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Abstract10

Optimizing the duration of delivery tours is a crucial issue in urban logis-

tics. In most cases, travel times between locations are considered as constant

for the whole optimization horizon. Making these travel times time-dependent

is particularly relevant in real urban traffic environments as traffic conditions

and thus travel speeds vary according to the time of the day. In this paper, we15

review the literature on time-dependent routing problems, with a specific focus

on benchmarks and performance criteria used to experimentally evaluate the

interest of exploiting time-dependent data, showing the lack of studies on the

impact of spatio-temporal features of the benchmark on solutions. Hence, we in-

troduce a new benchmark produced from a realistic traffic flow micro-simulation20

of Lyon city, allowing us to consider different levels of spatial granularity (i.e.,

number of sensors used to measure traffic conditions) and temporal granularity

(i.e., frequency of measures). Finally, we experimentally evaluate the impact of

the spatio-temporal granularity on the quality of solutions for different classical

problems, including the traveling salesman problem, the pickup and delivery25

problem, and the dial-a-ride problem.

Keywords. Urban freight, Spatio-temporal granularity, Traveling salesman

problem, Pickup and delivery problem, Dial-a-ride problem, Time-dependent

cost functions

1. Introduction30

Mobility of goods is vital to urban life [1] but is one of the leading causes of

congestion in cities and does, in return, suffer from this issue which has enormous

implications [2]. Optimizing freight deliveries is thus a key to rendering mobility

systems efficient and make our cities prosper and livable again. This issue is the

main objective of the general pickup and delivery problem (GPDP), the goal of35

which is to minimize the travel time for visiting a given set of locations to pick

up and/or deliver goods. Different constraints may be added on the visiting
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Figure 1: Illustration of the impact of time-step granularity. Left: With two time-steps of 6
minutes, such that costs of (0, 3), (1, 3), and (3, 2) increase between the first and the second
time-step due to congestion, the best tour is T1 = 〈0, 3, 1, 2, 0〉, with a duration of 10 minutes.
Right: With one time-step of 12 minutes (such that costs of edges are averaged over the two
6-minute time-steps), the best tour is T2 = 〈0, 1, 2, 3, 0〉 with a duration of 14 minutes.

order, the loading capacity of the vehicles, the number of available vehicles, or

the time windows to respect when visiting locations.

Classically, travel times between locations to visit are assumed to be con-40

stant. This is not realistic because traffic conditions are not constant through-

out the day, especially in a urban context. As a consequence, quickest paths

(i.e., successions of road links), and travel times between locations may change

along the day. To fill this lack of realism in the classical GPDP, cost functions

that define travel times must be adapted to traffic dynamics and become time-45

dependent. Optimizing freight tours with a realistic traffic dynamic description

is thus related to solving the time-dependent GPDP (TD-GPDP), which takes

into account variations of travel times during the day [3].

A crucial question is: what is the effect of integrating time-dependency in

the quality of the optimal tours, and does this effect depend on the granularity50

of the function that defines travel times? Fig. 1 shows through a simple toy

example how a sole change of the temporal granularity unveils different tours

with different durations. This issue may be amplified for complex road networks

of thousands of links and for whole day time horizons.

A spatial dimension should also be studied. Indeed, data used to estimate55

travel times are often coming from sensors, and the number and location of these

sensors may have an impact on the quality of travel time estimations which in
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turn may have an impact on the quality of optimal tours.

To study the impact of the spatio-temporal granularity of data on tour

quality, we introduce a new benchmark that has been built by using a micro-60

simulation software of the Lyon conurbation as a proxy of the reality. We con-

sider different levels of spatial granularity, by varying the number and position

of sensors, and different levels of temporal granularity, by varying the frequency

of the measures. This benchmark is used to experimentally evaluate the impact

of the spatio-temporal granularity of data on the quality of tours.65

The rest of the paper is organized into five sections. In Section 2, we review

the literature on TD-GPDPs, with a focus on benchmarks and performance

criteria used in experimental evaluations. We show the interest of introducing

our new benchmark and motivate our experimental study. In Section 3, we

formally define the TD-GPDP, and show how this general problem may be70

instantiated into well-known specific problems. In Section 4, we describe the

dynamic programming approach used to solve TD-GPDPs in our experimental

study. In Section 5, we introduce a new benchmark for TD-GPDPs that has been

built by using new techniques and simulation models originating from traffic flow

theory. In Section 6, we experimentally evaluate the interest of exploiting time-75

dependent cost functions, and we evaluate the impact of the spatio-temporal

granularity of data on the quality of solutions for different TD-GPDP variants.

2. Literature Review

A review of time-dependent routing problems is provided in [3]. This review80

mainly focuses on travel time and speed models (deterministic and stochastic

ones), on time-dependent point-to-point route planning that aims at finding the

quickest path from an origin to a destination point, on time-dependent multi-

point routing problems and on existing approaches for solving these problems

up to 2015. However, performance criteria and benchmarks used to evaluate85

these approaches are not described in this review.
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Problem Constraints Solving Data
Ref (Year) TSP VRP TW Q approach Artificial #pts #steps size

[4] (1992) X X X X ILP X 25 3 -
[5] (1996) X DP X 55 3 -
[6] (2002) X LS X 127 2 -
[7] (2003) X X LS X 100 3 -
[8] (2004) X X CH 786 50 20
[9] (2005) X X X GA X 100 30 60

[10] (2005) X CH X 127 2 180
[11] (2006) X X X LS 19 15 15
[12] (2008) X X LS X 80 144 10
[13] (2008) X X X ACO 30 10 60
[14] (2012) X X CH 40 672 60
[15] (2012) X ACO X 318 140 5
[16] (2012) X X X CH X 200 5 -
[17] (2014) X ILP X 40 3 -
[18] (2015) X CP 30 65 6
[19] (2017) X X ILP X 40 3 -
[20] (2018) X X ILP X 40 73 -
[21] (2019) X X ILP X 40 73 -
[22] (2020) X X X LS X 151 5 180

Current paper X X X X DP 61 120 6

Table 1: Literature review. For each reference, we specify the kind of problem and constraints
considered (TW = Time Windows; Q = Capacity constraints), the solving approach (DP =
Dynamic Programming; CP = Constraint Programming; ILP = Integer Linear Programming;
GA = Genetic Algorithm; LS = Local Search; ACO = Ant Colony Optimization; CH =
Constructive Heuristic), and the kind of data used in the experiments (#pts = maximum
number of visit points; #steps = maximum number of time-steps per day (resp. per week) for
all references but [14] (resp. for [14]); size = size of the corresponding time-step in minutes).
The size for [8] is based on a specific aggregation algorithm and we estimate it to be roughly
around 20 minutes. The account of the current paper is specified in the last line. We solve a
particular variant of the VRP corresponding to the TD-TW-mDARP, as described in Section
3.2.
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In this section, we review 19 papers of the literature on time-dependent

multi-point routing problems, listed in Table 1. These papers consider the

Travelling Salesman Problem (TSP) where a single vehicle must visit a given

set of points, or Vehicle Routing Problems (VRPs) which extend the TSP by90

considering a fleet of vehicles instead of a single vehicle. In some cases, problems

have additional constraints: time window constraints, which ensure that points

are visited within given time intervals, or capacity constraints, which ensure that

the load of a vehicle never exceeds its capacity. In [22], precedence constraints

are added to model a pickup and delivery problem.95

In Section 2.1, we briefly describe the approaches used to solve these prob-

lems. In Sections 2.2 and 2.3, we review the performance criteria and bench-

marks used to evaluate these approaches. This review motivates us to introduce

a new benchmark, and these motivations are presented in Section 2.4.

2.1. Solving approaches100

Time-dependent TSPs and VRPs are NP-hard problems as they are gener-

alizations of the TSP, which is NP-hard [23].

In some papers, (meta-)heuristic approaches are considered: simulated an-

nealing in [6], ant colony optimization in [13, 15], tabu search in [7, 11, 12],

genetic algorithms in [9], adaptive large neighborhood search [22] and construc-105

tion based heuristics in [8, 10, 14, 16]. These meta-heuristic approaches have

polynomial-time complexities but, as a counterpart, there is no guarantee on

the computed solution’s quality.

Other papers consider exact approaches which compute optimal solutions

(and prove optimality) but have exponential-time complexities. An approach110

based on Constraint Programming (CP) has been proposed in [18], and an ap-

proach based on Dynamic Programming (DP) has been proposed in [5]. All

other exact approaches are based on Integer Linear Programming (ILP). A first

ILP formulation is due to Malandraki and Daskin [4]. Later on, several ap-

proaches have been devised, for example, [17, 19, 21]. Recently, Vu et al. [20]115

have proposed an approach based on time-expanded networks which outper-
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forms all other ILP approaches for the time-dependent TSP with time windows.

2.2. Performance criteria

Experiments reported in [4, 5, 6, 10, 12, 15, 16, 17, 19, 20, 21, 22] mainly aim

at evaluating the efficiency of a new solving approach. In this case, the main120

performance criterion is the search effort (which is usually measured by means

of CPU time) and solutions computed with time-dependent data are usually not

compared with solutions computed with constant data.

Time-dependent TSPs and VRPs are much more challenging problems than

their constant counterparts. Hence, it is worth studying the interest of solving125

these problems. In other words, if solutions computed with time-dependent

data are not better than solutions computed with constant data, then it is not

interesting to design algorithms for solving time-dependent problems.

A few papers have evaluated the interest of exploiting time-dependent data

by comparing solutions computed with time-dependent and constant data. In130

[7, 9, 11, 14, 22], travel times are simply compared. These studies show that

travel times are underestimated when using constant data (by around 7% in

[11], for a range of 16-20% in [14], up to 50% in [9], and up to 78% in [7]).

However, this simple performance criterion does not tell us if the solution

computed with constant data is different from the solution computed with time-135

dependent data: it may be possible that in both solutions the points are visited

in the same order, and that travel time differences only come from the fact that

travel times are computed with different cost functions. For example, in Fig. 1,

the travel time of tour T1 increases from 10 to 15 when evaluating it with the

right side cost function instead of the left side one, whereas the travel time of140

tour T2 increases from 14 to 17 when evaluating it with the left side cost function

instead of the right side one.

Hence, another performance criterion is considered in [8, 13, 18]: to compare

a constant and a time-dependent solution, travel times of both solutions are

evaluated with the time-dependent cost function (which is closer to real traffic145

conditions). In this case, if the two solutions visit points in the same order,
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they have identical travel times. In [8] (resp. [13]), it is shown that constant

solutions are 10% (resp. 7%) longer than time-dependent ones when evaluating

all solutions with time-dependent cost functions. In [18], it is shown that, for

40% of the instances, constant and time-dependent solutions are identical and,150

for 10% of the instances, constant solutions are more than 5% longer than time-

dependent solutions.

In some papers, performance is also measured by means of time window

feasibility. For example, in [11], it is shown that some time windows are missed

when optimizing with constant data, and in [22], it is shown that tours optimized155

with constant data violate 3% of the time windows.

2.3. Benchmarks

As shown in column Artificial of Table 1, many benchmarks are based on

artificial data, which have been randomly generated. These benchmarks do not

reflect the reality of urban traffic and cannot be used to evaluate the interest160

of exploiting time-dependent data. For example, the benchmark introduced in

[17] (which is widely used to evaluate algorithm run times) has been randomly

generated and it only considers three time-steps: the first and third time-steps

correspond to morning and evening rush hours, respectively, and the second one

corresponds to the middle of the day when the traffic demand is lower.165

A realistic benchmark is described in [8], based on stationary control centers

that collect speed information from a number of specially equipped vehicles

in the Berlin metropolitan area. The collected data is then aggregated and

transmitted to all vehicles as a driving recommendation. This data, however, is

quite old (from 1988 to 1996), and the used transmission techniques are currently170

out of date. In [11] and [14], Floating Car Data (FCD) are used to generate

benchmarks targeting a large regional area of the northwest of England for [11]

and the area of Stuttgart in [14]. In [13], an automated traffic control system

is used to collect traffic information on the Padua road network. In [8] (resp.

[11], [13], and [14]), the size of the finest time-step is fixed to 20 (resp. 15, 60175

and 60) minutes, i.e., travel times are updated every 20 (resp. 15, 60, and 60)
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minutes. These sizes are too large to fully account for the dynamic of urban

traffic.

Another realistic benchmark is introduced in [18]. This benchmark has been

generated by using real traffic data coming from the city of Lyon, and the180

size of the time-steps is 6 minutes. However, this benchmark has two main

weaknesses. First, many road sections are not equipped with sensors and, for

these sections, the speed is interpolated from the closest sensors, which may be

an unreliable estimation. Second, time-dependent cost functions between visit

points are obtained by computing time-dependent shortest paths, and this is185

done by considering that the duration of a path is equal to the sum of the travel

times of its road sections. This underestimates real travel times as the time

spent in vertices (corresponding to intersection delays) is not considered: we

know from experience that the time to cross intersections or to turn left, for

example, is an essential factor in the increase of travel times during rush hours.190

2.4. Motivations for introducing a new benchmark

In this paper, we introduce a new benchmark based on data coming from a

realistic microscopic traffic flow simulation. Simulation is a convenient proxy of

real-world traffic conditions which presents at least two main advantages. First,

travel times are consistent with the traffic flow theory, which is barely the case195

in existing benchmarks. Second, simulation gives access to the finest level of

details. Compared to experimental measurements, this approach provides full

coverage of the physical phenomena. In particular, since sensors are virtualized,

we can control the number of sensors and their positions (spatial dimension)

as well as the frequency of the measures (temporal dimension). By varying the200

granularity of spatial and temporal dimensions, we evaluate the impact that

traffic infrastructure has on the quality of the computed solutions. To the best

of our knowledge, no other approach has discussed this dimension.

Our new benchmark also includes precedence constraints between visit points,

capacity constraints on vehicle loads, and time window constraints on the time205

a point can be visited. These constraints allow us to evaluate the interest of
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exploiting time-dependent data on six problems described in the next section.

3. The Time-Dependent General Pickup and Delivery Problem

In this section, we first introduce a mathematical model of the TD-GPDP,210

and then we define its six variants considered in our experimental study.

3.1. Mathematical model of the TD-GPDP

We use lowercase letters to denote input values, calligraphic letters to denote

sets, and uppercase letters to denote decision variables.

Input data. P denotes the set of all points to visit. Each visit point i ∈ P has215

a service time si ∈ N, an earliest visit time ei ∈ N and a latest visit time li ∈ N.

R denotes the set of pickup and delivery requests. Each request r ∈ R has

a weight wr ∈ N, a pickup point pr ∈ P and a delivery point dr ∈ P. Pickup

and delivery points are all different points.

V denotes the set of vehicles. Each vehicle v ∈ V has a capacity qv ∈ N. The220

route of a vehicle v ∈ V starts from a depot denoted vstart , and ends at a depot

denoted vend . The set of all start depots is Dstart = {vstart : v ∈ V}, and the set

of all end depots is Dend = {vend : v ∈ V}. We associate different start and end

points to each vehicle to simplify the model and make it more general. However,

these different points may correspond to the same geographical location (which225

is the case in our benchmark).

Finally, T denotes the set of all possible times, and t0 ∈ T is the starting

time of all vehicles. For each couple of points i, j ∈ P ∪Dstart ∪ Dend and each

time t ∈ T , ctij denotes the duration to travel from i to j when leaving i at time

t (we describe how travel durations are computed in Section 5).230

Decision variables. For each point i ∈ P ∪Dstart ∪Dend , we define the following

decision variables:

• Vi represents the vehicle which visits i (Vi ∈ V);
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• Qi represents the load of the vehicle when arriving on i (Qi ∈ N);

• Ai represents the arrival time on i (Ai ∈ T );235

• Di represents the departure time from i (Di ∈ T );

• Si represents the successor of i, i.e., the point which is visited just after i

by the vehicle which has visited i (Si ∈ P ∪ Dend).

Objective function. In our study, the goal is to minimise the total travel time,

i.e., the sum for every point i ∈ P ∪Dstart of the difference between the arrival

time on the successor of i and the departure time from i:

min
∑

i∈P∪Dstart

ASi −Di (1)

Other objective functions could be considered such as, for example, the actual

number of used vehicles (where a vehicle v is not used if it travels directly240

from its start depot to its end depot, i.e., Svstart = vend). However, these other

objective functions are less relevant for evaluating the impact of the definition

of time-dependent functions ctij on the total travel time.

Constraints. In Fig. 2, we list all constraints of the TD-GPDP. Constraints (2)-

(3) ensure that every vehicle v starts from vstart at time t0 and ends on vend .245

Constraint (4) ensures that the successor of a point i is visited by the same

vehicle as i. Constraint (5) ensures that two different points cannot have the

same successor. It ensures that every point is visited exactly once because every

point i ∈ P ∪ Dstart has exactly one successor Si ∈ P ∪ Dend . Constraint (6)

ensures that arrival and departure times allow serving i. Constraint (7) ensures250

that there is enough time to travel from a point i to its successor Si. Constraint

(8) ensures that the arrival time on i satisfies its time window. Constraints (9)-

(10) ensure that a request is delivered after its pickup and by the same vehicle.

Finally, Constraints (11)-(13) define vehicle loads and Constraint (14) ensures

that these loads never exceed vehicle capacities.255
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Vvstart = Vvend = v ∀v ∈ V (2)

Dvstart = t0 ∀v ∈ V (3)

Vi = VSi ∀i ∈ P ∪ Dstart (4)

Si 6= Sj ∀i, j ∈ P ∪ Dstart , i 6= j (5)

Di ≥ Ai + si ∀i ∈ P (6)

ASi ≥ Di + cDiiSi ∀i ∈ P ∪ Dstart (7)

ei ≤ Ai ≤ li ∀i ∈ P (8)

Dpr ≤ Adr ∀r ∈ R (9)

Vpr = Vdr ∀r ∈ R (10)

Qvstart = 0 ∀v ∈ V (11)

QSpr = Qpr + wr ∀r ∈ R (12)

QSdr = Qdr − wr ∀r ∈ R (13)

Qi ≤ qVi ∀i ∈ P (14)

Figure 2: Constraints of the TD-GPDP.

3.2. Variants of the TD-GPDP

Based on this general model, we consider different variants of the TD-GPDP.

Let us first define five single-vehicle problems, where the set V contains only one

vehicle (which is assigned to every decision variable Vi):

Problem P1 is the Time-Dependent Travelling Salesman Problem (TD-TSP),260

and it is obtained from the TD-GPDP by ignoring Constraints (8)-(14);

Problem P2 is a basic single-vehicle Time-Dependent Pickup-and-Delivery Prob-

lem (TD-PDP) without capacity nor time window constraints, and it is

obtained from P1 by adding Constraints (9)-(10);

Problem P3 is a basic single-vehicle Time-Dependent Dial-A-Ride Problem265

(TD-DARP), and it is obtained from P2 by adding Constraints (11)-(14);

Problem P4 is a TD-PDP with time windows (denoted TD-TW-PDP), and it

is obtained from P2 by adding Constraint (8);

Problem P5 is a TD-DARP with time windows (denoted TD-TW-DARP), and

it is obtained from P3 by adding Constraint (8).270
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Each of these single-vehicle problems may be generalized by considering that

V contains more than one vehicle. In our study, we mainly focus on single vehicle

problems to evaluate whether we can compute a better tour with time-dependent

cost functions. We evaluate the impact of considering several vehicles on the

following problem:275

Problem P6 is a generalization of P5, denoted TD-TW-mDARP, where M

contains more than one vehicle, i.e., #M > 1.

The constraints of the six variants of the TD-GPDP are summarized in Table 2.

Precedence Capacity Time window Number of
(9)-(10) (11)-(14) (8) vehicles in M

P1 (TD-TSP) - - - 1
P2 (TD-PDP) Yes - - 1
P3 (TD-DARP) Yes Yes - 1
P4 (TD-TW-PDP) Yes - Yes 1
P5 (TD-TW-DARP) Yes Yes Yes 1
P6 (TD-TW-mDARP) Yes Yes Yes m > 1

Table 2: Constraints of the 6 variants of the TD-GPDP.

Time-dependent cost functions are a generalization of constant cost functions

(such that cti,j returns the same value for every possible starting time t). Hence,280

for every time-dependent problem P1 to P6, we can obtain the corresponding

classical problem by using a constant cost function instead of a time-dependent

one in the objective function (1) and in Constraint (7). We refer to these classical

problems as constant problems (by opposition to time-dependent problems).

4. Solving approach285

Our goal is not to introduce a new approach for solving TD-GPDPs, but to

evaluate whether we can obtain better tours when solving TD-GPDPs instead

of their constant counterparts. To this aim, we need to solve TD-GPDPs with

an exact approach able to find optimal solutions. State-of-the-art ILP and CP

approaches described in Section 2.1 do not scale well when considering instances290

13



without time windows. For example, the ILP approach of [20]4 cannot solve our

instances of P1 (TD-TSP without time windows) within a reasonable amount of

time even for small instances with 20 points to visit. Similarly, the CP approach

of [18] does not scale well when there are no time window constraints.

Hence, we consider the dynamic programming approach introduced in [5] to295

solve the TD-TSP. In this section, we first recall the basic idea of this approach,

and then show how to extend it to solve Problems P2 to P6.

4.1. Dynamic Programming Approach for solving the TD-TSP

As pointed out in [5], the dynamic programming approach proposed by Held

and Karp in [24] to solve the TSP may be extended to the TD-TSP in a straight-

forward way. More precisely, let vstart and vend be the start and end depot of

the single vehicle. For each point i and each subset of points S, let p(i,S) denote

the earliest arrival time of a path that starts from vstart at time t0, visits each

point of S exactly once, and finishes on point i. The Bellman equations that

recursively define p(i,S) are:if S = ∅, p(i,S) = ct0vstart i

otherwise, p(i,S) = minj∈S p(j,S \ {j}) + sj + c
p(j,S\{j})+sj
ji

The earliest time for arriving on vend when leaving vstart at time t0 is given

by p(vend ,P). We have to subtract t0 and remove all service times from this300

earliest arrival time to obtain the total travel time, i.e., the optimal value of the

objective function defined by (1) is equal to p(vend ,P)− t0 −
∑
i∈P si.

The algorithm is derived from these recursive equations in a straightforward

way. The time complexity of this algorithm (similarly as the initial algorithm

of Held and Karp) is O(n2 · 2n), and its space complexity is O(n · 2n), where305

n = #P is the number of points to visit. This algorithm is able to solve instances

of the TD-TSP with n = 10 (resp. 20 and 30) points in less than 0.01 (resp.

1 and 1000 seconds) when there are no additional constraints5. This algorithm

4We thank Vu et al. for sharing their source code.
5All experiments of the paper have been performed on an Intel(R) Core(TM) i7-8750H

CPU @ 2.20GHz processor with 32 GB RAM memory.
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outperforms state-of-the-art ILP and CP approaches for the TD-TSP as these

approaches are not able to solve instances with n = 30 within a reasonable310

amount of time when there is no additional constraint.

4.2. Extension of the Dynamic Programming Approach to the TD-GPDP

In [25], Desrosiers et al. show that dynamic programming can be easily

extended to handle different kinds of constraints, and they introduce a dynamic

programming approach for solving a single-vehicle dial-a-ride problem with time315

windows. Their approach can be extended to our time-dependent problems in

a straightforward way. The basic idea is to assign ∞ to every state p(i,S) that

violates some constraints.

• For problems P2 to P6, a state p(i,S) violates precedence constraints (9)-

(10) if there exists a delivery point dr ∈ S∪{i} such that the corresponding

pickup point pr does not belong to S, i.e.,

if ∃r ∈ R, dr ∈ S ∪ {i} ∧ pr 6∈ S, then p(i,S) =∞

• For problems P3, P5, and P6, a state p(i,S) violates capacity constraints

(11)-(14), if the weight of all ongoing requests exceeds the capacity, i.e.,

if
∑

r∈R,pr∈{i}∪S,dr 6∈{i}∪S

wr > qv, then p(i,S) =∞.

• For problems P4 to P6, a state p(i,S) violates the time window constraint

(8), if there is a point in S that cannot be visited without violating the

time window of i, i.e.,

if ∃j ∈ S, ej + sj + min
t∈T

ctji > li, then p(i,S) =∞

or if it is not possible to arrive on i before the end of its time window, i.e.,

if min
j∈S

p(j,S \ {j}) + sj + c
p(j,S\{j})+sj
ji > li, then p(i,S) =∞.

Furthermore, we must ensure that p(i,S) is greater than or equal to the

beginning of the time window of i, i.e.,

p(i,S) = max{ei,min
j∈S

p(j,S \ {j}) + sj + c
p(j,S\{j})+sj
ji }.
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When adding constraints, the number of states to compute is drastically

reduced because we no longer have to compute states associated with subsets of320

S whenever p(i,S) is assigned to ∞. Hence, we can solve instances with more

vertices. For example, we can solve instances with n = 40 (resp. 50 and 60) in

less than 0.014 (resp. 0.15 and 2) seconds for Problem P4 when the n points

are partitioned in three subsets of similar sizes, and two points i and j in the

same subset have the same time window (i.e., ei = ej < li = lj) whereas two325

points i and j in two different subsets have non overlapping time windows (i.e.,

ei < li < ej < lj or ej < lj < ei < li).

5. Description of the benchmark

One objective of this study is to provide a benchmark to the research com-

munity with the following goals in mind: (i) accounting for different spatial330

granularities, from perfect knowledge to a realistic coverage, to understand the

impact of the number of sensors and their positions on the quality of tours; (ii)

accounting for different temporal granularities to evaluate the interest of exploit-

ing time-dependent data when optimizing tours; and (iii) considering different

kinds of constraints to evaluate their impact on the results.335

5.1. Estimation of time-dependent travel times of road links

To obtain full access to ground data, we use a dynamic microscopic simulator

of traffic flows, called SYMUVIA [26], on a sub-part of the Lyon transportation

network (see Fig. 3). This software can simulate the whole complexity of the

urban traffic flow by taking into account different classes of vehicles, individual340

driving behaviors, lane-changing phenomenons, intersections, etc. It is built on

a car-following law based on Newell’s model [27] and its numerous extensions

[28, 29]. If the simulation is only a proxy of the real world, it provides access

to the finest level of details and every possible measurement of traffic dynamics

may be emulated: individual travel times, link speeds, loop detector data, etc.345

The traffic demand for a whole day (24 hours) has been estimated based on

real traffic conditions (measured by actual sensors displayed in Fig. 3) and on
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Figure 3: Top: Lyon road network considered in the study with the actual positions of sensors
(in yellow). Bottom: 15 x 10 grid subdivision considered in the parametric dataset.

the estimation of the origin-destination matrix of the transportation demand of

the area. This latter was constructed by capturing the actual movements of the

population of the city through the 2016 population census results of France [30]350

and the various mobility surveys conducted by local authorities. Therefore, this

demand is representative of a realistic classical weekday in Lyon city.

We use the following consistent spatio-temporal mean formulation to cal-

culate the travel time f(k, t) for every road link k of the network and every

time-step starting at time t and ending at time t+ ∆t:355

f(k, t) =
λk
Vk(t)

and Vk(t) =
Qk(t)

Kk(t)
,

where λk is the length of link k, Qk is the spatio-temporal mean of the flow in
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link k at time t and Kk is the spatio-temporal mean of the density in link k at

t, calculated according to definitions given by [31]:

Qk(t) =

∑
r δr

λk∆t
, Kk(t) =

∑
r τr

λk∆t
,

where δr and τr are respectively the distance traveled and the time spent by

vehicle r within the link k from t to t + ∆t (these values are easily obtained360

from our micro-simulation). Note that those definitions are entirely consistent

with the dynamic of traffic flow because they weight accurately the different

traffic conditions that can be observed within a road link [32], on the contrary

of classical loop detector data.

5.2. Spatio-temporal features of the benchmark365

When a carrier plans a delivery tour, it does not know the exact traffic

conditions that will be observed while implementing the tour. Thus, it must

rely on a predictive model to estimate these traffic conditions given data coming

from sensors. The design of urban predictive models is an active research topic

that is not discussed here (see [33], for instance, for a comparison of predictive370

models using data of the sensors visualized in Fig. 3). In this study, we assume

a perfect predictive model for each traffic flow sensor and consider two datasets:

• A realistic dataset, denoted DLyon, where sensors are positioned exactly

in the same places as in the current Lyon network [34] (cf. Fig. 3). The

coverage is quite low, with 7.35% equipped links. In this case, travel times375

of links not covered by sensors are estimated using interpolation, taking

the value of the closest sensor with respect to the Euclidean distance.

• A parametric dataset, denoted Dσ with σ ∈ {10, 20, . . . , 100}, where sen-

sors are evenly distributed in the network with respect to a spatial gran-

ularity level which is controlled by σ. More precisely, we fit our trans-380

portation network in a regular grid of 15 x 10 cells, where each cell is a

396m x 425m area, as shown in Fig. 3. In each cell, we randomly select

σ% of the road links to be equipped with a sensor, according to a uni-

form distribution. Travel times of the remaining (100 − σ)% links of the

18



cells are obtained by interpolation within the same cell. This grid sub-385

division allows us to consider increasing levels of spatial granularity in a

structured manner. Note that D100 represents the dataset with complete

spatial information.

For each dataset Dσ with σ ∈ {Lyon, 10, 20, . . . , 100}, we have generated five

cost functions denoted DσSl, where l ∈ {6, 12, 24, 60, 720} is the length of the390

time-step (in minutes). More precisely, the time horizon T starts at 7:00 and

ends at 19:00 and it is divided in T
l consecutive time-steps such that the duration

of each time-step is equal to l. Hence, T is divided in 120 (resp. 60, 30, 12, and

1) time-steps when l = 6 (resp. 12, 24, 60, and 720). For each road link k and

each time step s ∈ [0, Tl [, DσSl(k, s) is equal to the average travel time of k395

during the time interval that starts at 7:00+s× l and ends at 7:00+(s+ 1)× l.

5.3. Computation of point-to-point travel times

To solve TD-GPDPs, we have to compute the cost function ctij which returns

the travel time from point i to point j when leaving i at time t, for each couple

of points (i, j) ∈ P ∪ Dstart × P ∪ Dend . In our benchmark, ctij is modeled as400

a step-wise function: for each time t within a same time-step, ctij is constant.

Other models could be used [35]. However, this model is well suited for traffic

data since it fits the usual scheme of travel time estimation.

To compute ctij , we have to compute the duration of the quickest path from

i to j, and this must be done for each dataset DσSl and each time-step s ∈405

[0, Tl [. A valuable property of DσSl to efficiently compute quickest paths is

the no-passing or First-In-First-Out (FIFO) condition: DσSl satisfies the FIFO

condition if, for each road link k and each couple of starting times t1, t2 such

that t1 < t2, we have t1 + DσSl(k, t1) < t2 + DσSl(k, t2). In other words, it

is not possible to arrive sooner when leaving later. If DσSl satisfies the FIFO410

condition, then shortest paths can be efficiently computed by adapting Dijkstra

algorithm, otherwise, the problem becomes NP-hard [36]. If DσSl does not

satisfy the FIFO condition, then we use the algorithms of [7, 18] to transform

DσSl into a FIFO cost function.
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Figure 4: Example of time-dependent cost functions for three origin-destination addresses O-
A, O-B, and O-C positioned in the top map, and computed with DLyonS6 (left) and D100S6
(right) datasets.

Fig. 4 shows an example of three time-dependent cost functions when con-415

sidering one origin O and three destinations A, B, and C, for the complete

(σ = 100) and the realistic (σ = Lyon) spatial coverages when l = 6 minutes.

5.4. Description of the benchmark instances6

We denote n the number of points to visit (excluding depot points), i.e.,

n = #P. For each value of n ∈ {10, 20, 30, 40, 50, 60}, we have generated 30420

instances by randomly selecting a set P of n urban addresses from the city

of Lyon. For all instances, we consider the same address for all start and end

depots (vstart and vend): this address is located in the city center, in front of the

Lyon-Part-Dieu train station. A fixed stop duration si = 3 minutes is associated

with each address i ∈ P.425

6 The code and data used to generate our instances are available at: http://perso.citi-
lab.fr/csolnon/TDGPDP.html
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Hence, our benchmark is composed of 6 × 30 = 180 instances of Prob-

lem P1 (TD-TSP instances without additional constraints) and, for each of

these instances, we have 5 × 11 = 55 time-dependent cost functions such that

each cost function has been obtained with a different time-step length l ∈

{6, 12, 24, 60, 720} and a different spatial coverage σ ∈ {Lyon, 10, 20, . . . , 100}.430

From these instances of Problem P1, we derive instances of Problems P2 to

P6 by adding constraints. The number of requests is set to n/2 and, for each

request r ∈ [1, n/2], we set the weight to wr = 1. Every pickup point pr and

delivery point dr (with r ∈ [1, n/2]) is a different point of P.

For Problems P3, P5, and P6, we consider different values for the capacity435

of a vehicle v, i.e., qv ∈ {2, 4, 6, 8}.

Finally, for Problems P4 to P6 we add time window constraints. We control

the tightness of these constraints with two parameters denoted nTW and xTW :

nTW controls the number of different time windows and it ranges from 2 to 6

in our experiments, and xTW controls the average travel time allowed to travel

from one point to its successor point and it ranges from 100 to 200 seconds in

our experiments. More precisely, for each request r ∈ [1, n/2], pr and dr have

the same earliest and latest visit times which are defined as follows:

epr = edr = t0 + w × (r % nTW ) and lpr = ldr = epr + w

where % is the remainder of the euclidean division, w = (xTW +s)×n/nTW is

the width of the time window and s is the fixed stop duration (set to 3 minutes

in all instances). In other words, there are nTW consecutive time windows of w

seconds, and there are roughly n/nTW points to visit within each time window.440

6. Experimental analysis

In this section, we evaluate the interest of optimizing tours with time-

dependent costs on our benchmark. More specifically, we address the following

questions from an empirical perspective:

Q1: Can we find better tours when using time-dependent cost functions instead445

of constant ones?

21



Q2: What is the impact of the spatio-temporal granularity (σ, l) of cost func-

tions on the travel time of optimal tours?

Q3: Does this impact change when adding precedence or capacity constraints?

Q4: What is the impact of (σ, l) on the satisfaction of time window constraints?450

Q5: Does this impact change when increasing the number of vehicles?

We introduce performance measures used to answer these questions in Sec-

tion 6.1. Questions are addressed in Sections 6.2 to 6.6.

6.1. Performance measures

Realistic travel time of a tour. The travel time of a tour depends on the time-455

dependent cost function used to compute it, and we want to compare tours

computed with different cost functions. Ideally, the travel time of a tour should

be evaluated with respect to real traffic conditions: the best tour is the one

with the smallest travel time when performing it in real conditions. Hence,

travel times are computed with respect to the best approximation of real traffic460

conditions, i.e., D100S6 which has a full spatial cover and the smallest time-

steps. Given a tour T , its “realistic” travel time computed with the time-

dependent cost function D100S6 is denoted rtt(T ).

Measure used to answer Q1. To evaluate the interest of exploiting time-dependent

cost functions, we compare the optimal tour computed with a constant cost func-

tion (when l = 720) with optimal tours computed with time-dependent cost

functions (when 6 ≤ l ≤ 60). More precisely, we compute the gap in percentage

between a constant tour Tconst and a time-dependent tour Ttd as follows:

gap(Tconst , Ttd) =
rtt(Tconst)− rtt(Ttd)

rtt(Ttd)
× 100 (15)

Positive (resp. negative) gap values correspond to cases where time-dependent

tours are faster (resp. longer) than constant tours when realizing them in real-465

istic traffic conditions.
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Measure used to answer Q2, Q3, and Q5. Our benchmark is composed of 55

cost functions DσSl where σ defines the spatial granularity and l the temporal

granularity. We denote TDσSl the optimal tour computed with DσSl. To eval-

uate the impact of σ and l on travel times, we measure the quality of TDσSl,

denoted Q(TDσSl), by means of its gap in percentage to TD100S6, i.e.,

Q(TDσSl) =
rtt(TDσSl)− rtt(TD100S6)

rtt(TD100S6)
× 100 (16)

The smaller the quality gap Q(TDσSl), the faster the tour when realizing it in

realistic traffic conditions, i.e., the better the tour.

Measure used to answer Q4 and Q5. Precedence and capacity constraints are

not impacted by travel time cost functions: if a tour satisfies these constraints,

then it still satisfies them when computing arrival times with any cost function

DσSl. This is no longer the case for time window constraints as the satisfaction

of these constraints depends on arrival times, and arrival times depend on the

cost function. We say that an instance is (σ, l)-feasible if there exists at least one

tour which satisfies all time windows when evaluating travel times with DσSl.

However, when an instance is (σ, l)-feasible, it may be possible that its optimal

tour TDσSl no longer satisfies all time windows when computing travel times

with D100S6. In this case, we say that TDσSl is (100,6)-inconsistent. Finally,

given an instance i, we define the predicate isFeasible(i,DσSl):

isFeasible(i,DσSl)⇔ i is (σ, l)-feasible and TDσSl is (100, 6)-consistent (17)

and we evaluate the feasibility of a set I of benchmark instances for a cost

function DσSl with a measure denoted F%(DσSl) such that:

F%(DσSl) =
#{i ∈ I : isFeasible(i,DσSl)}

#I
× 100 (18)

In other words, F%(DσSl) is the percentage of instances which are (σ, l)-feasible

and for which the optimal tour TDσSl is (100,6)-consistent.470

Illustration on an example. Consider the two cost functions defined in Fig. 1,

and suppose that costs on the left (resp. right) side of the figure correspond to
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D100S6 (resp. D100S12). In this case, optimal tours are TD100S6 = 〈0, 3, 1, 2, 0〉

and TD100S12 = 〈0, 1, 2, 3, 0〉. Let us assume that the best tour with constant

data is TD100S720 = 〈0, 2, 3, 1, 0〉. When computing travel times with D100S6,

we have rtt(TD100S6) = 10, rtt(TD100S12) = 17, and rtt(TD100S720) = 19. To

answer Q1, we compute:

gap(TD100S720, TD100S6) = 90% and gap(TD100S720, TD100S12) = 12%

In other words, the tour computed with constant costs is 90% (resp. 12%)

longer than the one computed with time-dependent costs with 6 (resp. 12)

minute time-steps when travel times are computed with the finer data.

To answer Q2 or Q3 when σ = 100 and l = 12, we compute Q(TD100S12) =

70%. In other words, TD100S12 is 70% longer than TD100S6 when all travel times475

are computed with the finer data.

To answer Q4 or Q5, we evaluate isFeasible(i,DσSl) where i is the instance

of Fig. 1. If the time window of point 3 is [2, 3] and the time window of all other

points is [0, 20], then isFeasible(i,D100S6) is true (〈0, 3, 1, 2, 0〉 satisfies all time

windows) whereas isFeasible(i,D100S12) is false (i is not (100, 12)-feasible as it480

is not possible to travel from 0 to 3 in less than 4 minutes). If the time window

of point 3 is [2, 10] and the time window of all other points is [0, 20], then i is

(100, 12)-feasible but isFeasible(i,D100S12) is false (TD100S12 = 〈0, 1, 2, 3, 0〉 is

(100, 6)-inconsistent as the vehicle arrives at time 11 on point 3 when computing

arrival times with D100S6).485

6.2. Q1: Can we find better tours when using time-dependent cost functions
instead of constant ones?

To answer this question, we only consider problem P1 that does not have

any additional constraint, in order not to bias the study with side effects due to

constraints. The impact of adding constraints is studied in the next sections.490

In Fig. 5, we consider cost functions with complete spatial information (when

σ = 100), and we display the gap (as defined in Eq. 15) between tours opti-

mized with constant cost functions (TD100S720) and tours optimized with time-

dependent cost functions (TD100Sl with l ∈ {6, 12, 24, 60}).
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Figure 5: Distribution of gap(TD100S720,TD100Sl) with l ∈ {6, 12, 24, 60} for Problem P1.

Figure 6: Distribution of gap(TDLyonS720,TDLyonSl) with l ∈ {6, 12, 24, 60} for Problem P1.

When l = 6, the gap is always positive, and it increases when increasing the495

number n of points to visit. The median gap is equal to 4% (resp. 6.8 and 8.6%)

when n = 10 (resp. 20 and 30). The largest gap is equal to 18% when n = 30,

meaning that there is an instance for which the tour optimized with constant

costs is 18% longer than the tour optimized with D100S6.

However, gaps decrease when l increases. When n = 30, the median gap is500

decreased from 8.6 to 3.2, 2.6, and 0.5% when l is increased from 6 to 12, 24,

and 60 minutes, respectively. If the median gap is always positive, minimum

gaps become negative when l ≥ 12. For example, when l = 60 and n = 30,

the smallest gap is −11%, meaning that there is an instance for which the tour

optimized with D100S720 is 11% faster than the tour optimized with D100S60.505

In Fig. 6, we consider cost functions with realistic spatial information, i.e.,
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DLyonSl. In this case, median gaps are close to zero. For example, when n = 30,

the median gap is equal to -1.5% (resp. 0.5, -0.9, and -0.8%) when l = 6 (resp.

12, 24, and 60). The minimum gap is always lower than zero, and for some

instances, the loss can be greater than 15%.510

By studying the position of the sensors considered in DLyonSl (correspond-

ing to the sensors deployed on the Lyon road network), we find that these

sensors are often placed on the congested axes of the network, which leads to

an overestimation of travel times to cross road links not equipped with sensors

(since these travel times are estimated by interpolation with respect to the links515

equipped with sensors, generally more congested). Fig. 4 confirms this observa-

tion: travel times of O-B are over-estimated with DLyonS6 and they are greater

than those of O-A with DLyonS6 whereas they are smaller with D100S6.

As a conclusion, the answer to Q1 depends on σ.

• When σ = 100 (i.e., every road link has a sensor), the answer is: yes,520

it is worth exploiting time-dependent cost functions, and the smaller the

time-step l, the better the tour.

• When σ = Lyon (i.e., sensors are located like in the actual Lyon road

network, and cost functions of links that are not equipped with sensors

are generated using interpolation), the answer is: no, it is not interesting525

to optimize tours with time-dependent data as tours are not really better.

6.3. Q2: What is the impact of (σ, l) on the travel time of optimal tours?

As the answer to Q1 depends on whether σ = 100 or σ = Lyon, we now

investigate other spatial distributions by varying σ from 10 to 100: In this case,

σ% of the road links are equipped with sensors, with a balanced yet random530

distribution of these sensors.

The upper row of Fig. 7 displays the quality gap Q(TDσSl), as defined by

Eq. 16, for the TD-TSP. The increase of the gap when increasing the time-step

size l for the spatial cover σ = 100 is expected: As we have seen in Fig. 5,

larger time-steps l produce worse tours and lead to larger quality gaps. This535
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Figure 7: Impact of (σ, l) on the quality gap Q, for P1 (upper row), P2 (middle row), and
P3 (lower row) problems, and for n = 10 (left column), n = 20 (middle column) and n = 30
(right column). For each of these 9 cases, we display a rectangle composed of 5×10 cells such
that the color of each cell (σ, l) (with σ ∈ {10, 20, . . . , 100} and l ∈ {6, 12, 24, 60, 720}) gives
the value of Q(TDσSl) (on average for the 30 instances).

pattern holds in general for dense spatial covers, when σ ≥ 60. For example,

when σ = 80% and n = 30, the gap Q(TDσSl) is equal to 4.6% (resp. 6.6,

8.8, 7.7 and 8.9%) for l = 6 (resp. 12, 24, 60 and 720). However, this is no

longer true for sparse spatial covers, when σ ≤ 50, and a rather inverted order

is observed. When σ = 10%, for instance, the gap is equal to 16.5% (resp.540

18.9, 15.2, 11.7 and 11.3%) for l = 6 (resp. 12, 24, 60 and 720). Hence, when

σ ≤ 50, optimizing with small time-steps is not interesting, and better tours are

computed with constant cost functions (when l = 720).

Actually, when l = 6, the gap increases when σ decreases: tours computed

with σ = 100 are much better than those computed with σ = 10. This phe-545

nomenon is still observed with l ∈ {12, 24}, though it is less obvious. However,
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when using the constant cost function (l = 720), the quality of tours no longer

depends on the spatial coverage σ and gaps of tours computed with σ = 100 are

not very different from gaps of tours computed with σ = 10.

As a conclusion, the answer to Q2 is: when l = 6, the spatial coverage has550

a strong influence and the larger σ the better the tours, but when increasing l

the influence of the spatial coverage decreases and with constant cost functions

(when l = 720), the quality of tours does not really depend on the spatial

coverage.

6.4. Q3: Does the impact of (σ, l) change when adding precedence or capacity555

constraints?

To answer this question, we first compare results for Problems P1, P2 and P3

in Fig. 7 as these problems are gradual in terms of constraints: P2 adds prece-

dence constraints to P1, and P3 adds capacity constraints to P2. We observe very

similar behaviors for the three problems. However, when adding constraints, the560

quality gap decreases: it is higher for P1 than for P2, and higher for P2 than

for P3, in almost all cases when fixing the spatio-temporal granularity (σ, l). In

other words, the interest of exploiting time-dependent cost functions decreases

when adding constraints. This is explained by the fact that adding constraints

drastically reduces the number of feasible tours. Indeed, if there exists only one565

feasible tour, then the same tour is computed whatever the cost function is.

Fig. 8 additionally confirms this fact: it shows us that when we increase the

vehicle capacity for Problem P3 from qv = 2 to qv = 8 (thus increasing the

number of feasible tours), the quality gap tends to increase.

As a conclusion, the answer to Q3 is: when adding precedence or capacity570

constraints, the interest of exploiting time-dependent cost functions decreases.

6.5. Q4: What is the impact of (σ, l) on the satisfaction of time windows?

Fig. 9 shows the evolution of F% (as defined in Eq. 18) with respect to

the spatio-temporal granularity (σ, l) for problem P4 with n = 40 points to visit

when varying nTW and xTW . As expected, we observe that F% decreases when575

decreasing xTW , as this decreases the width of time windows: When xTW =
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Figure 8: Impact of (σ, l) on the quality gap Q for Problem P3 when n = 30 and the capacity
qv ranges from 2 to 8. The color scale of cells is kept the same as in Fig. 7.

100 (resp. 200), F% is very often equal to 0% (resp. 100%), for all spatio-

temporal granularities. We also observe that F% increases when decreasing the

number of time windows nTW . When decreasing nTW , the number of points

that must be visited within a same time window is increased so that the average580

time allowed for each travel within a same time window stays equal to xTW .

However, when the number of points that must be visited within a same time

window increases, the number of possible permutations for visiting these points

increases exponentially and, therefore, the probability that there exists one of

these permutations which fits in the time window increases.585

Now, let us focus on the central case where nTW = 4 and xTW = 150. In

this case, the spatio-temporal granularity has a strong influence on feasibility.

With a perfect information (when σ = 100 and l = 6), F% = 100%, i.e., every

instance is (100, 6)-feasible, and when the time step size increases, F% decreases:

F% is equal to 100% (resp. 57, 20, 7, and 0%) when l = 6 (resp. 12, 24, 60, and590

720). For the spatial dimension, different behaviors are observed depending on

whether l = 6 or l ≥ 12. When l = 6, F% tends to decrease when decreasing σ:

for example, when σ = 100% (resp. 50 and 10%), F% = 100% (resp. 67 and

50%). However, when l ≥ 12, F% tends to increase when decreasing σ: for

example, when l = 24 and σ = 100% (resp. 50 and 10), F% = 20% (resp. 33595

and 60%).

In Fig. 10, we fix nTW to 4 and xTW to 150, and we display the evolution
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Figure 9: Impact of (σ, l) on F% for problem P4 when n = 40. The time window tightness
xTW ranges from 100 (upper row) to 200 (lower row), and the number of time windows nTW
ranges from 2 (left column) to 6 (right column). For each of these 9 cases, the color of each
cell (σ, l) (with σ ∈ {10, 20, . . . , 100} and l ∈ {6, 12, 24, 60, 720}) gives the value of F%.

of F% with respect to the spatio-temporal granularity (σ, l) for Problem P5,

when varying the capacity qv of the vehicle from 2 to 6 and the number n of

points to visit from 40 to 60. As expected, increasing the capacity qv increases600

F% as this increases the number of valid tours. Also, as observed in Fig. 9

for P4, F% decreases when increasing l and, for the spatial dimension σ, two

different behaviors are observed depending on l: when l = 6, F% decreases

when decreasing σ whereas when l ≥ 12, F% increases when decreasing σ. This

behaviour is observed for the three values of n (from 40 to 60).605

To provide explanations of this phenomenon, we display average shortest

path travel times for each time-dependent cost function DσSl in Fig. 11. Green

(resp. red) cells correspond to cases where average travel times of DσSl are

larger (resp. smaller) than those of D100S6. We observe that travel times
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Figure 10: Impact of (σ, l) on F% for problem P5 when nTW = 4 and xTW = 150. The
number of points n ranges from 40 (upper row) to 60 (lower row), and the capacity qv ranges
from 2 (left column) to 6 (right column). The color of each cell (σ, l) gives the value of F%.

decrease when σ decreases whereas they increase when l increases7.610

When l = 6 and σ = 100, F% = 100%, meaning that all instances are

(100, 6)-feasible. However, time windows are rather tight. Hence, when (σ, l)

is such that travel times increase (green cells), many instances become (σ, l)-

infeasible. For example, when l = 720, F% is close to 0% for all values of

σ because shortest path travel times increase of 30%, on average, making it615

impossible to find a tour which satisfies all time windows when travel times are

computed with DσSl.

On the contrary, when (σ, l) is such that travel times decrease (red cells),

7Note that this phenomenon is not observed at the level of road links, i.e., the average
travel time of a road link during the whole time horizon is roughly the same for all values of
l and σ. The fact that average travel times of shortest paths change when changing l or σ
comes from the fact that road links have different travel time variations, even though they
have the same average value when considering the whole time horizon.
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Figure 11: Shortest path travel times. The color of each cell (σ, l) corresponds to (sp(DσSl)−
sp(D100S6)) × 100/sp(D100S6) where sp(D) is the travel time of a shortest path computed
with the cost function D, on average for the whole time horizon and for every couple of points
of the 30 instances with n = 40 points.

all instances are (σ, l)-feasible. However, it may happen that the optimal tour

TDσSl is (100, 6)-inconsistent as travel times of D100S6 are greater than those620

of DσSl. For example, travel times of D10S6 are 20% faster than travel times of

D100S6, on average. Therefore when evaluating TD10S6 with D100S6, some time

windows that were satisfied with D10S6 are no longer satisfied with D100S6.

As a conclusion, the answer to question Q4 is: the impact of the spatio-

temporal granularity on feasibility depends on the tightness of time windows.625

• When time windows are very tight, most instances are infeasible for all

values of σ and l including σ = 100 and l = 6.

• When time windows are very large, most instances are feasible and optimal

tours are still consistent when evaluating travel times with D100S6, for all

values of σ and l including σ = 10 and l = 720.630

• Between these two extreme cases, the temporal granularity l has a strong

and consistent impact on feasibility: F% decreases when increasing l. The

spatial granularity σ also has a strong impact on feasibility, but this impact

depends on l: when l = 6 (resp. l ≥ 12), F% decreases (resp. increases)

when decreasing σ. This impact is explained by the fact that shortest635

path travel times decrease when σ decreases whereas they increase when

l increases.
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Figure 12: Impact of (σ, l) for P6 when n = 40, nTW = 4, xTW = 150, qv = 4, and m ranges
from 1 to 3. Top row: The color of each cell (σ, l) gives the value of F%(DσSl). Bottom
row: The color of each cell (σ, l) gives the value of Q(TDσSl), on average for all (σ, l)-feasible
instances for which TDσSl is (100, 6)-consistent (cells are colored in blue when F% = 0%).

6.6. Q5: Does the impact of (σ, l) change when increasing the number of vehi-
cles?

In the top row of Fig. 12, we display the evolution of F% for problem P6640

(with n = 40) when increasing the number m of vehicles from 1 to 3. In most

cases, F% increases when increasing m. This increase is very strong for constant

cost functions (when l = 720): F% is always equal to 0% when m = 1 whereas

it is always close to 100% when m ≥ 2, for all values of σ. Surprisingly, when

m ≥ 2, F% is nearly always larger for l = 720 than for l = 6.645

Again, this rather counter-intuitive phenomenon may be explained by look-

ing at shortest path travel times displayed in Fig. 11. Indeed, when increasing

the number m of vehicles from 1 to 2 or 3, time windows become easier to satisfy.

Therefore, most instances are (σ, 720)-feasible even if shortest path travel times

with DσS720 are 30% larger than those of D100S6, on average. When an in-650

stance is (σ, 720)-feasible, its optimal tour TDσS720 is always (100, 6)-consistent

as shortest path travel times of D100S6 are smaller than those of DσS720: it

may happen that the vehicle arrives before the beginning of the time window

but, in this case, the vehicle can wait. This explains why F% is close to 100%
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with l = 720 when m ≥ 2.655

Finally, we display in the bottom row of Fig. 12 the quality gap, on aver-

age for the instances which are (σ, l)-feasible and for which TDσSl is (100, 6)-

consistent. Whem m ≥ 2, we observe that the quality gap consistently increases

when l increases, for all values of σ. In particular, with constant cost functions

(l = 720), the quality gap is often larger than 100%, i.e., the realistic travel time660

of solutions optimized with constant costs is often more than twice as large as

the travel time of of solutions optimized with D100S6.

As a conclusion, the answer to Q5 is: yes, the impact of (σ, l) on the satisfac-

tion of time windows changes when increasing the number of vehicles because

time windows are easier to satisfy when increasing the number of vehicles. When665

m ≥ 2, feasibility with constant data is close to 100%. However, solutions op-

timised with constant data have larger travel times than those optimized with

time-dependent data, and the smaller the time-step l, the larger the travel time.

7. Conclusion

We have reviewed the literature on time-dependent routing problems, with670

a specific focus on benchmarks and performance measures. In most papers,

the main performance criterion is the CPU time needed to compute solutions.

Only a few papers have studied the interest of exploiting time-dependent data,

and many existing benchmarks are not well suited for this kind of study, either

because they have been randomly generated, or because they have rather large675

time-steps. Furthermore, real-world traffic data used to generate benchmarks

are generally incomplete since no actual distribution of sensors fully captures

the complex traffic flow dynamics, and the impact of this spatial distribution

on solution quality has never been studied.

This motivated us for using a microscopic simulation platform augmented680

with realistically estimated traffic demand inputs of Lyon to generate more

comprehensive and realistic traffic data. This allowed us to generate a realis-

tic benchmark with different spatio-temporal granularity levels: for the spatial

dimension, we considered different scenarios for choosing the number and the
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position of the sensors, ranging from a complete coverage where every road link685

is equipped with a sensor to a realistic coverage where sensors are positioned as

in the Lyon traffic network; for the temporal dimension, we considered different

time-step lengths, ranging from 6 to 720 minutes.

We have used this benchmark to study the impact of the spatio-temporal

granularity of traffic data on the quality of solutions of several classical routing690

problems. We have started our study with the TD-TSP, without any additional

constraint, and we have shown that, in case of complete spatial information,

optimizing tours with time-dependent costs is highly relevant, and smaller time-

steps lead to better tours. For instance, the average temporal gain is equal to 9%

with 6 minute time-steps when the number of points to visit is equal to 30, and695

this gain is larger than 15% for several instances. However, when decreasing the

percentage of road links covered by sensors, it becomes less interesting to exploit

time-dependent data and when less than 50% of the road links are covered by

sensors, better tours are computed with constant cost functions. Also, when

considering a realistic spatial distribution where sensors are positioned as in the700

Lyon network, the gain is null.

Then, we have considered routing problems with additional constraints, i.e.,

precedence, capacity and time window constraints. These constraints occur, for

example, in pickup and delivery problems and in dial-a-ride problems. We have

shown that exploiting time-dependent data becomes less profitable when adding705

precedence and/or capacity constraints, because these constraints reduce the

number of valid tours while their satisfaction does not depend on travel times.

However, this is not the case for time window constraints as the satisfaction of

these constraints depends on arrival times, and we have shown that exploiting

time-dependent data has a strong impact on the satisfaction of these constraints710

when they are tight.

Finally, we have considered the case where several vehicles are available and

shown that, if most solutions computed with constant data satisfy time win-

dow constraints, they are often more than twice as long compared to solutions

computed with 6 minute time steps.715
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Our study has substantial implications for transportation planning. First, it

shows that logistics providers can still rely on classical (constant) routing prob-

lems to reduce their operational costs when there is no time window constraints

since traffic data is usually obtained from sparse sensor networks: in this case,

there is no evidence that exploiting time-dependent data allows to compute720

better solutions. However, when there are time window constraints, logistics

providers should exploit time-dependent data as this both increases feasibility

and decreases travel times.

Second, time-dependent cost functions should have small time steps. In par-

ticular, solutions computed with time steps of one hour are not better than725

solutions computed with constant data, even when there are time windows.

Hence, new approaches for solving TD-GPDPs should be evaluated on bench-

marks with small time steps. We hope that our public benchmark will be useful

for this kind of evaluation and become a reference benchmark.

Finally, our study has shown that the number and the position of the sensors730

have a strong impact on the quality of the results. In particular, we have shown

that the current sensor infrastructure in Lyon does not allow to obtain reliable

time-dependent data when using interpolation to compute travel times of road

links not equipped with sensors. Hence, local authorities should improve this

infrastructure. We should study other policies for choosing the position of the735

sensors, and other approaches than interpolation for completing missing data.
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