Skip to Main content Skip to Navigation
Conference papers

Accurate physico-realistic ray tracing simulation of displays

Abstract : Physico-realistic simulation of any type of display needs to take into account not only its emissive properties but also its reflective properties which can play a key role in outdoor situations for example. We discuss a method based on Fourier optics viewing angle instruments capable to measure the emissive properties of a display for quasi-all its viewing angle and also its reflective properties versus angle and wavelength very rapidly. More precisely the spectral BRDF of the display surface is measured at different incident angles with a good angular resolution to be able to simulate accurately the unwanted reflections that corrupt display contrast and color. Thanks to the angular dependence, the display aspect for an observer anywhere in front of it can be obtained rapidly for any color image and the impact of the different imperfections can be visualized and quantified. Same experimental data are use in a new generation of spectral ray tracing software. The ray-tracing accuracy is checked by simulations of color images and comparison to analytical calculation of the light emitted and reflected by each pixel of the display.
Document type :
Conference papers
Complete list of metadata

Cited literature [11 references]  Display  Hide  Download
Contributor : Thomas Muller Connect in order to contact the contributor
Submitted on : Tuesday, September 8, 2020 - 11:44:23 AM
Last modification on : Friday, August 5, 2022 - 2:54:00 PM
Long-term archiving on: : Wednesday, December 2, 2020 - 10:32:16 PM


Files produced by the author(s)


  • HAL Id : hal-02933239, version 1


P. Boher, T. Leroux, Thomas Muller, Philippe Porral. Accurate physico-realistic ray tracing simulation of displays. Electronic Imaging, Jan 2019, San Francisco, United States. ⟨hal-02933239⟩



Record views


Files downloads