
∑
n≥0

Li[S]n(z) = ∑
N≥0

aNzN .

Then, for all N ≥ 0,

∑
n≥0

HπY ([S]n)(N) = aN.

Proof. Let us recall that, for any w ∈ X∗, the function (1− z)−1 Liw(z) is analytic

in the open disk |z|< R. Moreover, one has

1

1− z
Liw(z) = ∑

N≥0

HπY (w)(N)zN.

Since [S]n = ∑
w∈X∗,|w|=n

〈S | w〉w and (1−z)−1 ∑
n≥0

Li[S]n absolutely converges (for the

standard topology 10 ) within the open disk |z|< R, one obtains

1

1− z
∑
n≥0

Li[S]n(z)=
1

1− z
∑
n≥0

∑
w∈X∗,|w|=n

〈S | w〉wLiw(z)

= ∑
n≥0

∑
w∈X∗,|w|=n

〈S | w〉w
Liw(z)

1− z

= ∑
n≥0

∑
w∈X∗,|w|=n

〈S | w〉w ∑
N≥0

HπY (w)(N)zN

= ∑
N≥0

∑
n≥0

∑
w∈X∗,|w|=n

〈S | w〉wHπY (w)(N)zN

= ∑
N≥0

HπY ([S]n)(N)zN.

This implies that, for any N ≥ 0,

aN = ∑
n≥0

HπY ([S]n)(N).

✷

We will need the following combinatorial

Lemma 2.3 For a letter “a”, one has

|(a+)⊔⊔ m | an = m!S2(n,m) (23)

(S2(n,m) being the Stirling numbers of the second kind). The exponential generat-

ing series of R.H.S. in equation (23) (w.r.t. n) is given by

∑
n≥0

m!S2(n,m)
xn

n!
= (ex −1)m. (24)

10 For this topology, unconditional and absolute convergence coincide [17]
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Proof. (a+)⊔⊔ m is the specialization of

Lm = a+1 ⊔⊔ a+2 ⊔⊔ . . .⊔⊔ a+m

to a j → a (for all j = 1,2 . . .m). The words of Lm are in bijection with the sur-

jections [1 . . .n] → [1 . . .m], therefore the coefficient 〈(a+)⊔⊔ m|an〉 is exactly the

number of such surjections namely m!S2(n,m). A classical formula 11 says that

∑
n≥0

m!S2(n,m)
xn

n!
= (ex −1)m. (25)

✷

To prepare the construction of the “symbolic local germ” around zero, let us

set, in the same manner as in [6,5,13],

DomR(Li) := {S ∈ C〈〈X〉〉x1⊕C1X∗|

∑
n≥0

Li[S]n is unconditionally convergent in H (D<R)} (26)

and prove the following:

Proposition 2.4 With the notations as above, we have:

(i) The map ]0,1]→ C〈〈X〉〉 given by R 7→ DomR(Li) is strictly decreasing

(ii) Each DomR(Li) is a shuffle subalgebra of C〈〈X〉〉.

Proof.

(i) It is straightforward that he map R 7−→ DomR(Li) is decreasing. Set now, with

x+1 = x1x∗1 = x∗1 −1,

S(t) = ∑
m≥0

tm(x+1 )
⊔⊔ m

and let [S]n(t) be its homogeneous components, we have

∑
n≥0

Li[S]n(t)(z) =
1− z

1− (t +1)z
.

For 0 < R1 < R2 ≤ 1 it is straightforward that

DomR2
(Li)⊂ DomR1

(Li).

Let us prove that the inclusion is strict.

Take |z |< 1 and let us, be it finite or infinite, evaluate the sum

M(z) = ∑
n≥0

|Li[S]n(t)(z) |= ∑
n≥0

〈S(t) | xn
1〉 |Lixn

1
(z) |

then

11 See [16], the twelvefold way, formula (1.94b)(pp. 74) for instance.
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M(z)= ∑
n≥0

|S(t) | xn
1 |Lixn

1
(z) |

= ∑
n≥0

∑
m≥0

| tm(x+1 )
⊔⊔ m | xn

1 |Lixn
1
(z) |

= ∑
m≥0

m!tm ∑
n≥0

S2(n,m)
|Lix1

(z) |n

n!

≤ ∑
m≥0

m!tm ∑
n≥0

S2(n,m)
Linx1

(|z |)

n!
,

due to the fact that | Lix1
(z) |≤ Lix1

(| z |) (Taylor series with positive coef-

ficients). Finally, in view of equation (25), we get, on the one hand, for

|z |< (t +1)−1,

M(z)≤ ∑
m≥0

tm(eLix1
(|z|)−1)m = ∑

m≥0

tm(
|z |

1− |z |
)m =

1− |z |

1− (t +1) |z |
.

This proves that, for all r ∈]0,
1

t +1
[,

∑
n≥0

‖Li[S]n(t)(z)‖r <+∞.

On the other hand, if (t +1)−1 ≤| z |< 1, one has M(|z|) = +∞, and the pre-

ceding calculation shows that, with t choosen such that

0 ≤
1

R2
−1 < t <

1

R1
−1,

we have S(t)∈DomR1
(Li) but S(t) /∈DomR2

(Li) whence, for 0<R1 <R2 ≤ 1,

DomR2
(Li)( DomR1

(Li).

(ii) One has (proofs as in [6])

(a) 1X∗ ∈ DomR(Li) (because 1X∗ ∈ C〈X〉) and Li1X∗ = 1H (Ω).

(b) Taking S,T ∈ DomR(Li) we have, by absolute convergence, S ⊔⊔ T ∈
DomR(Li). It is easily seen that S ⊔⊔ T ∈ C〈〈X〉〉x1⊕C1X∗ and, moreover,

that LiS LiT = LiS⊔⊔ T
12 .

✷

In Theorem 2.6 bellow, we study, for series taken in C〈〈X〉〉x1 ⊕C.1X∗, the

correspondence Li• to some H (D<R), first (point 1) establishes its surjectivity (in

a certain sense) and then (points 2 and 3) examine the relation between summability

of the functions and that of their Taylor coefficients. For that, let us begin with a

very general lemma on sequences of Taylor series which adapts, for our needs, the

notion of normal families [15].

12 Proof by absolute convergence as in [6].
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Lemma 2.5 Let τ = (an,N)n,N≥0 be a double sequence of complex numbers. Setting

I(τ) := {r ∈]0,+∞[| ∑
n,N≥0

|an,NrN|<+∞},

one has

(i) I(τ) is an interval of ]0,+∞[, it is not empty iff there exists z0 ∈ C \ {0} such

that

∑
n,N≥0

|an,NzN
0 |<+∞ (27)

In this case, we set R(τ) := sup(I(τ)), one has

(a) For all N, the series ∑
n≥0

an,N converges absolutely (in C). Let us note aN -

with one subscript - its limit

(b) For all n, the convergence radius of the Taylor series

Tn(z) = ∑
N≥0

an,NzN

is at least R(τ) and ∑
n∈N

Tn is summable for the standard topology of

H (D<R(τ)) with sum T (z) = ∑
n,N≥0

aNzN .

(ii) Conversely, we suppose that it exists R > 0 such that

(a) Each Taylor series Tn(z) = ∑
N≥0

an,NzN converges in H (D<R).

(b) The series ∑
n∈N

Tn converges unconditionnally in H (D<R).

Then I(τ) 6= /0 and R(τ)≥ R.

Proof.

(i) The fact that I(τ)⊂]0,+∞[ is straightforward from the definition. If it exists

z0 ∈ C such that

∑
n,N≥0

|an,NzN
0 |<+∞

then, for all r ∈]0, |z0|[, we have

∑
n,N≥0

|an,NrN |= ∑
n,N≥0

|an,NzN
0 |

(
r

|z0 |

)N

≤ ∑
n,N≥0

|an,NzN
0 |<+∞

in particular I(τ) 6= /0 and it is an interval of ]0,+∞[ with lower bound zero.

(a) Take r ∈ I(τ) (hence r 6= 0) and N ∈ N, then we get the expected result as

rN ∑
n≥0

|an,N |= ∑
n≥0

|an,NrN |≤ ∑
n,N≥0

|an,NrN |<+∞.

(b) Again, take any r ∈ I(τ) and n ∈ N, then

11



∑
N≥0

|an,NrN |<+∞

which proves that R(Tn)≥ r, hence the result 13 . We also have

| ∑
N≥0

aNrN |≤ ∑
N≥0

rN | ∑
n≥0

an,N |≤ ∑
n,N≥0

|an,NrN |<+∞

and this proves that R(T )≥ r, hence R(T )≥ R(τ).

(ii) Let 0 < r < r1 < R and consider the path γ(t) = r1e2iπt , we have

|an,N |=|
1

2iπ

∫

γ

Tn(z)

zN+1
dz |≤

2π

2π

r1‖Tn‖K

rN+1
1

≤
‖Tn‖K

rN
1

with K = γ([0,2π ]), hence

∑
n,N≥0

|an,NrN |≤ ∑
n,N≥0

|Tn |K (
r

r1

)N ≤
r1

r1 − r
∑
n≥0

‖Tn‖K <+∞.

✷

Theorem 2.6 (i) Let T (z) = ∑
N≥0

aNzN be a Taylor series i.e. such that

limsup
N→+∞

|aN |1/n= B <+∞,

then the series

S = ∑
N≥0

aN(−(−x1)
+)⊔⊔ N (28)

is summable (see [2]) in C〈〈X〉〉 (with sum in C〈〈x1〉〉), S ∈ DomR(Li) with

R = (B+1)−1 and LiS = T .

(ii) Let S ∈ DomR(Li) and S = ∑
≥0

[S]n (homogeneous decomposition), we define

N 7−→ HπY (S)(N) by 14

LiS(z)

1− z
= ∑

N≥0

HπY (S)(N)zN.

(iii) Moreover,

∀r ∈]0,R[, ∑
n,N≥0

|HπY ([S]n)(N)rN |<+∞, (29)

and, for all N ∈N, the series (of complex numbers), ∑
n≥0

HπY ([S]n)(N) converges

absolutely to HπY (S)(N).

13 For a Taylor series T , we note R(T ) the radius of convergence of T .
14 This definition is compatible with the old one when S is a polynomial.
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(iv) Conversely, let Q ∈ C〈〈Y 〉〉 with Q = ∑
n≥0

Qn (decomposition by weights), we

suppose that it exists r ∈]0,1] such that

∑
n,N≥0

|HQn
(N)rN |<+∞, (30)

in particular, for all N ∈ N, ∑
n≥0

HQn
(N) = ℓ(N) ∈ C unconditionally. Under

such circumstances, πX(Q) ∈ Domr(Li) and, for all z ∈ C, |z |≤ r,

LiS(z)

1− z
= ∑

N≥0

ℓ(N)zN, (31)

Proof.

(i) The fact that the series (28) is summable comes from the fact that

ω(aN(−(−x1)
+)⊔⊔ N)≥ N

(see [2]). Now from the lemma, we get

(S)n = ∑
N≥0

(aN(−(−x1)
+)⊔⊔ N)n = (−1)N+naNN!S2(n,N)xn

1.

Then, with r = supz∈K |z| (we have indeed r = ‖Id‖K) and taking into account

that ‖Lix1
‖K ≤ log(1/(1− r)), we have

∑
n≥0

‖Li(S)n
‖K ≤ ∑

n≥0
∑

N≥0

|aN | N!S2(n,N)‖Lixn
1
‖K

≤ ∑
n≥0

∑
N≥0

|aN | N!S2(n,N)
‖Lix1

‖n
K

n!

≤ ∑
N≥0

|aN | ∑
n≥0

N!S2(n,N)
|Lix1

|nK
n!

≤ ∑
N≥0

|aN | (elog( 1
1−r )−1)N

= ∑
N≥0

|aN |

(
r

1− r

)N

.

Now if we suppose that r ≤ (B+ 1)−1, we have r(1− r)−1 ≤ 1/B and this

shows that the last sum is finite.

(ii) This point and next point are consequences of Lemma 2.5.

Now, considering the homogeneous decomposition

S = ∑
n≥0

[S]n ∈ DomR(Li).

we first establish inequation (29). Let 0 < r < r1 < R and consider the path

γ(t) = r1e2iπt , we have

13



|HπY ([S]n)(N) |=|
1

2iπ

∫

γ

Li[S]n(z)

(1− z)zN+1
dz |≤

2π

2π

‖Li[S]n ‖K

(1− r1)r
N+1
1

,

K = γ([0,1]) being the circle of center 0 and radius r1. Taking into account

that, for K ⊂comp. D<R, we have a decomposition

∑
n∈N

|Li[S]n |K= M <+∞,

we get

∑
n,N≥0

|HπY ([S]n)(N)rN |= ∑
n,N≥0

|HπY ([S]n)(N)rN
1 | (

r

r1
)N

= ∑
N≥0

(
r

r1
)N ∑

n≥0

|HπY ([S]n)(N)rN
1 |

≤ ∑
N≥0

(
r

r1
)N M

(1− r1)r1

≤
M

(1− r1)(r1 − r)
<+∞.

The series ∑
n≥0

Li[S]n(z) converges to LiS(z) in H (D<R) (D<R is the open disk

defined by |z|< R). For any N ≥ 0, by Cauchy’s formula, one has,

HπY (S)(N)=
1

2iπ

∫

γ

LiS(z)

(1− z)zN+1
dz

=
1

2iπ

∫

γ

∑n≥0 Li[S]n(z)

(1− z)zN+1
dz

=
1

2iπ ∑
n≥0

∫

γ

Li[S]n(z)

(1− z)zN+1
dz

= ∑
n≥0

HπY ([S]n)(N)

the exchange of sum and integral being due to the compact convergence. The

absolute convergence comes from the fact that the convergence of ∑
n≥

Li[S]n(z)

is unconditional [17].

(iii) Fixing N ∈ N, from inequation (30), we get ∑
n≥0

| HQn
(N) |< +∞ which

proves the absolute convergence. Remark now that (πX(Q))n = πX(Qn) and

πY (πX(Qn)) = Qn, one has, for all |z |≤ r

|LiπX (Qn)(z) |=| ∑
N∈N

HQn
(N)zN |≤| ∑

N∈N

HQn
(N)rN |,

in other words

14



‖LiπX (Qn) ‖D≤r ≤| ∑
N∈N

HQn
(N)rN |

and

∑
n∈N

‖LiπX (Qn) ‖D≤r ≤| ∑
n,N∈N

HQn
(N)rN |<+∞

which shows that πX(Q) ∈ Domr(Li). The equation (31) is a consequence of

point 2, taking S = πX(Q).

✷

Definition 2.7 We set

Domloc(Li) =
⋃

0<R≤1

DomR(Li);Dom(H•) = πY (Domloc(Li))

and, for S ∈ Domloc(Li),

LiS(z) = ∑
n≥0

Li[S]n(z) and
LiS(z)

1− z
= ∑

N≥0
HπY (S)(N)zN .

Observe that, from this definition, theorem (2.8), will show that Dom(H•) is a

stuffle subalgebra of C〈〈Y 〉〉.

(i) The series T =
∞

∑
n=1

(−1)n−1yn/n ∈ C〈〈Y 〉〉 is not in Dom(H•) because, for all

0 < r < 1, one has

∑
n,N

|Tn(N)rN |≥ ∑
n≥0

1

1− r
=+∞ (32)

However one can get unconditional convergence using a sommation by pairs

(odd + even).

(ii) For all s ∈]1,+∞[, the series T (s) =
∞

∑
n=1

(−1)n−1ynn−s ∈ C〈〈Y 〉〉 is in

Dom(H•).

We can now state the

Theorem 2.8 Let S,T ∈ Domloc(Li), then

S ⊔⊔ T ∈ Domloc(Li),πX(πY (S) πY (T )) ∈ Domloc(Li)

and for all N ≥ 0,

LiS⊔⊔ T =LiS LiT ; Li1X∗ = 1H (Ω), (33)

HπY (S) πY (T )(N)=HπY (S)(N)HπY (T )(N). (34)

LiS(z)

1− z
⊙

LiT (z)

1− z
=

LiπX (πY (S) πY (T ))(z)

1− z
. (35)
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Proof. For equation (33), we get, from lemma 2.4 that Domloc(Li) is the union of

an increasing set of shuffle subalgebras of C〈〈X〉〉. It is therefore a shuffle subalge-

bra of the latter.

For equation (34), suppose S ∈ Dom
R1

0 (Li) (resp. T ∈ Dom
R2

0 (Li)). By [9] and

theorem 2.6, one has

LiS(z)

1− z
⊙

LiT (z)

1− z
∈ Dom

R1R2

0 (Li),

where ⊙ stands for the Hadamard product [9]. Hence, for |z|< R1R2, one has

f (z) =
LiS(z)

1− z
⊙

LiT (z)

1− z
= ∑

N≥0

HπY (S)(N)HπY (T )(N)zN (36)

and, due to theorem 2.6 point (iii), for all N, ∑
p≥0

HπY (Sp)(N) = HπY (S)(N) and

∑q≥0 HπY (Tq)(N) = HπY (T )(N) (absolute convergence) then, as the product of two

absolutely convergent series is absolutely convergent (w.r.t. the Cauchy product),

one has, for all N,

HπY (S)(N)HπY (T )(N)=

(
∑
p≥0

HπY (Sp)(N)

)(
∑
q≥0

HπY (Tq)(N)

)

= ∑
p,q≥0

HπY (Sp)(N)HπY (Tq)(N)

= ∑
n≥0

∑
p+q=n

HπY (Sp) πY (Tq)(N)

= ∑
n≥0

H(πY (S) πY (T ))n
(N). (37)

Remains to prove that condition of Theorem 2.6, i.e. inequation (30) is fulfilled.

To this end, we use the well-known fact that if ∑m≥0 cm zm has radius of convergence

R> 0, then ∑
m≥0

|cm | zm has the same radius of convergence (use 1/R= limsupm≥1 |

cm |
−m), then from the fact that S∈Dom

R1

0 (Li) (resp. T ∈Dom
R2

0 (Li)), we have (29)

for each of them and, using the Hadamard product of these expressions, we get

∀r ∈]0,R1.R2[, ∑
p,q,N≥0

|HπY (Sp)(N)HπY (Tq)(N)rN |<+∞,

and this assures, for |z|< R1R2, the convergence of

f (z) = ∑
n,N≥0

H(πY (S) πY (T ))n
(N)zN (38)

applying theorem 2.6 point (iv) to Q = πY (S) πY (T ) (with any r < R1R2), we get

πX(Q) = πX(πY (S) πY (T )) ∈ Domloc(Li) and
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f (z) = ∑
N≥0

(
∑
n≥0

H(πY (S) πY (T ))n
(N)

)
zN =

LiπX (πY (S) πY (T ))(z)

1− z
.

hence (34). ✷

2.2 Stuffle product and stuffle characters

For the some reader’s convenience, we recall here the definitions of shuffle and

stuffle products. As regards shuffle, the alphabet X is arbitrary and ⊔⊔ is defined

by the following recursion (for a,b ∈ X and u,v ∈ X ∗)

u⊔⊔ 1X ∗ = 1X ∗ ⊔⊔ u = u, (39)

au⊔⊔ bv= a(u⊔⊔ bv)+b(au⊔⊔ v). (40)

As regards stuffle, the alphabet is Y = YN≥1
= {ys}s∈N≥1

and is defined by the

following recursion

u 1Y ∗ = 1Y ∗ u = u, (41)

ysu ytv= ys(u ytv)+ yt(ysu v)+ ys+t(u v). (42)

Be it for stuffle or shuffle, the noncommutative 15 polynomials equipped with this

product form an associative commutative and unital algebra namely (C〈X〉,⊔⊔,1X∗)
(resp. (C〈Y 〉, ,1Y ∗)).

Example 2.9 As examples of characters, we have already seen

• Li• from (Domloc(Li•),⊔⊔,1X∗) to H (Ω)

• H• from (Dom(H•), ,1Y ∗) to CN (arithmetic functions N−→C)

In general, a character from a k-algebra 16 (A ,∗1,1A ) with values in

(B,∗2,1B) is none other than a morphism between the k-algebras A and a com-

mutative algebra 17 B. The algebra (A ,∗1,1A ) does not have to be commutative

for example characters of (C〈X 〉,conc,1X ∗) - i.e. conc-characters - where all

proved to be of the form [7]
(

∑
x∈X

αxx

)∗

(43)

i.e. Kleene stars of the plane [6,5,13]. They are closed under shuffle and stuffle and

endowed with these laws, they form a group. Expressions like (43) (i.e. homoge-

neous series of degree 1) form a vector space noted Ĉ.Y .

15 For concatenation.
16 Here we will use k =Q or C.
17 In this context all algebras are associative and unital.
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As a consequence, given P = ∑
i≥1

αiyi and Q = ∑
j≥1

β jy j, we know in advance

that their stuffle is a conc-character i.e. of the form ( ∑
n≥1

cnyn)
∗. Examining the

effect of this stuffle on each letter (which suffices), we get the identity [7]
(

∑
i≥1

αiyi

)∗ (
∑
j≥1

β jy j

)∗

=

(
∑
i≥1

αiyi + ∑
j≥1

β jy j + ∑
i, j≥1

αiβ jyi+ j

)∗

(44)

which suggests to take an auxiliary variable, say q, and code “the plane” Ĉ.Y , i.e.

expressions like (43), like in Umbral calculus by

πUmbra
Y : ∑

n≥1

αn qn 7−→ ∑
n≥1

αnyn (45)

which is linear and bijective 18 from C+[[q]] to Ĉ.Y .

With this coding at hand and for S,T ∈ C+[[q]], identity (44) reads

(πUmbra
Y (S))∗ (πUmbra

Y (T ))∗ = (πUmbra
Y ((1+S)(1+T )−1))∗ (46)

This shows that if one sets, for z ∈ C and T ∈ C+[[x]],

G(z) = (πUmbra
Y (ezT −1))∗ (47)

we get a one-parameter stuffle group 19 , drawn on 1+C[z]+〈〈Y 〉〉 (a Magnus group),

i.e. such that every coefficient is polynomial in z. Differentiating it we get

d

dz
(G(z)) = (πUmbra

Y (T ))G(z) (48)

and (48) with the initial condition G(0) = 1Y ∗ integrates as

G(z) = exp (zπUmbra
Y (T )) (49)

where the exponential map for the stuffle product is defined, for any P ∈ C〈〈Y 〉〉
such that 〈P | 1Y ∗〉= 0, is defined by

exp (P) := 1Y ∗ +
P

1!
+

P P

2!
+ . . .+

P n

n!
+ . . . . (50)

In particular, from (49), one gets, for k ≥ 1,

(zyk)
∗= exp

(
− ∑

n≥1

ynk

(−z)n

n

)
. (51)

This expression and that of

1

Γ(1+ z)
= exp

(
γz− ∑

n≥2

ζ (n)
(−z)n

n

)
(52)

18 Its inverse will be naturally noted πUmbra
q .

19 i.e. G(z1 + z2) = G(z1) G(z2);G(0) = 1Y∗ .
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suggests to consider lacunary analogues of the inverse Gamma function together

with a character which sends y1 to γ and yn,n ≥ 2 to ζ (n). This -character is

provided by asymptotic analysis of the Harmonic Sums. Indeed, one can show

that, w ∈ Y ∗ being given, the asymptotic expansion of N 7−→ Hw(N), along the

asymptotic scale (log(N)pN−q)p,q∈N, at any rate 20 , can be written

∑
q≥0

Qw,q(log(N))N−q, (53)

where Qw,q ∈ C[X ] (univariate polynomials) and, in particular, Qw,0 ∈Q[γ][X ] [3].

From this and the fact that H• is a -character, one gets that w 7−→ Qw,q (resp.

γ• : w 7−→ Qw,q(0)) is a -character with values in Q[γ][X ] (resp. Q[γ][X ]).

Now, a domain 21 Ω being given, it is easy to see that any -character χ (with

general complex values and in particular γ•) classically extends H (Ω)〈Y 〉 by

χ(P) = ∑
w∈Y ∗

〈P | w〉〈χ | w〉 (54)

as a -character from H (Ω)〈Y〉 with values in H (Ω).

Now, we can extend χ to some series, over Y . For that, let us set as above and

as in [6,5,13],

Definition 2.10 For any T ∈ H (Ω)〈〈Y〉〉, we note [T ]n the homogeneous compo-

nent 22 ∑
|w|=n

〈T | w〉w of T

Dom(χ ,Ω) = {T ∈ H (Ω)〈〈Y〉〉|(χ(Tn))n∈N is summable in H (Ω)} (55)

The result, ∑
n≥0

χ(Tn) will be noted χ̂(T ).

This being defined, we have the following theorem

Theorem 2.11 Let χ : C〈Y 〉 −→ C be a -character 23

(i) H (Ω)〈Y〉 ⊂ Dom(χ ,Ω)

(ii) If S,T ∈ Dom(χ ,Ω) then S T ∈ Dom(χ ,Ω) 24 and

χ̂(S T ) = χ̂(S)χ̂(T ) (56)

(iii) If S ∈ Dom(χ ,Ω), then exp (S) ∈ Dom(χ ,Ω) and

χ̂(exp (S)) = eχ̂(S)

20 This means that the following expression is the limit of all partial asymptotic expansions.
21 Open, nonempty and connected subset of C.
22 The weight (w) of w ∈Y ∗ is just the sum of its indices
23 We will still note its extension to H (Ω)〈Y 〉 by χ .
24 In fact Dom(χ ,Ω) is a subalgebra of (H (Ω)〈〈Y 〉〉, ,1Y ∗)
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Proof.

(i) By finitely supported sum.

(ii) S,T ∈ Dom(χ ,Ω) then (χ(Sp))p≥0,(χ(Tq))p≥0 are summable. But, as is

graded for the weight, one has [S T ]n = ∑p+q=n[S]p [T ]q. Take any K

nonempty compact within Ω, then

∑
n≥0

‖χ([S T ]n)‖K = ∑
n≥0

‖χ

(
∑

p+q=n

[S]p [T ]q

)
‖K

= ∑
n≥0

‖ ∑
p+q=n

χ([S]p)χ([T ]q)‖K

≤ ∑
n≥0

‖ ∑
p+q=n

χ([S]p)‖K‖χ([T ]q)‖K

= ∑
p,q≥0

‖χ([S]p)‖K‖χ([T ]q)‖K <+∞.

The same computation without the seminorm proves (56).

(iii) If S ∈ Dom(χ ,Ω) and we have to examine (and prove) the summability of the

family (χ([exp (S)]n))n≥0. Setting S = ∑q≥0[S]q, we have

[exp (S)]n = ∑
m≥0

∑
q1+2q2+···mqm=n

[S]
q1

1 · · · [S]
qm

m

q1!q2! · · ·qm!
. (57)

Hence, with all qi > 0,

∑
n≥0

‖χ([exp (S)]n)‖K ≤ 1+ ∑
n>0

∑
m>0

∑
q1+2q2+···mqm=n

(58)

‖χ([S]1‖
q1

K · · ·‖χ([S]m)‖
qm

K

q1!q2! · · ·qm!

≤ ∏
q≥1

e‖χ([S]q‖K

= e∑q≥1 ‖χ([S]q‖K

= eM <+∞. (59)

because, as S ∈ Dom(χ ,Ω), we have ∑q≥1 ‖χ([S]q)‖K = M <+∞.

✷

2.3 A remarkable set of exponents

On the formal side, from (51), we have [7]

(zkyk)
∗ = exp

(
− ∑

n≥1

ynk

(−z)nk

n

)
, for z ∈ C, |z |< 1, (60)
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and transform it through the -character γ̂•. First of all, we compute the radius of

convergence of the image of the exponent (for coherence with the “bullet-notation”,

we will note γyn the image of yn by the character γ•) which gives [5]

for z ∈ C, |z |< 1, ℓk(z) =





γz− ∑
n≥2

ζ (n)
(−z)n

n
if k = 1,

− ∑
n≥1

ζ (nk)
(−z)nk

n
if k > 1.

(61)

Then, from the fact that 1 < ζ (n)≤ ζ (2) = π2/6 (for n ≥ 2), we get that the radius

of convergence of all ℓk(z) is R = 1. Therefore, we set Ω = D<1, the open disk of

radius one centered at zero and get that all − ∑
n≥1

ynk(−z)nk/n belong to Dom(γ̂•,Ω).

Third point of theorem (2.11) implies at once

• Their exponentials [5,7]

(zkyk)
∗ = exp

(
− ∑

n≥1

ynk

(−z)nk

n

)
; for z ∈ C, |z |< 1. (62)

are all in Dom(γ̂•,Ω) and therefore linearly independent.

• and their transforms through γ̂• follow exponentiation (for z ∈C, |z |< 1), i.e. [5]

γ̂(zyk)∗ = exp(ℓk(z)) =





exp

(
γz− ∑

n≥2

(−z)nζ (n)

n

)
if k = 1,

exp

(
− ∑

n≥1

ζ (nk)
(−z)nk

n

)
if k > 1.

(63)

This leads us to set, for all k ≥ 1 and for z ∈ C, |z |< 1, [5]

Γyk
(1+ z) := e−ℓk(z), for z ∈ C, |z |< 1. (64)

Proposition 2.12 ([5]) The families (ℓr)r≥1 and (eℓr)r≥1 are C-linearly free and

free from 1H (Ω).

Proof. Since (ℓr)r≥1 is triangular 25 then (ℓr)r≥1 is C-linearly free. So is (eℓr −
eℓr(0))r≥1, being triangular, we get that (eℓr)r≥1 is C-linearly independent and free

from 1H (Ω). ✷

Now, for any r ≥ 1, let Gr (resp. Gr) denote the set (resp. group) of solutions,

{ξ0, . . . ,ξr−1}, of the equation zr = (−1)r−1 (resp. zr = 1). If r is odd, it is a group

25 A family (gi)i≥1 is said to be triangular if the valuation of gi,ϖ(gi), equals i ≥ 1. It is easy to

check that such a family is C-linearly free and that is also the case of families such that (gi−g(0))i≥1

is triangular.
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as Gr = Gr otherwise it is an orbit as Gr = ξGr, where ξ is any solution of ξ r =−1

(this is equivalent to ξ ∈ G2r and ξ /∈ Gr). For r,q ≥ 1, we will need also a system

X of representatives of Gqr/Gr, i.e. X⊂ Gqr such that

Gqr =
⊎

τ∈X

τGr. (65)

It can also be assumed that 1 ∈ X as with X= {e2ikπ/qr}0≤k≤q−1.

Proposition 2.13 ([5]) (i) For r ≥ 1,χ ∈ Gr and z ∈ C, |z| < 1, the functions ℓr

and eℓr have the symmetry, ℓr(z) = ℓr(χz) and eℓr(z) = eℓr(χz).

In particular, for r even, as −1 ∈ Gr, these functions are even.

(ii) For |z|< 1, we have

ℓr(z) =− ∑
χ∈Gr

log(Γ(1+χz)) and eℓr(z) = ∏
χ∈Gr

eγχz ∏
n≥1

(1+χz/n)e−χz/n.

(iii) For any odd r ≥ 2,

Γ−1
yr
(1+ z) = eℓr(z) = Γ−1(1+ z) ∏

χ∈Gr
r{1}

eℓ1(χz)

(iv) and, in general, for any odd or even r ≥ 2,

ℓr(z) = ∏
χ∈Gr

eℓ1(χz) = ∏
n≥1

(1+ zr/nr).

(v) For r ≥ 1, the function ℓr is holomorphic on the open unit disc, D<1,

(vi) For r ≥ 1, the function eℓr (resp. e−ℓr ) is entire (resp. meromorphic), and

admits a countable set of isolated zeroes (resp. poles) on the complex plane

which is expressed as
⊎

χ∈Gr
χZ≤−1.

Proof. The results are known for r = 1 (i.e. for Γ−1). For r ≥ 2, we get

(i) By (61), with χ ∈ Gr, we get

ℓr(χz) =− ∑
n≥1

ζ (kr)
(−χrzr)k

k
=− ∑

k≥1

ζ (kr)
(−zr)k

k
= ℓr(z),

thanks to the fact that, for any χ ∈ Gr, one has χr = 1.

In particular, if r is even then ℓr(z) = ℓr(−z), i.e. ℓr is even.

(ii) If r is odd, as Gr = Gr and, applying the symmetrization principle 26 , we get

26 Within the same disk of convergence as f , one has,

f (z) = ∑
n≥1

anzn and ∑
χ∈Gr

f (χz) = r ∑
k≥1

arkzrk.
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− ∑
χ∈Gr

ℓ1(χz) =− ∑
χ∈Gr

ℓ1(χz) = r ∑
k≥1

ζ (kr)
(−z)kr

kr
= ∑

k≥1

ζ (kr)
(−zr)k

k
.

The last term being due to the fact that, precisely, r is odd.

If r is even, we have the orbit Gr = ξGr (still with ξ r = −1) and then, by

the same principle,

− ∑
χ∈Gr

ℓ1(χξ z) = r ∑
k≥1

ζ (kr)
(−ξ z)kr

kr
= ∑

k≥1

ζ (kr)

(
(−ξ z)r

)k

k
= ∑

k≥1

ζ (kr)

(
−zr

)k

k
.

(iii) Straightforward.

(iv) Due to the fact that the external product is finite, we can distribute it on each

factor and get

eℓr(z) =

=1︷ ︸︸ ︷(
∏

χ∈Gr

eγχz
)

∏
n≥1

χ∈Gr

(
1+

χz

n

)
e−

χz
n =

=1︷ ︸︸ ︷(
∏
n≥1

χ∈Gr

e−
χz
n

)
∏
n≥1

χ∈Gr

(
1+

χz

n

)
.

Using the elementary symmetric functions of Gr, we get the expected result.

(v) One has eℓ1(z) = Γ−1(1+ z) which proves the claim for r = 1. For r ≥ 2,

note that 1 ≤ ζ (r)≤ ζ (2) which implies that the radius of convergence of the

exponent is 1 and means that ℓr is holomorphic on the open unit disc. This

proves the claim.

(vi) The function eℓr(z) = Γ−1
yr
(1+ z) (resp. e−ℓr(z) = Γyr(1+ z)) is entire (resp.

meromorphic) as finite product of entire (resp. meromorphic) functions, for

r ≥ 1. The factorization in Proposition 2.13 yields the set of zeroes (resp.

poles).

✷

As an example of projection, through γ̂• of an algebraic identity let us mention,

for any z ∈ C, |z |< 1, one has, from (51), [7]

(zkyk)
∗ (−zkyk)

∗ = (−z2ky2k)
∗, (66)

which, transformed by γ̂• and for | |z |< 1 and k ≥ 1, amounts to Euler’s reflection

formula (generalized to arbitrary k) [5]

Γy2r
(1+ z) = Γyr(1+ρz)Γyr(1+ρξ z), (67)

where ρ is a 2rth−root of (−1) and ξ a primitive 2rth root of unity.

It is well known that the function eℓ1(z) = Γ−1(1 + z) is entire. In fact, all

functions (64) are so (see Proposition 2.12). From this, ones get that (67) holds on

the whole plane.
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Example 2.14 [[12,11]] Let us give examples relating to polyzetas. For that, we

use the following identities, for z ∈ C, |z |< 1, (see [7])

(−zx1)
∗
⊔⊔(zx1)

∗ = 1 and (−zy1)
∗)∗ (zy1)

∗ = (−z2y2)
∗,

(−z2x0x1)
∗
⊔⊔(z2x0x1)

∗ = (−z4x2
0x2

1)
∗ and (−z2y2)

∗ (z2y2)
∗ = (−z4y4)

∗.

• From (67) and for r = 1, we have

γ̂(−z2y2)∗
= γ̂(zy1)∗ γ̂(−zy1)∗

Γ−1
y2

(1+ iz)=Γ−1
y1

(1+ z)Γ−1
y1
(1− z)

e
− ∑

n≥2
ζ (2n)z2n/n

=
sin(zπ)

zπ
= ∑

k≥1

(ziπ)2k

(2k)!
.

One can show (with a suitable extension of ζ , see [12,11]) that 27 γ̂(−z2y2)∗
=

ζ ((−z2x0x1)
∗). Then, identifying the coeffients of z2k, we get

ζ (

ktimes︷ ︸︸ ︷
2, . . . ,2)

π2k
=

1

(2k+1)!
∈Q.

• Now, with r = 2, letting ρ4 =−1, we have

γ̂(−z4y4)∗
= γ̂(z2y2)∗

γ̂(−z2y2)∗

Γ−1
y4

(1+ z)=Γ−1
y2

(1+ρz)Γ−1
y2
(1+ iρz),

e
− ∑

k≥1
ζ (4k)(−1)kz4k/k

=
sin(iρzπ)

iρzπ

sin(ρπz)

zπρ
.

Again, with a suitable extension of 28 ζ (see [12,11])

γ̂(−z4y4)∗
= ζ ((−z4y4)

∗), γ̂(−z2y2)∗
= ζ ((−z2y2)

∗), γ̂(z2y2)∗
= ζ ((z2y2)

∗)

then, using the poly-morphism ζ , we obtain

ζ ((−z4y4)
∗)= ζ ((−z2y2)

∗)ζ ((z2y2)
∗)

= ζ ((−z2x0x1)
∗)ζ ((z2x0x1)

∗))

= ζ ((−4z4x2
0x2

1)
∗).

It follows then, by identification the coeffients of z4k, that

ζ (

ktimes︷ ︸︸ ︷
3,1, . . . ,3,1)

π4k
=

4kζ (

ktimes︷ ︸︸ ︷
4, . . . ,4)

π4k
=

2

(4k+2)!
∈Q.

27 Recall that, for any w ∈Y ∗ \ y1Y ∗, one has γw = ζ (πX(w)) [13] and then it can be extended over

series.
28 idem.
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3 Conclusion

Noncommutative symbolic calculus allows to get identities easy to check and to

implement. With some amount of complex and functional analysis, it is possible

to bridge the gap between symbolic, functional and number theoretic worlds. This

was the case already for polylogarithms and polyzetas. This is the project of this

paper and will be pursued in forthcoming works.
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