W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia et al., Battery-supercapacitor hybrid devices: recent progress and future prospects, Adv. Sci, 2017.

L. Zhang, X. Hu, Z. Wang, F. Sun, and D. G. Dorrell, A review of supercapacitor modeling, estimation, and applications: A control/management perspective, Renewable Sustainable Energy Rev, vol.81, pp.1868-1878, 2018.

T. Wang, H. C. Chen, F. Yu, X. Zhao, and H. Wang, Boosting the cycling stability of transition metal compounds-based supercapacitors, Energy Storage Mater, vol.16, pp.545-573, 2019.

L. Lin, W. Lei, S. Zhang, Y. Liu, G. G. Wallace et al., Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries, Energy Storage Mater, vol.19, pp.408-423, 2019.

B. Mendoza-sánchez and Y. Gogotsi, Synthesis of two-dimensional materials for capacitive energy storage, Adv. Mater, vol.28, pp.6104-6135, 2016.

M. Acerce, D. Voiry, and M. Chhowalla, Metallic 1T phase MoS 2 nanosheets as supercapacitor electrode materials, Nature Nanotech, vol.10, pp.313-318, 2015.

B. Jun, S. Kim, J. Heo, C. M. Park, N. Her et al., Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications, Nano Res, vol.12, pp.471-487, 2019.

B. Anasori, M. R. Lukatskaya, and Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater, 2017.

M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall'agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide, Science, vol.341, pp.1502-1505, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01157516

O. Mashtalir, M. Naguib, V. N. Mochalin, Y. Dall'agnese, M. Heon et al., Intercalation and delamination of layered carbides and carbonitrides, Nature Commun, 1716.

M. R. Lukatskaya, S. Kota, Z. Lin, M. Zhao, N. Shpigel et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides, Nature Energy, vol.2, pp.1-6, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02007475

J. Come, J. M. Black, M. R. Lukatskaya, M. Naguib, M. Beidaghi et al., Controlling the actuation properties of MXene paper electrodes upon cation intercalation, Nano Energy, vol.17, pp.27-35, 2015.

C. Zhan, W. Sun, P. R. Kent, M. Naguib, Y. Gogotsi et al., Computational screening of MXene electrodes for pseudocapacitive energy storage, J. Phys. Chem. C, vol.123, pp.315-321, 2019.

M. R. Lukatskaya, S. Bak, X. Yu, X. Yang, M. W. Barsoum et al., Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy, Adv. Energy Mater, vol.5, p.1500589, 2015.

X. Wang, S. Kajiyama, H. Iinuma, E. Hosono, S. Oro et al., Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors, Nature Commun, vol.6, p.6544, 2015.

O. Mashtalir, M. R. Lukatskaya, M. Zhao, M. W. Barsoum, and Y. Gogotsi, Amine-assisted delamination of Nb 2 C MXene for Li-ion energy storage devices, Adv. Mater, vol.27, pp.3501-3506, 2015.

X. Wang, T. S. Mathis, K. Li, Z. Lin, L. Vlcek et al., Influences from solvents on charge storage in titanium carbide MXenes, Nature Ener, vol.4, pp.241-248, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02360481

J. Lei, X. Zhang, and Z. Zhou, Recent advances in MXene: Preparation, properties, and applications, Front. Phys, vol.10, pp.276-286, 2015.

Z. Li, T. Mendez-morales, and M. Salanne, Computer simulation studies of nanoporous carbon-based electrochemical capacitors, Curr. Opin. Electrochem, vol.9, pp.81-86, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01826392

C. Zhan, C. Lian, Y. Zhang, M. W. Thompson, Y. Xie et al., Computational insights into materials and interfaces for capacitive energy storage, Adv. Sci, 2017.

R. Lot, D. E. Yilmaz, L. Vlcek, and . Van-duin, 2D metal carbides and nitrides

, Structure, properties and applications

B. Anasori and Y. Gogotsi, , pp.137-157, 2019.

E. S. Muckley, M. Naguib, H. Wang, L. Vlcek, N. C. Osti et al., Ivanov, I. N. Multimodality of structural, electrical, and gravimetric responses of intercalated MXenes to water, ACS Nano, vol.11, pp.11118-11126, 2017.

N. C. Osti, M. Naguib, A. Ostadhossein, Y. Xie, P. R. Kent et al., Effect of metal ion intercalation on the structure of MXene and water dynamics on its internal surfaces, ACS Appl. Mater. Inter, vol.8, pp.8859-8863, 2016.

G. R. Berdiyorov and K. A. Mahmoud, Effect of surface termination on ion intercalation selectivity of bilayer Ti 3 C 2 T 2 (T= F, O and OH) MXene, Appl. Surf. Sci, vol.416, pp.725-730, 2017.

K. Xu, Z. Lin, C. Merlet, P. Taberna, L. Miao et al., Tracking ionic rearrangements and interpreting dynamic volumetric changes in two-dimensional metal carbide supercapacitors: A molecular dynamics simulation study, ChemSusChem, vol.11, pp.1892-1899, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01987290

N. Jäckel, B. Kruner, K. L. Van-aken, M. Alhabeb, B. Anasori et al., Electrochemical in situ tracking of volumetric changes in two-dimensional metal carbides (MXenes) in ionic liquids, ACS Appl. Mater. Inter, vol.8, pp.32089-32093, 2016.

Z. Lin, P. Rozier, B. Duployer, P. Taberna, B. Anasori et al., Electrochemical and in situ X-ray diffraction studies of Ti 3 C 2 T x MXene in ionic liquid electrolyte, Electrochem. Commun, vol.72, pp.50-53, 2016.

H. Wang, M. Naguib, K. Page, D. J. Wesolowski, and Y. Gogotsi, Resolving the structure of Ti 3 C 2 T x MXenes through multilevel structural modeling of the atomic pair distribution Function, Chem. Mater, vol.28, pp.349-359, 2016.

C. Lopes, J. N. Deschamps, J. Padua, and A. A. , Modeling ionic liquids using a systematic all-atom force field, J. Phys. Chem. B, vol.108, pp.2038-2047, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00130466

C. Lopes, J. N. Pádua, and A. A. , Molecular force field for ionic liquids composed of triflate or bistriflylimide anions, J. Phys. Chem. B, vol.108, pp.16893-16898, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00130459

C. Lopes, J. N. Pádua, and A. A. , Nanostructural organization in ionic liquids, J. Phys. Chem. B, vol.110, pp.3330-3335, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00202031

M. L. Connolly, Analytical molecular surface calculation, J. Appl. Crystallogr, vol.16, pp.548-558, 1983.

S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comp. Phys, vol.117, pp.1-19, 1995.

C. Schroder, Comparing reduced partial charge models with polarizable simulations of ionic liquids, Phys. Chem. Chem. Phys, vol.14, pp.3089-3102, 2012.

D. T. Bowron, C. Agostino, L. F. Gladden, C. Hardacre, J. D. Holbrey et al., Structure and dynamics of 1-ethyl-3-methylimidazolium acetate via molecular dynamics and neutron diffraction, J. Phys. Chem. B, vol.114, pp.7760-7768, 2010.

B. L. Bhargava and S. Balasubramanian, Refined potential model for atomistic simulations of ionic liquid

, J. Chem. Phys, p.114510, 2007.

V. Chaban, Polarizability versus mobility: Atomistic force field for ionic liquids, Phys. Chem. Chem. Phys, vol.13, pp.16055-16062, 2011.

Y. Cao and T. Mu, Comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis, Ind. Eng. Chem. Res, vol.53, pp.8651-8664, 2014.

A. Efimova, L. ;. Pfützner, and P. Schmidt, Thermal stability and decomposition mechanism of 1-ethyl-3-methylimidazolium halides, Thermochim. Acta, vol.604, pp.129-136, 2015.

Z. Liu, S. Z. El-abedin, and F. Endres, Electrochemical and spectroscopic study of Zn(II) coordination and Zn electrodeposition in three ionic liquids with the trifluoromethylsulfonate anion, different imidazolium ions and their mixtures with water, Phys. Chem. Chem. Phys, vol.17, pp.15945-15952, 2015.

M. Ishikawa, T. Sugimoto, M. Kikuta, . Ishiko, and M. Kono, Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries, J. Power Sources, vol.162, pp.658-662, 2006.

K. Xu, X. Ji, B. Zhang, C. Chen, Y. Ruan et al., Charging/discharging dynamics in two-dimensional titanium carbide (MXene) slit nanopore: Insights from molecular dynamic study, Electrochim. Acta, vol.196, pp.75-83, 2016.

C. Merlet, C. Péan, B. Rotenberg, P. A. Madden, P. Simon et al., Simulating supercapacitors: Can we model electrodes as constant charge surfaces?, J. Phys. Chem. Lett, pp.4-264, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00854038

Z. Wang, Y. Yang, D. L. Olmsted, M. Asta, and B. B. Laird, Evaluation of the constant potential method in simulating electric double-layer capacitors, J. Chem. Phys, p.184102, 2014.

Y. M. Liu, C. Merlet, and B. Smit, Carbons with regular pore geometry yield fundamental insights into supercapacitor charge storage, ACS Cent. Sci, vol.5, pp.1813-1823, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02373268

M. Hantel, V. Presser, R. Kotz, and Y. Gogotsi, In situ electrochemical dilatometry of carbidederived carbons, Electrochem. Commun, vol.13, pp.1221-1224, 2011.

M. M. Hantel, V. Presser, J. K. Mcdonough, G. Feng, P. T. Cummings et al., situ electrochemical dilatometry of onion-like carbon and carbon black

, J. Electrochem. Soc, vol.159, pp.1897-1903, 2012.

M. Hantel, D. Weingarth, and R. Kotz, Parameters determining dimensional changes of porous carbons during capacitive charging, Carbon, vol.69, pp.275-286, 2014.

F. Kaasik, T. Tamm, M. M. Hantel, E. Perre, A. Aabloo et al., Anisometric charge dependent swelling of porous carbon in an ionic liquid, Electrochem. Commun, vol.34, pp.196-199, 2013.

A. C. Forse, C. Merlet, J. Griffin, and . C. Grey, New perspectives on the charging mechanisms of supercapacitors, J. Am. Chem. Soc, vol.138, pp.5731-5744, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01985713

C. Péan, B. Rotenberg, P. Simon, and M. Salanne, Understanding the different (dis)charging steps of supercapacitors: influence of potential and solvation, Electrochim. Acta, vol.206, pp.504-512, 2016.

C. Noh, N. Jung, and Y. , Understanding the charging dynamics of an ionic liquid electric double layer capacitor via molecular dynamics simulations, Phys. Chem. Chem. Phys, vol.21, pp.6790-6800, 2019.

M. Kowsari,

S. Alavi, M. Ashrafizaadeh, and B. Najafi, Molecular dynamics simulation of imidazolium-based ionic liquids. I. Dynamics and diffusion coefficient, J. Chem. Phys, p.224508, 2008.

J. D. Holbrey, R. D. Rogers, R. A. Mantz, P. C. Trulove, V. A. Cocalia et al., Ionic Liquids in Synthesis, pp.57-174, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00359507

H. Tokuda, K. Hayamizu, K. Ishii, M. A. Susan, and M. Watanabe, Physicochemical Properties and Structures of Room Temperature Ionic Liquids. 2. Variation of Alkyl Chain Length in Imidazolium Cation, J. Phys. Chem. B, vol.109, pp.6103-6110, 2005.