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Abstract— Current combat management systems (CMS) for mine 
countermeasure (MCM) warfare mostly plan single tasks for 
single means at a time. Yet the current trend puts an increasing 
emphasis on unmanned vehicles (UxVs). Whereas individual task 
planning is feasible when only a few MCM vessels are used, this 
becomes intractable when a large number of UxVs need being 
coordinated over a wide theatre, sometimes for weeks. In our 
venture to develop a force-level MCM CMS, we are imagining 
ways to alleviate the burden of the operators in such a situation.  
This paper concerns the feasibility of automatic force-level 
mission scheduling for MCM warfare. This novel and ambitious 
task requires concurrently solving two complex problems: i) how 
to generate mission zones which are sub-zones of the operational 
theatre, fitting assets characteristics and constraints 
(environment, threat, etc); and ii) how to schedule the missions 
according to the availability of an asset and results of previous 
missions. We expose a formalization of the problem, then some of 
our solving methods and first results, which we validate through 
simulation. 

Mission planning, scheduling, mine warfare 

I. INTRODUCTION 

The current trend in mine counter-measure (MCM) warfare 
goes towards the massive use of unmanned vehicles (UxVs). 
Such vehicles allow standoff operations with reduced risks for 
humans; since the ships stay far from the danger they may also 
be built following less costly, civilian standards. Also, 
underwater vehicles for zone inspection are more discreet than 
surface vessels. These unmanned vehicles are specialized in 
one or several tasks: transport, sonar towing, mine detection 
using sonar, object identification, and finally mine disposal. In 
the scenario considered herein, a mother ship lays in the water 
several unmanned surface vessels (USVs). These USVs are 
designed to either deploy a towed synthetic aperture sonar (T-
SAS), transport an explosive ordnance disposal (EOD) team, or 
to launch specialized UxVs of various sizes: either large 
unmanned underwater vehicles for mine detection and 
classification (D/C-UUVs) using sonar, large UUVs for mine 
identification using sonar/video means (I-UUVs), or 
expendable mine killers for neutralization (N-UUVs). The 
USVs are reconfigurable on the mother ship in a short time. 
The USVs also act as a communication relay between the 

UUVs and the mother ship. Figure 1 illustrates such an 
architecture. 

This kind of configuration is more complex to use, than 
traditional MCM forces where mine-hunters are the base assets 
and few ships are employed at a time. In the near future, assets 
will be more numerous, and with several different capabilities 
and operational constraints, thus they will be harder to 
coordinate. Also, newer, more complex missions may be 
addressed, than what was previously doable with mine hunters: 
for instance, covertly clearing a coastal zone to prepare a beach 
attack, an operation that may take weeks. In this context, 
proper mission planning is critical but very hard, if not 
impossible, to do by hand. 

Current combat management systems (CMS) for MCM 
operations typically focus on planning single tasks for single 
user-designated asset at one time. At this level, the CMS 
typically computes tracks and optimizes the sonar parameters 
to sweep a relatively small user-defined zone only a few 
nautical miles wide. 

When the CMS is to manage a MCM force made of 
heterogeneous assets over a large zone, requiring many launch 
and recovery cycles, the desirable requirements are more 
numerous. First, it should be able to automatically (or at least 
help an operator to) divide the theatre into sub-zones that are 
suitable for a given asset in terms of area, communication 
requirements and ranges, environmental conditions and threat 
level. This is spatial allocation problem. Second, the CMS 
should also assist the user in sequencing the order in which the 
missions should be executed. Ideally, the zones partition and 
the mission planning should minimize the total duration of the 
time on the theatre and be robust to failures or asset losses. 
Finally, once sub-zones and assets are assigned to the zones, 
the CMS should assist the user to perform the fine planning 
such as precise track determination. Also, the system should be 
easily extensible to new types of assets. 

In this paper, we begin by showing the limits of the 
Operational Research framework when solving the MCM 
asset/area allocation problem (section II). After some 
mathematical formalization (section III) we first show how to 
select assets and determine how many launches are required to 
process a polygonal zone (section IV) before showing how to 



cut the polygon into sub-polygons so that each of these sub-
polygons may be assigned to a single asset compatible with it 
(section V). This dual approach is then demonstrated in section 
VI on a simple example. 

II. MCM M ISSION SCHEDULING SEEN THROUGH THE 

OPERATIONAL RESEARCH LENS 

Graham et al. [1] introduced a well-known notation that has 
become the norm to categorize most classes of problems 
studied in Operational Research. According to this notation, the 
job scheduling component of our problem could be described 
as a (JMPM|pmtn,prec,rj|ΣwjUj). In layman’s terms, the zones 
are processed in a job-shop fashion (J), i.e. they undergo a 
series of operations: detection, classification, identification, 
neutralization, in this order. For one or several multi-purpose 
machines (MPM) are used: the UxVs. The jobs may be 
preempted (pmtn) and resumed later possibly on another 
machine. The precedence (prec) relation between jobs is here 
generic, as an oriented graph corresponding to the adjacency 
graph of the zones. The jobs may have to be finished at given 
dates rj though this constraint may be relaxed. Finally, the 
objective function to minimize depends on the military nature 
of the scenario. For instance, it may be necessary to minimize 
the delay between the beginning and the end of the operations 
on the theatre (the makespan); this does not allow to set 
priorities. On the other hand, it is also possible to minimize the 
number of late operations, each late job yielding a unit penalty 
Uj weighted by a priority wj which may be zero if the sub-zone 
must only be optionally cleared.  

To the best of our knowledge, no solution to this problem is 
available off the shelf.  Our problem generalizes the (J2| | Cmax) 
problem (flexible job shop with 2 machines with no precedence 
relations and minimum makespan) which has already been 
studied and shown to be NP-hard or strongly NP-hard. For this 
reason a brute-force approach is impossible since there are 
already O(n!m) possibilities to solve a  flexible job-shop with m 
machines and n jobs [2].  

Besides, Graham’s notation does not take geographic 
constraints into account, i.e. it is supposed that the polygonal 
zones to process are available a priori and more importantly, 

that these zones have areas compatible with the energy reserve 
of the assets. Yet the real problem is different: the user supplies 
large zones that cannot necessarily be processed by a single 
asset at one time. Thus these large zones must be subdivided 
(automatically) into sub-zones, depending on the maximum 
area an asset may cover, and this partition may be recomputed 
during the execution. This spatial dimension is an additional 
layer of complexity added to the MCM scheduling problem.  

For this reason we decided to break our problem into more 
manageable sub-problems: how to deal assets on a zone and 
how to divide macro-zones into zones.  

III. PROBLEM FORMALIZATION  

This paragraph details the problem at hand from a 
mathematical point of view. All the notations we introduce are 
summed up in an appendix at the end of the paper.  

When describing the scenario, the operator supplies a 
polygon T corresponding to the total zone to clear. This 
polygon is called herein the “theatre” as it is too wide to be 
cleared at once. 

A. Environment 

We assume that environmental conditions such as the 
bathymetric profile, tide schedule, currents, etc., are known on 
the theatre and supplied as maps. The mine-warfare 
characteristics of the zone (densities of non-mine bottom 
objects, sedimentary profile, etc) are also assumed to be 
known.  

B. List of operations to clear the theatre 

 For the theatre T to be cleared, three operations must be 
done sequentially on each subset of T. First, mine detection and 
classification is done, typically using sonar-based means. This 
operation yields a list of mine-like contacts (MILCOs). The 
identification operation consists in determining whether a 
MILCO is a mine or not. Typically this involves high-
resolution imagery, either acoustic or optical cameras, or direct 
human intervention. Also typically a human will be in the loop, 
though human intervention may not necessarily be done in 
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Figure 1 – A dummy ship/UxV architecture. The MCM mother ship may use several USVs simultaneously, one of them being for instance configured to 

deploy D/C-UUVs and another configured to deploy N-UUVs. USVs may be reconfigured on the mother ship to deploy other assets. 



real-time. The final operation is mine neutralization: either by 
detonating a charge near the mine, or defusing it. 

C. Assets 

A set of assets A = {ak, k=1..m} (corresponding to “USV”, 
“D/C UUV”, etc.) is stored in a database. An asset ak is 
described, among other parameters, by its environment 
adaptation (minimum and maximum depth, current, sea state, 
etc), but also the operations they can perform (Detection, 
Identification, Neutralization), and the associated performance 
parameters such as the total available energy Ek, transit speeds 
Vk

t, etc. Another parameter of interest is the cycle time Tk
c 

necessary for one launch-retrieval cycle: that is, the time taken 
to lay the asset in the water, retrieve it, recharge the batteries 
and perform other upkeep tasks; Tk

c is here assumed to be 
constant. 

D. Macro-zone and zones 

The theatre is then cut into polygonal macro-zones Zi, 
i=1..N, either automatically or with the help of the operator, 
such that T=Ui=1..N Zi. A macro-zone Zi is a subset of the theatre 
with homogenous environmental and mine warfare 
characteristics, such that there are assets in the database able to 
clear this zone. A macro-zone may still be too large to be 
processed at one single time. Thus each macro-zone Zi may be  
divided into Ni zones zij such that Zi=Uj=1..Ni zij. The macro-
zones and the zones are also described as polygons. The area of 
macro-zone Zi (resp. zone zij) is denoted by |Zi| (resp. |zij|). It is 
up to a human operator, with the help of the software, to define 
the macro-zones. The software may issue warnings, e.g. when 
a macro-zone may be covered only for D/C operations but not I 
or N operations. 

E. What this paper solves 

We describe a new algorithm where the input is one 
polygonal macro-zone Zi  and a set of assets A = {ak, k=1..m}. 
The algorithm finds a series of Ni zones zij and assigns to each 
zone zij one asset ak. Each asset may be re-used several times if 
it is not an expendable asset; in this case the number of 
launches for each asset is determined as a side-product of the 
algorithm. The following constraints must be respected: 

• the whole macro-zone is processed: Zi=Uj=1..Ni zij; 

• each asset assigned to a zone must be compatible with 
it, in particular the area of the zone must be less than 
the maximum area coverable by the asset; 

• the shape of the zone should be “smooth”, i.e. a 
“simple” polygon as close as possible to a rectangle, 
oriented along locally privileged, user-supplied 
orientations such as a current field; this is to facilitate 
the track computation for each zone, asset couple. 

The algorithm as described here works under the hypothesis 
that the assets may be launched a potentially infinite number of 
times (no expendable assets).  

IV. DEALING ASSETS TO MACRO-ZONES 

In this part we wish to determine which assets to use on a 
given macro-zone Zi and if so, how many times they should be 
launched. Although we also considered the I/N case, we 
consider in this paper only the Detection operation, which is 
the easiest to describe. In this operation, the asset uses a regular 
sweeping pattern, as is typically the case with sonar where the 
asset works its way on the zone by following parallel tracks. To 
begin with, a subset Ai ={ak, k=1..mi ≤ m} of A is determined: 
these are the Detection assets compatible with the 
environmental conditions on Zi. This is easy. Then, we 
determine the maximum area, which can be processed with 
each asset in Ai. The third step is to determine the optimum 
number of launches for each asset ak∈A i, assuming the assets 
can be re-used an infinite number of times. This is equivalent 
to determining which area Sk,i of Zi will be processed by asset 
ak. Those two last steps are harder and detailed here. 

A. Maximum area Sk,i
max an asset can cover on zone Zi 

The exact area cannot be computed yet since it depends on 
several parameters including the exact configuration of the 
zone. It is however possible to compute a “guesstimate” of an 
upper bound of this value. We assume the k-th asset of Ai has a 
battery reserve Ek (in W.h), the power used during the hunt is 
Pk

h, the transit speed is Vt
k, the power used during transit is 

Pk
t(Vk

t) which is a function of the speed, the coverage rate (in 
km2/h) is Ck(Z); the battery slack is denoted by Ek

s (in W.h). 
We also found based on real trials that time lost for end-of-
track manoeuvres accounted was usually proportional to the 
useful time spent hunting on the zone; pk is the coefficient. 
Also, D(Zi) is the maximum distance from the launch point to 
any point of Zi. Then:  

• the energy required for the ingress and egress trip is: 

Ek
t = 2 Pk

t(Vk
t)× D(Zi)/ Vk

t (1) 
• the energy required for the hunt on Zi is: 

Ek
h = Pk

h× (Sk,i
max / Ck(Zi))(1+pk) (2) 

• the total energy budget is: 

Ek= Ek
t + Ek

h + Ek
s (3) 

• hence: 

Sk,i
max = (Ek - 2 Pk

t(Vk
t)× D(Zi)/ Vk

t – Ek
s )… 

×Ck(Zi) / (Pk
h× (1+pk) ) 

(4) 

B. Estimating the number of launches 

We want to select which asset to launch and how many 
times. If an asset ak ∈ Ai processes an area Sk,i≤|Zi|, the asset is 
launched nk,i = ceil(Sk,i/ Sk,i

max) times. An upper bound for the 
time Tk,i necessary to process this area Sk,i is: 

Tk,i=  (Sk,i / Ck(Zi))(1+pk) + Tk
c ×  ceil( Sk,i / Sk,i

max ) (5) 
Several cost functions are possible; the easiest is the maximum 
total time spent by any asset on the zone. Said otherwise, we 
want to find the areas Sk, i and, as a vital side-product, the value 
of nk,i= ceil(Sk,i/ Sk,i

max), maximizing the following function: 

ikmkimii TSSSg
ii ,..1,,2,1 max),...,,( ==  (6) 



We work under the constraint: 

(Σk Sk,i ) - |Zi|≥ 0, k=1..mi (7) 
which can be easily integrated into g by letting  
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Minimizing this function can be done using standard 
numerical methods provided that an initial estimate of the areas 
S0

k,i is known. This initial estimate can be obtained by dropping 
the “ceil” function in (5). Then: 

T'k,I =  S0
k,i×((1+pk) / Ck(Zi) + Tk

c/ Sk,i
max ) = S0

k,i× αk,i  (9) 
Now let g' be the equivalent of g in (6), but using times T'k,i. It 
is evident that g' is minimized when terms T'k,I's are equal for 
all k. In this case: 

∀ k=1..mi   S0
k,i× αk,i = S0

1,i× α1,i (10) 
Adding constraint (7) yields: 

S0
1,i× α1,i× Σk (1/αk,i) = |Zi| (11) 

Hence, S0
k,i is a weighted average of |Zi|, with weight 1/αk,i: 

∀ k=1..mi , S
0
k,i = |Zi|× [ 1/αk,i] / Σk (1/αk,i)  (12) 

V. CUTTING A MACRO-ZONE INTO ZONES 

A. Constraints 

The input consists in a macro-zone Zi, assets ak,i, 
k=1..mi ≤ m compatible with this macro-zone, and an optional 
vector field F covering Zi. Field F is typically a map of currents 
on Zi. Indeed, if a track is in the direction of the current, drift is 
minimized and side-scan sonar coverage is maximized. The 
user may alternatively input a vector field defining locally 
privileged directions, taking into consideration other 
operational considerations than currents, which the survey 
tracks should ideally follow. This vector field may be 
degenerated to a single direction everywhere. Also, the areas 
Sk,i assigned to each asset ak are known. For each macro-zone 
Zi, we need a list of sub-zones/asset couples Li={(zij, akj)}, 
j = 1.. Ni. These are the constraints: 

• the zone is compatible with the asset, i.e. if zij is 
associated to asset ak,i, then |zij| ≤  Sk,i

max; 

• the whole macro-zone is covered: Σ j |zij| = |Zi|; 

• the zones zij are as regular as possible, i.e. “similar” to 
rectangles, parallelograms, trapezes, this to facilitate 
track computation on zij and limiting the number turns 
at the end of tracks;  

• the zones zij are oriented according to the field F. 

B. Privileged Direction Curve 

If F is supplied, a privileged direction curve (PDC) is 
computed. The PDC corresponds to the trajectory followed by 
a particle carried by the stream defined by vector field F. The 
PDC should be as long as possible while being on (an 
approximation of) the medial axis of the polygon, as far as 
possible from any edge and closest to the centre of its bounding 
box; also the derivatives of the PDC must be continuous. Many 

strategies are possible to find the PDC. One of them begins by 
computing1 several stream lines with different start points; the 
best of them is chosen as the PDC. If the stream line goes out 
of the polygon at some point A and comes back in at some 
other point B, then the vertices from A to B are substituted to 
the stream line between A and B and the resulting line is 
smoothed by a low-pass filter, ensuring the curve is derivable 
(i.e. has an orthogonal line everywhere). 

If F is not supplied, then the PDC is the longest axis of the 
oriented bounding box of the zone, typically found using the 
rotating calipers algorithm [3]. 

C. Recursive cutting 

Let Oi be a list of area/assets objectives{ (Sk,j,i, ak,i) }, where 
k = 1..mi, and for all values of j = 1.. nk,i, term Sk,j,i is equal to 
Sk,i

max. The terms nk,i are those obtained after the optimization 
stage exposed in section IV.B.  

The process is recursive, where polygon Zi  is cut in two, 
then each sub-polygon is also cut into two, etc., until the final 
sub-polygon has an area less than one of the areas Sk,j,i. The 
input of the recursive process is: 

• a sub-polygon z of Zi; 

• a sublist l of Oi with (area, asset) couples; 

The output is: 

• a list Li made of (zones of Zi, asset) couples; 

• at most two sub-polygons z0 and z1 such that 
z0 ∪ z1=z; 

• at most two sublists l0 and l1 such that l0 ∪ l1=l;  

The process is initialized with z = Zi, l = Oi, and Li=∅. 
First, split l into sub-lists la and lb so that the sum of the areas in 
la, denoted by |la|,  is as close as possible to the sum of the areas 
in lb, which we write |lb|. A cutting line C, orthogonal to the 
PDC of z, is then found so that it cuts z into two parts z0 and z1. 
Part z0

 must be adjusted to target either area |la| or |lb| and both 
possibilities must be tried because one of them often does not 
work out. Assuming |z0| = |la|, we set list l0 to la; the area 
|z1| = |z| - |z0| will necessarily be less than |lb|, due to 
constraint  (7). The converse situation occurs if |zi| = |lb|. 
Finding C may be efficiently done by dichotomy, iterating on 
the curvilinear abscissa of C on the PDC. 

Now, if l0 contains only one item (Sk,j,i, ak,i), then add 
(z0, ak) to list Li. Do the same for l1, if necessary. On the other 
hand, if l0 or l1 contains more than one item, then reiterate 
recursively the same algorithm as used for (z, l). It is possible 
to alternate cutting directions: in this variant, every two 
iteration, use the orthogonal field F⊥ to F, instead of F. 

VI. A WORKED EXAMPLE 

In this section we consider the case where the macro-zone 
Zi is described by the coordinates given in table I (see also 
figure 2). The total area |Zi| of this polygon is 4 units. 

                                                           
1 Using MATLAB, this can be done using the stream2 function. 



TABLE I.  POLYGON  COORDINATES 

x -2 -1 1 2 2 1 -1 -2 
y -2 -1 -1 -2 -1 0 0 1 

 
The field F is described by table II: 

TABLE II.  PREFFERED DIRECTION FIELD F 

x -2 0 2 
y -1.5 -0.5 -1.5 
θ (deg) 45 90 135 

 
A dummy list of assets ak,i compatible with Zi is supplied 

in table III: 

TABLE III.  A SSETS COMPATIBLE WITH POLYGON 

Asset ak,i 1 2 3 4 
Max. coverable area per launch Sk,i

max 0.5 0.3 0.4 0.35 

 
The algorithm described in paragraph IV.B returns: 

TABLE IV.  NUMBER OF LAUNCHES FOR POLYGON 

Asset ak,i 1 2 3 4 
Number of launches nk,i 4 2 2 2 

 
As a result of table III and IV the assets/area list is the 

following: 
Oi = {(1, 0.5), (1, 0.5), (1, 0.5), (1, 0.5), (2, 0.3), (2, 0.3), 

(3, 0.4), (3, 0.4), (4, 0.35), (4, 0.35) } 
It is easy to see that the area covered by the assets during 

all their missions is 4×0.5+2×0.3+2×0.4+2×0.35 = 4.1 area 
units, i.e. just a bit more than |Zi|, as expected to respect 
constraint (7). We initialize the algorithm: l ← Oi. 

Following the method exposed above, list l is divided at 
the first iteration into two sub-lists with approximately the 
same total area: 

la = {(1, 0.5), (1, 0.5), (1, 0.5), (1, 0.5) }; | lb| = 2; 
lb = {(2, 0.3), (2, 0.3), (3, 0.4), (3, 0.4), (4, 0.35),  
          (4, 0.35) }; | lb| = 2.1. 
The PDC is found by interpolating F on a vector grid of 

10×10 vectors evenly distributed over x = [-2, 2] and         
y = [-2, 0], then computing the stream line going through the 
center of Zi which is found at (0, -0.5). The cutting line is 
parameterized by curvilinear abscissa s between 0 (left) and 1 
(right). The PDC for the first iteration is shown in figure 2. 

Now let us try to target either |la| or |lb| as the area for the 
“left” polygon (where the stream line has abscissas below s): 

• Target: |la| = 2:    s = 0.5,   |z0| = 2,      |z1| = 2 ≤ | l1|; 
• Target: |lb| = 2.1: s = 0.58, |z0| = 1.24, |z1| = 2.75 > | l1|; 

Clearly the first case is the correct one, so we set l0 = la. 
The process goes on recursively, until the list l is reduced to 
one element or empty. The final partition is given by table V 
and illustrated in figure 3.  

 
In table V, the total areas and the allocation follow the 

constraint set by list Li
0. There are some numerical deviations 

from the ideal value caused by the dichotomy process when 
finding the curvilinear abscissa s; these deviations are of 
negligible importance. In figure 3, notice how the cutting lines 
follow the user-supplied field F and how the partition yields 
regular polygons. Note that in this case the cutting directions 
were alternated every two iteration, as can be seen on the right 
for the zones processed by asset 2 and asset 4. 

TABLE V.  FINAL RESULT (SEE ALSO FIGURE 3) 

Zone zij :  
value of j 

Asset ak,i:  
value of k 

Zone area Maximum area for 
asset Sk,i

max, as per 
table III 

1 1 0.500005 0.5 
2 1 0.500002 0.5 
3 1 0.500000 0.5 
4 1 0.499984 0.5 
5 3 0.399998 0.4 
6 3 0.400006 0.4 
7 4 0.349990 0.35 
8 4 0.350007 0.35 
9 2 0.247365 0.3 
10 2 0.252643 0.3 
TOTAL AREA 4.000000 4.1 
TRUE POLYGON AREA 4.000000  
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Figure 2: polygon Zi described in table I. The field F (table II) is given in 

large blue arrows; the interpolated vector field is given with small red 
arrows; the stream line is in blue; the cutting line C for the first iteration is 

the fat green line. 



 

VII. CONCLUSIONS 

Mine warfare mission planning on a theater combined with 
assets assignment to perform elementary mine warfare tasks is 
a tough job because the problem mixes space and time 
constraints. As such, existing operational research methods 
cannot solve the problem and new approaches must be 
devised. In this paper, we formalized the MCM asset 
assignation and zone-cutting problem from a mathematical 
point of view for non-expendable assets (the expendable case 
can be adapted). We then proposed a method working in two 
steps, which first determines which assets are to be used and 
how many times they should be launched; then shows how to 
cut a polygon into a series of zones, which can be associated 
to assets. These zones have a smooth shape respecting local 
constraints expressed as a vector field, such as the current 
direction. Once implemented in a CMS, these tools will help 
mine warfare officers to prepare various missions by 
optimizing the assets to deploy and bring the capability to 
manage fleet of different UxVs on large theaters. 

NOTATIONS 

|•| Total area (of a polygon, or a list of polygons) 
T Theatre 

A={ ak, k=1..m} List of assets 
Zi, i=1..N i-th macro-zone such that T=Ui=1..N Zi 
zij, j=1..Ni j-th zone of Zi such that Zi=Uj=1..Ni zij 

Ek
t Energy needed for asset ak for the 

ingress/egress trip 
Ek

h Energy needed for asset ak for hunting 
Ek

s Battery slack for security purposes, asset ak 
Ek Total energy reserve of asset ak 
Pk

h Power used when hunting for asset ak 
Pk

t(Vk
t) Power used when transiting for asset ak 

Ck(Zi) Coverage rate for asset ak 
D(Zi) Maximum distance from launch point to any 

point of Zi 
Sk,i Total area processed on Zi by asset ak (several 

launches may be required) 
Sk,i

max Maximum area which can be processed by 
asset ak on zone Zi for one launch/retrieval 
cycle 

nk,i Number of launches required for asset ak to 
process Zi 

Tk,i Upper bound for the total time needed to 
process zone Zi using only asset ak 

F Vector field describing preferred directions 
F⊥ Vector field orthogonal to F 

Oi = { (Sk,j,i, ak,i) }, 
k=1..mi, j=1.. nk,i 

Objective area/asset distribution on macro-zone 
Zi 

C Cutting line 
s Curvilinear abscissa of the cutting line 

Li= { (zj,i, ak,i) }, 
k=1..mi, j=1.. nk,i 

Asset / zone distribution for macro-zone Zi 
(“what we want”) 
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Figure 3: result of the cutting as supplied by the algorithm. The numbers 

correspond to asset types ak,i. 


