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CONSERVATIVITY OF REALIZATION FUNCTORS ON

MOTIVES OF ABELIAN TYPE OVER FINITE FIELDS

GIUSEPPE ANCONA

Abstract. We show that the `-adic realization functor is conservative
when restricted to Chow motives of abelian type over a finite field.

A weak version of this conservativity result extends to mixed motives
of abelian type.

June 11, 2019
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Introduction

Let k be a field and let DMgm(k)Q be Voevodsky’s category of mixed
motives over k with rational coefficients. Let ` be a prime number invertible
in k, and consider the `-adic realization functor [Ivo07]

R` : DMgm(k)Q → Db(Q`)

to the bounded derived category of Q`-vector spaces.
One of the central conjectures in motives predicts that R` is conservative

(i.e. it detects isomorphisms), see [Ayo15] for an overview on this conjecture
(in characteristic zero). This conjecture is deep and still widely open: for
instance, it would imply Bloch’s conjecture for surfaces.

In this paper, we focus on motives coming from curves and abelian vari-
eties, more precisely we deal with the following categories.
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Definition 0.1. For an abelian varietyA over k, we writeM(A) ∈ DMgm(k)Q
for the motive of A. Define CHMab(k)Q to be the smallest rigid and pseudo-
abelian full subcategory1 of DMgm(k)Q containing the motives of the form

M(A), for all abelian varieties over k. Define DMab
gm(k)Q ⊃ CHMab(k)Q to

be the smallest triangulated, rigid and pseudo-abelian full subcategory of
DMgm(k)Q containing CHMab(k)Q.

In characteristic zero, Wildeshaus showed that R` is conservative when
restricted to DMab

gm(k)Q [Wil15, Theorem 1.12]. He first deals with the

subcategory CHMab(k)Q and then treats the whole DMab
gm(k)Q. Both steps

use in a crucial way one of Grothendieck’s standard conjectures, namely that
numerical and `-adic homological equivalence coincide. This conjecture is
known for abelian varieties in characteristic zero [Lie68].

In positive characteristic, homological and numerical equivalence are not
known to coincide. The best result in this direction is due to Clozel.

Theorem 0.2. [Clo99] Given an abelian variety over a finite field, the set
of prime numbers ` for which numerical and `-adic homological equivalence
coincide has positive density.

Combining Wildeshaus’ method with this result one can show the follow-
ing.

Theorem 0.3. Suppose that k is finite. Let f : X → Y be a morphism
in DMab

gm(k)Q. If R`(f) is an isomorphism for almost all primes `, then f
itself is an isomorphism.

Although this result is probably enough for applications over finite fields,
it is intellectually unsatisfactory: for instance we cannot deduce, even for a
single prime `, that the functor R` is conservative. To go further we need
to restrict to Chow motives.

Theorem 0.4. Let k be a finite field. For any prime ` invertible in k, the
`-adic realization functor is conservative when restricted to CHMab(k)Q.

It is amusing to notice how conservativity and the equality between ho-
mological and numerical equivalence are related “in the other direction” as
well. For instance, we show the following.

Theorem 0.5. Let k be a finite field and ` a prime number invertible in k.
Suppose that, for all totally real number fields F and all places λ of F above `,
the λ-adic realization functor is conservative when restricted to DMab

gm(k)F .
Then the `-adic homological equivalence coincides with numerical equivalence
for abelian varieties over k.

1Recall that the smallest rigid and pseudo-abelian full subcategory of DMgm(k)Q con-
taining motives of smooth and projective varieties can be identified with (the opposite
of) the classical category of Chow motives CHM(k)Q, by [Voe00, Proposition 2.1.4] and
[Voe02]. Hence, by definition, CHMab(k)Q ⊂ CHM(k)Q.
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There are two tools in the proofs of these results. The first, valid over any
field, is Kimura finiteness, which is a first approximation to conservativity
(for instance, it implies that R` detects automorphisms among endomor-
phisms). The other one is the classical fact, due to Tate, that abelian vari-
eties over finite fields have sufficiently many complex multiplications. This
allows to decompose their motives in direct factors of dimension one (after
extension of the field of coefficients).

Organization of the paper. Section §1 recalls results on motives of abelian
type such as Kimura finiteness. In Section §2, we deduce the main technical
result (Proposition 2.3), inspired by Hodge Theory, which is valid over any
field. Section §3 recalls the theorem of Tate on endomorphisms of abelian
varieties over finite fields and the results from [Clo99]. In Section §4, we will
combine their results with Proposition 2.3 and deduce Theorem 0.4. Finally,
in Section 5, we explain how to prove Theorems 0.3 and 0.5.

Acknowledgments. I would like to thank Olivier Benoist, François Charles,
Frédéric Déglise, Javier Fresán, Peter Jossen, Marco Maculan and Charles
Vial for useful comments.

I thank the referee for a careful reading of the article.
Finally, I thank the organizers of the conference “Motives and Complex

Multiplication” for the wonderful week in Ascona and for giving me the
opportunity to give a talk and write this text.

1. The motive of an abelian variety

In this section, we recall classical results on motives of abelian type. Let
k be a base field, F a field of coefficients of characteristic zero and CHM(k)F
the category of Chow motives over k with coefficients in F . For generalities,
we refer to [And04] in particular to [And04, Definition 3.3.1.1] for the notion
of Weil cohomology and to [And04, Proposition 4.2.5.1] for the associated
realization functor.

Note that, following these references, the realization of a motive is a
graded vector space.

If not explicitly stated, we will work with general Weil cohomologies (not
necessary classical ones).

The following theorem summarizes the results about motives of abelian
varieties which will be used.

Theorem 1.1. Let A be an abelian variety ofdimension g. Let End(A) be
its ring of endomorphisms (as an abelian variety) and M(A) ∈ CHM(k)F
be its motive. Then the following holds:

(1) [DM91] The motive M(A) admits a Künneth decomposition

M(A) =

2g⊕
i=0

hi(A)
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natural in End(A). Moreover, h0(A) is the unit object 1.
(2) [Anc15, Proposition 3.5(i)] For each integer i between 0 and 2g, and

any realization functor R, one has

R(hi(A)) = H i(A).

(3) [Kün94] For each integer i between 0 and 2g there is a canonical
isomorphism

hi(A) = Symih1(A).

(4) [Kin98, Proposition 2.2.1] The action of End(A) on h1(A) (coming
from naturality in (1)) induces an isomorphism of algebras

End(A)⊗Z F = EndCHM(k)F (h1(A))

and if A is isogenous to B × C, then h1(A) = h1(B)⊕ h1(C).
(5) [Kün93] The classical isomorphism in `-adic cohomology induced by

a polarization H1
` (A) ∼= H1

` (A)∨(−1) lifts to an isomorphism

h1(A) ∼= h1(A)∨(−1).

(6) [Kün93] For each integer i between 0 and 2g, the Lefschetz decompo-
sition of the `-adic cohomology H i

`(A) induced by a polarization lifts
to a decomposition of the motive hi(A).

Corollary 1.2. We keep the notation from the theorem above. The following
holds:

(1) The motive 1(−1) is a direct factor of h1(A)⊗ h1(A).
(2) A map f : h1(A)→ h1(A)∨(−1) such that R`(f) = 0 is itself zero.

Proof. Using the Lefschetz decomposition of Theorem 1.1(6) we have that
1(−1) is a direct factor of h2(A) (recall that, by Theorem 1.1(1) , we have
h0(A) = 1). On the other hand, h2(A) is a direct factor of h1(A)⊗h1(A) by
Theorem 1.1(3), this proves (1).

To show (2), we compose f with an isomorphism h1(A) ∼= h1(A)∨(−1)
coming from Theorem 1.1(5). This reduces to show that the realization is
injective on EndCHM(k)F (h1(A)), which, by Theorem 1.1(4), is translated
to the fact that the realization is injective on End(A), which is a classical
theorem of Weil [Wei48, page 70]. �

Definition 1.3. Define CHMab(k)F to be the smallest rigid and pseudo-
abelian full subcategory of CHM(k)F containing motives of abelian varieties.
A motive in CHMab(k)F is called ”of abelian type”.

A motive X of abelian type is pure if there is a realization functor R such
that the cohomology groups of R(M) are all zero except in one degree. In
this case the degree will be called the weight of X. Moreover such an X is
said to be of dimension d if the only non-zero cohomology group of R(M)
is of dimension d. For such an X we define

detX =

{
∧dX d even,

SymdX d odd.
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Similarly, we define det f for a morphism f : X → Y between pure motives
of same degree and dimension.

Remark 1.4. The above notions do not actually depend on the choice of the
realization functor R. For the notion of dimension this is [Jan07, Corollary
3.5]. For the notions of weight, this is Corollary 1.6 (combined with Theorem
1.1(2)).

Note also that an object X of odd weight is of dimension d in our sense,
when is of dimension −d in Kimura’s sense.

Theorem 1.5. Let X be a motive of abelian type and R be a realization
functor with respect to a fixed Weil cohomology. Then the following holds:

(1) [Kim05, Corollary 7.3] If R(X) is zero, then X itself is zero.
(2) [And05, Corollaire 3.19] If X is of dimension one, then X⊗X∨ ∼= 1.
(3) [Jan07, Corollary 3.7] If X is of dimension one, then

EndCHMab(k)F
(X) = F · id.

(4) [O’S05, Lemma 3.2] If R(X) is concentrated in even (resp. odd)
degree, and of total dimension d, then X∨ = ∧d−1X ⊗ (detX)∨

(respectively X∨ = Symd−1X ⊗ (detX)∨).
(5) [Kim05, Corollary 7.8] Any decomposition of X as homological or

numerical motive lifts to a decomposition of X in CHMab(k)F .
(6) [Kim05, Corollary 7.9] Let f : X → X be an endomorphism. If R(f)

is an isomorphism then f is an isomorphism too.
(7) [And05, Corollaire 3.16] Let Y be another motive of abelian type.

If X and Y are isomorphic as homological motives (or numerical
motives) then they are isomorphic in CHMab(k)F .

Corollary 1.6. Any motive of abelian type can be written as a sum of pure
motives. Any pure motive of weight n can be written as a direct factor of
h1(A)⊗n+2m(m), for some abelian variety A and some integer m.

Proof. From the relation

M(A)(m)⊗M(A′)(m′) = M(A×A′)(m+m′),

we deduce that any motive of abelian type X is a direct factor of a finite sum
of the form Y = ⊕iM(Ai)(mi). Write the Künneth decompositions for the
motives M(Ai) (Theorem 1.1(1)). Hence we have a Künneth decomposition
Y =

⊕
n Yn.

Fix a decomposition Y = X ⊕ Z and consider the maps X → Yn → X.
These maps may not be projectors modulo rational equivalence but they cer-
tainly are projectors modulo homological equivalence inducing the Künneth
decomposition for the homological motive associated with X. Indeed the
induced decomposition R(Y ) = R(X)⊕R(Z) is a decomposition of graded
vector spaces (see reminders at the beginning of the section) and R(Yn) is
the n-th graded piece of R(Y ), so that R(X)→ R(Yn)→ R(X) is nothing
else but the projector defining the n-th graded piece of R(X).
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Using Theorem 1.5(5), we lift this into a decomposition of X =
⊕

nXn

refining the Künneth decomposition of Y . This shows the first part of the
statement and moreover that Xn, the pure factor of X of weight n, is a
direct factor of ⊕ihn+2mi(Ai)(mi).

Now, by Theorem 1.1(3), the motive ⊕ihn+2mi(Ai)(mi) is a direct factor
of ⊕ih1(Ai)

⊗n+2mi(mi). Take a positive integer m bigger than all the mi and
use Corollary 1.2(1) to deduce that ⊕ih1(Ai)

⊗n+2mi(mi) is a direct factor
of ⊕ih1(Ai)

⊗n+2m(m).
On the other hand, h1(×iAi) = ⊕ih1(Ai) by Theorem 1.1(4), hence the

motive ⊕ih1(Ai)
⊗n+2m(m) is a direct factor of h1(×iAi)⊗n+2m(m). Putting

all together, we deduce that Xn is a direct factor of h1(×iAi)⊗n+2m(m). �

2. Autoduality of motives

We keep the notation from the previous section. We prove a criterion
to check conservativity of realization functors on Chow motives of abelian
type.

By Theorem 1.5(6), we know that the realization functor detects auto-
morphisms among endomorphisms. To show conservativity of realization
one has to extend this property to morphisms between two objects that are
a priori different. The next proposition is a first step in this direction.

Proposition 2.1. Let X and Y be two motives of abelian type and f : X → Y
and g : Y → X be two morphisms. Let R be a realization functor such that
R(f) and R(g) are isomorphisms. Then f and g are isomorphisms too.

Proof. We do the proof for f (of course the situation is symmetric). The
realization of g ◦ f is an isomorphism, so, by Theorem 1.5 (6), g ◦ f is an
isomorphism too. In particular, we can find a morphism h : X → X such
that (h ◦ g) ◦ f = idX . This implies that f ◦ (h ◦ g) : Y → Y is a projector
defining X as a direct factor of Y , hence Y = X ⊕H. But the factor H has
zero realization, so it is actually zero, which means that f and (h ◦ g) are
inverse to each other. �

Proposition 2.2. Let X and Y be two pure motives of abelian type of same
weight and dimension. Let f : X → Y be a morphism such that det f is an
isomorphism. Then f is an isomorphism too.

Proof. We call n the weight and d the dimension and write the proof for
n even (the odd case is analogous). Let us fix a realization functor R. As
det f is an isomorphism then R(f) must be an isomorphism. This implies
that R(∧if) is an isomorphism for any i. Then the realization of the map

(∧d−1f)∨ ⊗ (det f)−1 : (∧d−1Y )∨ ⊗ detY → (∧d−1X)∨ ⊗ detX

is an isomorphism. Using Theorem 1.5(4), we have constructed a map
g : Y → X whose realization is an isomorphism. We conclude using Propo-
sition 2.1. �
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Proposition 2.3. Suppose that, for all pure motives X ∈ CHMab(k)F of
even weight n and dimension one, we have an isomorphism

X ∼= X∨(−n).

Then any realization functor is conservative.

Proof. The reader would not be surprised that we will only use the assump-
tion for n = 0. Indeed, using Tate twists, the assumption for n = 0 is
actually equivalent to the assumption for all n even.

Let us fix a realization functor R and f : X → Y a map of abelian
motives such that R(f) is an isomorphism. The aim is to show that f is
also an isomorphism.

First, write two (finite) decompositions X = ⊕nXn and Y = ⊕nYn, where
Xn and Yn are pure of weight n (Corollary 1.6). The map f induces mor-
phisms fn : Xn → Yn (but, in general, f is not just the sum of the fn). Note
that R(fn) is an isomorphism. It is enough to show that each fn is an iso-
morphism. Indeed, the inverses gn of the fn induce a morphism g : Y → X
allowing us to apply Proposition 2.1.

We are reduced to the case where X and Y are pure of the same weight
and dimension. By Proposition 2.2 it is enough to show that det f is an
isomorphism, in other words we may assume that X and Y are pure of
dimension one.

By Proposition 2.1, it is enough to construct a morphism g : Y → X
whose realization is an isomorphism (or equivalently non-zero). It is con-
structed as follows

Y = Y ⊗ 1 ∼= (Y ⊗X∨)⊗X ∼= (X ⊗ Y ∨)⊗X id⊗f−→ (X ⊗ Y ∨)⊗ Y = X

where the first and last isomorphism come from Theorem 1.5(2) and the
second comes from the assumption applied to the one dimensional motive
of weight zero X ⊗ Y ∨. �

3. Abelian varieties over finite fields

We recall here some classical results on abelian varieties over finite fields
due to Tate et al. and we give some consequences. Throughout the section,
we fix a polarized abelian variety A of dimension g over a finite field k. We
denote by End(A) the ring of endomorphisms of A, we write End0(A) for
End(A) ⊗Z Q and ∗ for the Rosati involution on it (induced by the fixed
polarization).

Theorem 3.1. With the above notations, the following holds:

(1) [Tat66] Maximal commutative Q-subalgebras of End0(A) have di-
mension 2g.

(2) [Yu04, §2.2] There exists a maximal commutative Q-subalgebra B of
End0(A) which is ∗-stable.
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(3) [Mum08, pp. 211-212] An algebra B as above is a finite product
of CM number fields B = L1 × · · · × Lt and ∗ acts as the complex
conjugation on each factor.

(4) [Shi71, Proposition 5.12] The compositum of CM number fields is
itself a CM field. The Galois closure of a CM number field is a CM
number field as well.

We write L for the CM number field which is the Galois closure of the
compositum of the fields Li, see Theorem 3.1(3)-(4). Let Σi be the set of
embeddings of Li in L and Σ the disjoint union of the Σi (with i vary-
ing). Write ·̄ for the action on Σ induced by composition with the complex
conjugation.

Corollary 3.2. We keep the notations as above. In CHMab(k)L the motive
h1(A) decomposes into a sum of 2g motives of dimension one

h1(A) =
⊕
σ∈Σ

Mσ,

where the action of b ∈ Li on Mσ induced by Theorem 1.1(4) is given by
multiplication by σ(b) if σ ∈ Σi and by multiplication by zero otherwise.

Moreover, the isomorphism p : h1(A) ∼= h1(A)∨(−1) of Theorem 1.1(5)
restricts to an isomorphism

Mσ
∼= M∨σ̄ (−1)

for all σ, and to the zero map

Mσ
0−→M∨σ′(−1)

for all σ′ 6= σ̄.

Proof. Consider the injection L1×· · ·×Lt ↪→ End0(A). By Theorem 1.1(4),
we deduce an injection (

∏
i Li)⊗L ↪→ EndCHMab(k)L

(h1(A)). Each projector

of (
∏
i Li)⊗ L ∼=

∏
i L

[Li:Q] defines a factor Mσ.
The last part of the statement can be checked after realization because of

Corollary 1.2(2). It is then a consequence of Theorem 3.1(3). �

Definition 3.3. We keep notations from the theorem above and define L0

to be L ∩ R.
Following Clozel, we define a set of prime numbers Clo(A, ∗, B) as those

primes ` (different from the characteristic of k), such that there is a place λ
of L0 above ` such that the λ-adic completion of L0 does not contain L.

If there are several B ⊂ End0(A) as in the theorem above we can let B
vary and consider the union of the Clo(A, ∗, B). We will call it Clo(A, ∗) or
simply Clo(A).

Proposition 3.4. [Clo99, §3] Given a totally real number field F and an
imaginary quadratic extension E, the set of primes ` such that there is a
place λ of F above ` such that the λ-adic completion of F does not contain
E is of positive density.
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In particular, Clo(A, ∗, B) is of positive density.

Theorem 3.5. [Clo99] Given a prime number ` in Clo(A), numerical and
`-adic homological equivalence on A (and all powers of A) coincide.

The improvement on powers of A is due to Milne [Mil01, Proposition B.2].

4. Conservativity on Chow motives

In all this section the base field k is finite. We show here Theorem 0.4 from
the Introduction. By Proposition 2.3, it is enough to show the following.

Theorem 4.1. Suppose that the base field k is finite and that the field of
coefficients F verifies that F ∩Q is totally real. Then for any

X ∈ CHMab(k)F

of even weight n and dimension one we have an isomorphism

X ∼= X∨(−n).

Proof. Let us start with some reduction steps. First, note that it is enough
to have such an isomorphism in the category of numerical motives (by The-
orem 1.5(7)). If Z is a Chow motive we will write Z for the corresponding
numerical motive. Recall that the category of numerical motives is semisim-
ple [Jan92] and notice that X is simple as it if of dimension one.

We claim that the numerical motive X exists already with coefficients in
F ∩ Q. To show this claim it is enough to show that there are no more
simple objects with coefficients in F than with coefficients in F ∩Q. As the
endomorphisms algebra of a simple object is a division algebra, it suffices to
prove that if D is a division algebra over F ∩ Q, then D ⊗F∩Q F is also a
division algebra. This is certainly classical, but we do not know a reference.
It is for example a direct consequence of [Gro95, Théorème 6.1].

The claim reduces the question whether X and X∨(−n) are isomorphic to
the case F ⊂ Q. As the projectors defining these two motives (as algebraic
cycles) have finitely many coefficients, we are allowed to suppose that F is
a (totally real) number field.

Consider two totally real number fields F ⊂ K. We claim that the state-
ment for K implies the statement for F . To show this claim we work again
with numerical motives. Let X be a motive as in the statement, with coeffi-

cients in F . Note that Hom(X,X
∨

(−n)) and Hom(X
∨

(−n), X) are at most
one-dimensional. Moreover, passing to coefficients in K corresponds to ap-
ply ⊗FK to these Hom (as numerical equivalence commutes with extension
of scalars). Hence, if the relation f ◦ g = id can be satisfied with coefficients
in K then it can be satisfied also with coefficients in F .

We can now show the statement. We are reduced to the case where F
is a totally real number field as big as we want. Any motive X as in the
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statement can be written as a direct factor of h1(A)⊗n+2m(m), for some
abelian variety A and some integer m, by Corollary 1.6. After twist, we can
suppose that X is a direct factor of h1(A)⊗n, with n even.

Consider the decomposition explained in Corollary 3.2

h1(A) =
⊕
σ∈Σ

Mσ,

with the notation fixed above that statement. We can suppose that F con-
tains the maximal totally real subfield in L. In particular, we can decompose
the motive h1(A)⊗n in CHMab(k)F into a sum of motives of dimension two
of the form

(Mσ1 ⊗ · · · ⊗Mσn)⊕ (Mσ1 ⊗ · · · ⊗Mσn),

where σi ∈ Σ and barring denotes the action of complex conjugation.
Again we can work with numerical motives. By semisimplicity, the iso-

morphism class of X appears in a motive of the form

Y = (Mσ1 ⊗ · · · ⊗Mσn)⊕ (Mσ1 ⊗ · · · ⊗Mσn),

hence we can then suppose that X is a direct factor of Y . Moreover, we can
see X as a direct factor of Y also in the category of Chow motives because
of Theorem 1.5(5)

By Corollary 3.2, the morphism p⊗n induces an isomorphism between Y
and Y ∨(−n). As X is a direct factor of Y , X∨(−n) is a direct factor of
Y ∨(−n), hence we have maps between X and X∨(−n) in both directions.
We want to show that these maps are isomorphisms between X and X∨(−n).
This can be checked after realization by Proposition 2.1. In practice: we
have a pairing on R(Y ) and we have to check that R(X) is not an isotropic
line. The pairing is perfect and symmetric on R(Y ) so at most two lines are
isotropic. By Corollary 3.2, R(Mσ1 ⊗ · · · ⊗Mσn) and R(Mσ1 ⊗ · · · ⊗Mσn)
are isotropic lines, so we have to check that R(X) is not one of these two
lines.

We can choose R to be the λ-adic realization, with λ one of the primes of
F as in the Proposition 3.4 (to be applied to E the compositum of F and
L). In this way the complex conjugation acts on the coefficients sending
R(Mσ1 ⊗ · · · ⊗Mσn) to R(Mσ1 ⊗ · · · ⊗Mσn) and fixing R(X). This implies
that they are not the same line and concludes the proof. �

Corollary 4.2. Suppose that the base field k is finite and that the field of
coefficients F verifies that F ∩Q is totally real. Then any realization functor
is conservative on CHMab(k)F .

Proof. Combine the previous theorem with Proposition 2.3. �

Remark 4.3. The condition on F is a necessary hypothesis in the theorem.
Indeed, if E is an elliptic curve with CM multiplication by a field L, then, by
Corollary 3.2, h1(A) ∈ CHMab(k)L decomposes as V ⊕W with V ∼= W∨(−1).
On the other hand V ⊗2 and W⊗2 are not isomorphic as their realizations
are not isomorphic (except if E2 is supersingular). In particular X = V ⊗2
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is a motive with coefficients in L, even weight (two) and dimension one but
the isomorphism stated in the theorem cannot exist.

Instead, the corollary on conservativity should hold without any assump-
tions on the field of coefficients, but we are not able to show it. Note that
this would have deep consequences as the following proposition shows.

Proposition 4.4. Let k be a finite field and let ` be a prime number (invert-
ible in k). Suppose that the `-adic realization functor R` is conservative on
CHMab(k)Q. Then numerical equivalence coincides with `-adic homological
equivalence on abelian varieties over k.

Proof. Consider a cycle Z on an abelian variety A of codimension i and
suppose that it has a non-zero `-adic homological class. By definition of
Chow motives Z is a map living in HomCHMab(k)Q

(M(A),L⊗i), where L is

the Lefschetz motive. We want to show that it is not numerically trivial,
for this it suffices to construct a map Y in HomCHMab(k)Q

(L⊗i,M(A)) such

that Z ◦ Y is not zero. As numerical equivalence commutes with extension
of scalars we can work with coefficients in Q and we will construct Y there.

By Corollary 3.2 (combined with Theorem 1.1) the motive M(A) decom-
poses into a sum of motives of dimension one M(A) =

⊕
iMi. Hence also

Z =
⊕

i Zi can be decomposed. At least one component Zi : Mi → L⊗i has
non-zero realization, hence R`(Zi) is an isomorphism. Then by assumption
Zi is also an isomorphism of motives. Take Y to be the inverse of Zi (on
that one component and zero on the others). �

5. Conservativity on mixed motives

In all this section the base field k is finite. We study the conservativity
of the realization functors on the category DMab

gm(k)Q (Definition 0.1). The
results are weaker than the previous section.

Theorem 5.1. Let X and Y be two motives in DMab
gm(k)Q. There exists a

set of prime numbers PX,Y of positive density such that, for any f : X → Y
and any ` ∈ PX,Y , if R`(f) is an isomorphism then f itself is an isomor-
phism.

In particular, if R`(f) is an isomorphism for almost all primes `, then f
itself is an isomorphism.

Proof. First note that our category DMab
gm(k)Q coincides with the one that

Wildeshaus studies, by [Anc16, Remark 5.6]. Now, DMab
gm(k)Q has a canon-

ical weight structure (in the sens of [Bon10, §6]), whose heart is CHMab(k)Q
[Wil15, Proposition 1.2 and its proof]. Moreover, this weight structure is
finite, hence only finitely many abelian varieties are needed to generate X
and Y . Let A be the product of those and fix ` a prime number in Clo(A)
(Definition 3.3).

Define C to be the smallest triangulated, rigid and pseudoabelian category
containing the motive of A. Note that X,Y ∈ C.
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By Theorem 3.4, numerical and `-adic homological equivalence coincide on
powers of A (for the fixed `), hence we can now apply Wildeshaus’s methods
[Wil15, proofs of 1.10-1.12] to C, to conclude that the `-adic realization
(again for the fixed `) is conservative on C. �

Theorem 5.2. Let k be a finite field and ` be a prime number invertible in k.
Suppose that, for all totally real number fields F and all places λ of F above `,
the λ-adic realization functor is conservative when restricted to DMab

gm(k)F .
Then the `-adic homological equivalence coincides with numerical equivalence
on abelian varieties over k.

Proof. We start arguing as in Proposition 4.4. Suppose that there is an alge-
braic cycle Z of codimension i on an abelian variety A which is numerically
trivial but has non-trivial `-adic class. By definition of Chow motives Z is a
map living in HomCHMab(k)Q

(M(A),L⊗i), where L is the Lefschetz motive.

Use the decomposition of Theorem 1.1(1) and consider at the component
Z2i ∈ HomCHMab(k)Q

(h2i(A),L⊗i). Notice that the realization of Z2i is non-

zero (this as the same cohomology class as Z) and the corresponding cycle
must be numerically trivial.

Using Theorem 1.1(3), we have that h2i(A) is a direct factor of h1(A)⊗2i,
hence we can look at Z2i as an map α ∈ HomCHMab(k)Q

(h1(A)⊗2i,L⊗i). Its

realization is still non-zero and the corresponding cycle is still numerically
trivial.

Arguing as in the proof of Theorem 4.1, we can decompose the motive
h1(A)⊗2i in CHMab(k)F into a sum of motives of dimension two of the form

(Mσ1 ⊗ · · · ⊗Mσ2i)⊕ (Mσ1 ⊗ · · · ⊗Mσ2i).

This induces a decomposition of the morphism α. The assumption is that
there exists one of its components which is numerically trivial but whose
realization is non-zero. We call

f ∈ HomCHMab(k)F
(Y,L⊗i)

such a component. Recall that Y is a motive of dimension two.
Consider now the isomorphism p from Corollary 3.2 and define

g = f∨(−2i) ◦ p⊗2i ∈ HomCHMab(k)F
(L⊗i, Y ).

As f is numerically trivial, we must have f ◦ g = 0.

On the other hand, in the category2 DMab
gm(k)F , we can complete f into

a triangle

C −→ Y
f−→ L⊗i

and g must factorise into a morphism

h : L⊗i −→ C.

2For simplicity, we take the embedding of CHMab(k)F into DMab
gm(k)F to be covariant.
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Note that the realization of f is a non-zero map between two graded
vector spaces concentrated in the same degree, one of dimension one and
the other of dimension two. Hence C is a vector space of dimension one
concentrated in the same degree.

As the realization of f is non-zero, the realization of h is a non-zero map
between vector spaces of dimension one, hence it is an isomorphism. Conser-
vativity implies that h is an isomorphism too, hence C ∼= L⊗i. This means
that the triangle above is a triangle between Chow motives. By [Voe00,
Corollary 4.2.6], the triangle splits, hence Y ∼= L⊗i ⊕ L⊗i. In particular,
numerical and homological equivalence coincide on HomCHMab(k)F

(Y,L⊗i),
which gives a contradiction. �
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Astérisque, (299):Exp. No. 929, viii, 115–145, 2005. Séminaire Bourbaki. Vol.
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Memorial Lectures, No. 1.

[Tat66] John Tate. Endomorphisms of abelian varieties over finite fields. Invent. Math.,
2:134–144, 1966.

[Voe00] Vladimir Voevodsky. Triangulated categories of motives over a field. In Cycles,
transfers, and motivic homology theories, volume 143 of Ann. of Math. Stud.,
pages 188–238. Princeton Univ. Press, Princeton, NJ, 2000.

[Voe02] Vladimir Voevodsky. Motivic cohomology groups are isomorphic to higher Chow
groups in any characteristic. Int. Math. Res. Not., (7):351–355, 2002.
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