
HAL Id: hal-02933007
https://hal.science/hal-02933007

Submitted on 8 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Theatre-wide automatic mission scheduling for a mine
countermeasure force

Andreas Arnold-Bos, Israel Bacor, Jean-Philippe Brunet, Matthieu Lecouvez

To cite this version:
Andreas Arnold-Bos, Israel Bacor, Jean-Philippe Brunet, Matthieu Lecouvez. Theatre-wide automatic
mission scheduling for a mine countermeasure force. Undersea Defence and Technology, 2012, Alicante,
Spain. �hal-02933007�

https://hal.science/hal-02933007
https://hal.archives-ouvertes.fr

Theatre-wide automatic mission scheduling for a
mine countermeasure force

Andreas ARNOLD-BOS, Israel BACOR,
Jean-Philippe BRUNET

Thales Underwater Systems SAS
Route de Sainte Anne du Portzic

CS 43814
29238 BREST cedex, France

andreas.arnold-bos@fr.thalesgroup.com

Matthieu LECOUVEZ
École Nationale de Ponts et Chaussées ParisTech

6 et 8 avenue Blaise Pascal
77400 CHAMPS SUR MARNE, France

Abstract— Current combat management systems (CMS) for mine
countermeasure (MCM) warfare mostly plan single tasks for
single means at a time. Yet the current trend puts an increasing
emphasis on unmanned vehicles (UxVs). Whereas individual task
planning is feasible when only a few MCM vessels are used, this
becomes intractable when a large number of UxVs need being
coordinated over a wide theatre, sometimes for weeks. In our
venture to develop a force-level MCM CMS, we are imagining
ways to alleviate the burden of the operators in such a situation.
This paper concerns the feasibility of automatic force-level
mission scheduling for MCM warfare. This novel and ambitious
task requires concurrently solving two complex problems: i) how
to generate mission zones which are sub-zones of the operational
theatre, fitting assets characteristics and constraints
(environment, threat, etc); and ii) how to schedule the missions
according to the availability of an asset and results of previous
missions. We expose a formalization of the problem, then some of
our solving methods and first results, which we validate through
simulation.

Mission planning, scheduling, mine warfare

I. INTRODUCTION

The current trend in mine counter-measure (MCM) warfare
goes towards the massive use of unmanned vehicles (UxVs).
Such vehicles allow standoff operations with reduced risks for
humans; since the ships stay far from the danger they may also
be built following less costly, civilian standards. Also,
underwater vehicles for zone inspection are more discreet than
surface vessels. These unmanned vehicles are specialized in
one or several tasks: transport, sonar towing, mine detection
using sonar, object identification, and finally mine disposal. In
the scenario considered herein, a mother ship lays in the water
several unmanned surface vessels (USVs). These USVs are
designed to either deploy a towed synthetic aperture sonar (T-
SAS), transport an explosive ordnance disposal (EOD) team, or
to launch specialized UxVs of various sizes: either large
unmanned underwater vehicles for mine detection and
classification (D/C-UUVs) using sonar, large UUVs for mine
identification using sonar/video means (I-UUVs), or
expendable mine killers for neutralization (N-UUVs). The
USVs are reconfigurable on the mother ship in a short time.
The USVs also act as a communication relay between the

UUVs and the mother ship. Figure 1 illustrates such an
architecture.

This kind of configuration is more complex to use, than
traditional MCM forces where mine-hunters are the base assets
and few ships are employed at a time. In the near future, assets
will be more numerous, and with several different capabilities
and operational constraints, thus they will be harder to
coordinate. Also, newer, more complex missions may be
addressed, than what was previously doable with mine hunters:
for instance, covertly clearing a coastal zone to prepare a beach
attack, an operation that may take weeks. In this context,
proper mission planning is critical but very hard, if not
impossible, to do by hand.

Current combat management systems (CMS) for MCM
operations typically focus on planning single tasks for single
user-designated asset at one time. At this level, the CMS
typically computes tracks and optimizes the sonar parameters
to sweep a relatively small user-defined zone only a few
nautical miles wide.

When the CMS is to manage a MCM force made of
heterogeneous assets over a large zone, requiring many launch
and recovery cycles, the desirable requirements are more
numerous. First, it should be able to automatically (or at least
help an operator to) divide the theatre into sub-zones that are
suitable for a given asset in terms of area, communication
requirements and ranges, environmental conditions and threat
level. This is spatial allocation problem. Second, the CMS
should also assist the user in sequencing the order in which the
missions should be executed. Ideally, the zones partition and
the mission planning should minimize the total duration of the
time on the theatre and be robust to failures or asset losses.
Finally, once sub-zones and assets are assigned to the zones,
the CMS should assist the user to perform the fine planning
such as precise track determination. Also, the system should be
easily extensible to new types of assets.

In this paper, we begin by showing the limits of the
Operational Research framework when solving the MCM
asset/area allocation problem (section II). After some
mathematical formalization (section III) we first show how to
select assets and determine how many launches are required to
process a polygonal zone (section IV) before showing how to

cut the polygon into sub-polygons so that each of these sub-
polygons may be assigned to a single asset compatible with it
(section V). This dual approach is then demonstrated in section
VI on a simple example.

II. MCM M ISSION SCHEDULING SEEN THROUGH THE

OPERATIONAL RESEARCH LENS

Graham et al. [1] introduced a well-known notation that has
become the norm to categorize most classes of problems
studied in Operational Research. According to this notation, the
job scheduling component of our problem could be described
as a (JMPM|pmtn,prec,rj|ΣwjUj). In layman’s terms, the zones
are processed in a job-shop fashion (J), i.e. they undergo a
series of operations: detection, classification, identification,
neutralization, in this order. For one or several multi-purpose
machines (MPM) are used: the UxVs. The jobs may be
preempted (pmtn) and resumed later possibly on another
machine. The precedence (prec) relation between jobs is here
generic, as an oriented graph corresponding to the adjacency
graph of the zones. The jobs may have to be finished at given
dates rj though this constraint may be relaxed. Finally, the
objective function to minimize depends on the military nature
of the scenario. For instance, it may be necessary to minimize
the delay between the beginning and the end of the operations
on the theatre (the makespan); this does not allow to set
priorities. On the other hand, it is also possible to minimize the
number of late operations, each late job yielding a unit penalty
Uj weighted by a priority wj which may be zero if the sub-zone
must only be optionally cleared.

To the best of our knowledge, no solution to this problem is
available off the shelf. Our problem generalizes the (J2| | Cmax)
problem (flexible job shop with 2 machines with no precedence
relations and minimum makespan) which has already been
studied and shown to be NP-hard or strongly NP-hard. For this
reason a brute-force approach is impossible since there are
already O(n!m) possibilities to solve a flexible job-shop with m
machines and n jobs [2].

Besides, Graham’s notation does not take geographic
constraints into account, i.e. it is supposed that the polygonal
zones to process are available a priori and more importantly,

that these zones have areas compatible with the energy reserve
of the assets. Yet the real problem is different: the user supplies
large zones that cannot necessarily be processed by a single
asset at one time. Thus these large zones must be subdivided
(automatically) into sub-zones, depending on the maximum
area an asset may cover, and this partition may be recomputed
during the execution. This spatial dimension is an additional
layer of complexity added to the MCM scheduling problem.

For this reason we decided to break our problem into more
manageable sub-problems: how to deal assets on a zone and
how to divide macro-zones into zones.

III. PROBLEM FORMALIZATION

This paragraph details the problem at hand from a
mathematical point of view. All the notations we introduce are
summed up in an appendix at the end of the paper.

When describing the scenario, the operator supplies a
polygon T corresponding to the total zone to clear. This
polygon is called herein the “theatre” as it is too wide to be
cleared at once.

A. Environment

We assume that environmental conditions such as the
bathymetric profile, tide schedule, currents, etc., are known on
the theatre and supplied as maps. The mine-warfare
characteristics of the zone (densities of non-mine bottom
objects, sedimentary profile, etc) are also assumed to be
known.

B. List of operations to clear the theatre

 For the theatre T to be cleared, three operations must be
done sequentially on each subset of T. First, mine detection and
classification is done, typically using sonar-based means. This
operation yields a list of mine-like contacts (MILCOs). The
identification operation consists in determining whether a
MILCO is a mine or not. Typically this involves high-
resolution imagery, either acoustic or optical cameras, or direct
human intervention. Also typically a human will be in the loop,
though human intervention may not necessarily be done in

Mother ship

N-UUVs D/C-UUVs EOD team

USVs

deploys

stores

T-SAS I-UUVs

An USV may not deploy heterogeneous assets

Figure 1 – A dummy ship/UxV architecture. The MCM mother ship may use several USVs simultaneously, one of them being for instance configured to

deploy D/C-UUVs and another configured to deploy N-UUVs. USVs may be reconfigured on the mother ship to deploy other assets.

real-time. The final operation is mine neutralization: either by
detonating a charge near the mine, or defusing it.

C. Assets

A set of assets A = {ak, k=1..m} (corresponding to “USV”,
“D/C UUV”, etc.) is stored in a database. An asset ak is
described, among other parameters, by its environment
adaptation (minimum and maximum depth, current, sea state,
etc), but also the operations they can perform (Detection,
Identification, Neutralization), and the associated performance
parameters such as the total available energy Ek, transit speeds
Vk

t, etc. Another parameter of interest is the cycle time Tk
c

necessary for one launch-retrieval cycle: that is, the time taken
to lay the asset in the water, retrieve it, recharge the batteries
and perform other upkeep tasks; Tk

c is here assumed to be
constant.

D. Macro-zone and zones

The theatre is then cut into polygonal macro-zones Zi,
i=1..N, either automatically or with the help of the operator,
such that T=Ui=1..N Zi. A macro-zone Zi is a subset of the theatre
with homogenous environmental and mine warfare
characteristics, such that there are assets in the database able to
clear this zone. A macro-zone may still be too large to be
processed at one single time. Thus each macro-zone Zi may be
divided into Ni zones zij such that Zi=Uj=1..Ni zij. The macro-
zones and the zones are also described as polygons. The area of
macro-zone Zi (resp. zone zij) is denoted by |Zi| (resp. |zij|). It is
up to a human operator, with the help of the software, to define
the macro-zones. The software may issue warnings, e.g. when
a macro-zone may be covered only for D/C operations but not I
or N operations.

E. What this paper solves

We describe a new algorithm where the input is one
polygonal macro-zone Zi and a set of assets A = {ak, k=1..m}.
The algorithm finds a series of Ni zones zij and assigns to each
zone zij one asset ak. Each asset may be re-used several times if
it is not an expendable asset; in this case the number of
launches for each asset is determined as a side-product of the
algorithm. The following constraints must be respected:

• the whole macro-zone is processed: Zi=Uj=1..Ni zij;

• each asset assigned to a zone must be compatible with
it, in particular the area of the zone must be less than
the maximum area coverable by the asset;

• the shape of the zone should be “smooth”, i.e. a
“simple” polygon as close as possible to a rectangle,
oriented along locally privileged, user-supplied
orientations such as a current field; this is to facilitate
the track computation for each zone, asset couple.

The algorithm as described here works under the hypothesis
that the assets may be launched a potentially infinite number of
times (no expendable assets).

IV. DEALING ASSETS TO MACRO-ZONES

In this part we wish to determine which assets to use on a
given macro-zone Zi and if so, how many times they should be
launched. Although we also considered the I/N case, we
consider in this paper only the Detection operation, which is
the easiest to describe. In this operation, the asset uses a regular
sweeping pattern, as is typically the case with sonar where the
asset works its way on the zone by following parallel tracks. To
begin with, a subset Ai ={ak, k=1..mi ≤ m} of A is determined:
these are the Detection assets compatible with the
environmental conditions on Zi. This is easy. Then, we
determine the maximum area, which can be processed with
each asset in Ai. The third step is to determine the optimum
number of launches for each asset ak∈A i, assuming the assets
can be re-used an infinite number of times. This is equivalent
to determining which area Sk,i of Zi will be processed by asset
ak. Those two last steps are harder and detailed here.

A. Maximum area Sk,i
max an asset can cover on zone Zi

The exact area cannot be computed yet since it depends on
several parameters including the exact configuration of the
zone. It is however possible to compute a “guesstimate” of an
upper bound of this value. We assume the k-th asset of Ai has a
battery reserve Ek (in W.h), the power used during the hunt is
Pk

h, the transit speed is Vt
k, the power used during transit is

Pk
t(Vk

t) which is a function of the speed, the coverage rate (in
km2/h) is Ck(Z); the battery slack is denoted by Ek

s (in W.h).
We also found based on real trials that time lost for end-of-
track manoeuvres accounted was usually proportional to the
useful time spent hunting on the zone; pk is the coefficient.
Also, D(Zi) is the maximum distance from the launch point to
any point of Zi. Then:

• the energy required for the ingress and egress trip is:

Ek
t = 2 Pk

t(Vk
t)× D(Zi)/ Vk

t (1)
• the energy required for the hunt on Zi is:

Ek
h = Pk

h× (Sk,i
max / Ck(Zi))(1+pk) (2)

• the total energy budget is:

Ek= Ek
t + Ek

h + Ek
s (3)

• hence:

Sk,i
max = (Ek - 2 Pk

t(Vk
t)× D(Zi)/ Vk

t – Ek
s)…

×Ck(Zi) / (Pk
h× (1+pk))

(4)

B. Estimating the number of launches

We want to select which asset to launch and how many
times. If an asset ak ∈ Ai processes an area Sk,i≤|Zi|, the asset is
launched nk,i = ceil(Sk,i/ Sk,i

max) times. An upper bound for the
time Tk,i necessary to process this area Sk,i is:

Tk,i= (Sk,i / Ck(Zi))(1+pk) + Tk
c × ceil(Sk,i / Sk,i

max) (5)
Several cost functions are possible; the easiest is the maximum
total time spent by any asset on the zone. Said otherwise, we
want to find the areas Sk, i and, as a vital side-product, the value
of nk,i= ceil(Sk,i/ Sk,i

max), maximizing the following function:

ikmkimii TSSSg
ii ,..1,,2,1 max),...,,(== (6)

We work under the constraint:

(Σk Sk,i) - |Zi|≥ 0, k=1..mi (7)
which can be easily integrated into g by letting

∑
−

=

−=
1

1
,, ||

i

i

m

k
ikiim SZS (8)

Minimizing this function can be done using standard
numerical methods provided that an initial estimate of the areas
S0

k,i is known. This initial estimate can be obtained by dropping
the “ceil” function in (5). Then:

T'k,I = S0
k,i×((1+pk) / Ck(Zi) + Tk

c/ Sk,i
max) = S0

k,i× αk,i (9)
Now let g' be the equivalent of g in (6), but using times T'k,i. It
is evident that g' is minimized when terms T'k,I's are equal for
all k. In this case:

∀ k=1..mi S0
k,i× αk,i = S0

1,i× α1,i (10)
Adding constraint (7) yields:

S0
1,i× α1,i× Σk (1/αk,i) = |Zi| (11)

Hence, S0
k,i is a weighted average of |Zi|, with weight 1/αk,i:

∀ k=1..mi , S
0
k,i = |Zi|× [1/αk,i] / Σk (1/αk,i) (12)

V. CUTTING A MACRO-ZONE INTO ZONES

A. Constraints

The input consists in a macro-zone Zi, assets ak,i,
k=1..mi ≤ m compatible with this macro-zone, and an optional
vector field F covering Zi. Field F is typically a map of currents
on Zi. Indeed, if a track is in the direction of the current, drift is
minimized and side-scan sonar coverage is maximized. The
user may alternatively input a vector field defining locally
privileged directions, taking into consideration other
operational considerations than currents, which the survey
tracks should ideally follow. This vector field may be
degenerated to a single direction everywhere. Also, the areas
Sk,i assigned to each asset ak are known. For each macro-zone
Zi, we need a list of sub-zones/asset couples Li={(zij, akj)},
j = 1.. Ni. These are the constraints:

• the zone is compatible with the asset, i.e. if zij is
associated to asset ak,i, then |zij| ≤ Sk,i

max;

• the whole macro-zone is covered: Σ j |zij| = |Zi|;

• the zones zij are as regular as possible, i.e. “similar” to
rectangles, parallelograms, trapezes, this to facilitate
track computation on zij and limiting the number turns
at the end of tracks;

• the zones zij are oriented according to the field F.

B. Privileged Direction Curve

If F is supplied, a privileged direction curve (PDC) is
computed. The PDC corresponds to the trajectory followed by
a particle carried by the stream defined by vector field F. The
PDC should be as long as possible while being on (an
approximation of) the medial axis of the polygon, as far as
possible from any edge and closest to the centre of its bounding
box; also the derivatives of the PDC must be continuous. Many

strategies are possible to find the PDC. One of them begins by
computing1 several stream lines with different start points; the
best of them is chosen as the PDC. If the stream line goes out
of the polygon at some point A and comes back in at some
other point B, then the vertices from A to B are substituted to
the stream line between A and B and the resulting line is
smoothed by a low-pass filter, ensuring the curve is derivable
(i.e. has an orthogonal line everywhere).

If F is not supplied, then the PDC is the longest axis of the
oriented bounding box of the zone, typically found using the
rotating calipers algorithm [3].

C. Recursive cutting

Let Oi be a list of area/assets objectives{ (Sk,j,i, ak,i) }, where
k = 1..mi, and for all values of j = 1.. nk,i, term Sk,j,i is equal to
Sk,i

max. The terms nk,i are those obtained after the optimization
stage exposed in section IV.B.

The process is recursive, where polygon Zi is cut in two,
then each sub-polygon is also cut into two, etc., until the final
sub-polygon has an area less than one of the areas Sk,j,i. The
input of the recursive process is:

• a sub-polygon z of Zi;

• a sublist l of Oi with (area, asset) couples;

The output is:

• a list Li made of (zones of Zi, asset) couples;

• at most two sub-polygons z0 and z1 such that
z0 ∪ z1=z;

• at most two sublists l0 and l1 such that l0 ∪ l1=l;

The process is initialized with z = Zi, l = Oi, and Li=∅.
First, split l into sub-lists la and lb so that the sum of the areas in
la, denoted by |la|, is as close as possible to the sum of the areas
in lb, which we write |lb|. A cutting line C, orthogonal to the
PDC of z, is then found so that it cuts z into two parts z0 and z1.
Part z0

 must be adjusted to target either area |la| or |lb| and both
possibilities must be tried because one of them often does not
work out. Assuming |z0| = |la|, we set list l0 to la; the area
|z1| = |z| - |z0| will necessarily be less than |lb|, due to
constraint (7). The converse situation occurs if |zi| = |lb|.
Finding C may be efficiently done by dichotomy, iterating on
the curvilinear abscissa of C on the PDC.

Now, if l0 contains only one item (Sk,j,i, ak,i), then add
(z0, ak) to list Li. Do the same for l1, if necessary. On the other
hand, if l0 or l1 contains more than one item, then reiterate
recursively the same algorithm as used for (z, l). It is possible
to alternate cutting directions: in this variant, every two
iteration, use the orthogonal field F⊥ to F, instead of F.

VI. A WORKED EXAMPLE

In this section we consider the case where the macro-zone
Zi is described by the coordinates given in table I (see also
figure 2). The total area |Zi| of this polygon is 4 units.

1 Using MATLAB, this can be done using the stream2 function.

TABLE I. POLYGON COORDINATES

x -2 -1 1 2 2 1 -1 -2
y -2 -1 -1 -2 -1 0 0 1

The field F is described by table II:

TABLE II. PREFFERED DIRECTION FIELD F

x -2 0 2
y -1.5 -0.5 -1.5
θ (deg) 45 90 135

A dummy list of assets ak,i compatible with Zi is supplied

in table III:

TABLE III. A SSETS COMPATIBLE WITH POLYGON

Asset ak,i 1 2 3 4
Max. coverable area per launch Sk,i

max 0.5 0.3 0.4 0.35

The algorithm described in paragraph IV.B returns:

TABLE IV. NUMBER OF LAUNCHES FOR POLYGON

Asset ak,i 1 2 3 4
Number of launches nk,i 4 2 2 2

As a result of table III and IV the assets/area list is the

following:
Oi = {(1, 0.5), (1, 0.5), (1, 0.5), (1, 0.5), (2, 0.3), (2, 0.3),

(3, 0.4), (3, 0.4), (4, 0.35), (4, 0.35) }
It is easy to see that the area covered by the assets during

all their missions is 4×0.5+2×0.3+2×0.4+2×0.35 = 4.1 area
units, i.e. just a bit more than |Zi|, as expected to respect
constraint (7). We initialize the algorithm: l ← Oi.

Following the method exposed above, list l is divided at
the first iteration into two sub-lists with approximately the
same total area:

la = {(1, 0.5), (1, 0.5), (1, 0.5), (1, 0.5) }; | lb| = 2;
lb = {(2, 0.3), (2, 0.3), (3, 0.4), (3, 0.4), (4, 0.35),
 (4, 0.35) }; | lb| = 2.1.
The PDC is found by interpolating F on a vector grid of

10×10 vectors evenly distributed over x = [-2, 2] and
y = [-2, 0], then computing the stream line going through the
center of Zi which is found at (0, -0.5). The cutting line is
parameterized by curvilinear abscissa s between 0 (left) and 1
(right). The PDC for the first iteration is shown in figure 2.

Now let us try to target either |la| or |lb| as the area for the
“left” polygon (where the stream line has abscissas below s):

• Target: |la| = 2: s = 0.5, |z0| = 2, |z1| = 2 ≤ | l1|;
• Target: |lb| = 2.1: s = 0.58, |z0| = 1.24, |z1| = 2.75 > | l1|;

Clearly the first case is the correct one, so we set l0 = la.
The process goes on recursively, until the list l is reduced to
one element or empty. The final partition is given by table V
and illustrated in figure 3.

In table V, the total areas and the allocation follow the

constraint set by list Li
0. There are some numerical deviations

from the ideal value caused by the dichotomy process when
finding the curvilinear abscissa s; these deviations are of
negligible importance. In figure 3, notice how the cutting lines
follow the user-supplied field F and how the partition yields
regular polygons. Note that in this case the cutting directions
were alternated every two iteration, as can be seen on the right
for the zones processed by asset 2 and asset 4.

TABLE V. FINAL RESULT (SEE ALSO FIGURE 3)

Zone zij :
value of j

Asset ak,i:
value of k

Zone area Maximum area for
asset Sk,i

max, as per
table III

1 1 0.500005 0.5
2 1 0.500002 0.5
3 1 0.500000 0.5
4 1 0.499984 0.5
5 3 0.399998 0.4
6 3 0.400006 0.4
7 4 0.349990 0.35
8 4 0.350007 0.35
9 2 0.247365 0.3
10 2 0.252643 0.3
TOTAL AREA 4.000000 4.1
TRUE POLYGON AREA 4.000000

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

Figure 2: polygon Zi described in table I. The field F (table II) is given in

large blue arrows; the interpolated vector field is given with small red
arrows; the stream line is in blue; the cutting line C for the first iteration is

the fat green line.

VII. CONCLUSIONS

Mine warfare mission planning on a theater combined with
assets assignment to perform elementary mine warfare tasks is
a tough job because the problem mixes space and time
constraints. As such, existing operational research methods
cannot solve the problem and new approaches must be
devised. In this paper, we formalized the MCM asset
assignation and zone-cutting problem from a mathematical
point of view for non-expendable assets (the expendable case
can be adapted). We then proposed a method working in two
steps, which first determines which assets are to be used and
how many times they should be launched; then shows how to
cut a polygon into a series of zones, which can be associated
to assets. These zones have a smooth shape respecting local
constraints expressed as a vector field, such as the current
direction. Once implemented in a CMS, these tools will help
mine warfare officers to prepare various missions by
optimizing the assets to deploy and bring the capability to
manage fleet of different UxVs on large theaters.

NOTATIONS

|•| Total area (of a polygon, or a list of polygons)
T Theatre

A={ ak, k=1..m} List of assets
Zi, i=1..N i-th macro-zone such that T=Ui=1..N Zi
zij, j=1..Ni j-th zone of Zi such that Zi=Uj=1..Ni zij

Ek
t Energy needed for asset ak for the

ingress/egress trip
Ek

h Energy needed for asset ak for hunting
Ek

s Battery slack for security purposes, asset ak
Ek Total energy reserve of asset ak
Pk

h Power used when hunting for asset ak
Pk

t(Vk
t) Power used when transiting for asset ak

Ck(Zi) Coverage rate for asset ak
D(Zi) Maximum distance from launch point to any

point of Zi
Sk,i Total area processed on Zi by asset ak (several

launches may be required)
Sk,i

max Maximum area which can be processed by
asset ak on zone Zi for one launch/retrieval
cycle

nk,i Number of launches required for asset ak to
process Zi

Tk,i Upper bound for the total time needed to
process zone Zi using only asset ak

F Vector field describing preferred directions
F⊥ Vector field orthogonal to F

Oi = { (Sk,j,i, ak,i) },
k=1..mi, j=1.. nk,i

Objective area/asset distribution on macro-zone
Zi

C Cutting line
s Curvilinear abscissa of the cutting line

Li= { (zj,i, ak,i) },
k=1..mi, j=1.. nk,i

Asset / zone distribution for macro-zone Zi
(“what we want”)

REFERENCES
[1] R.L Graham., E.L Lawer., J.K Lenstra., A.H.G. Rinnooy Kan,

“Optimisation and approximation in deterministic sequencing and
scheduling: A survey”. Ann. Discr. Math., 5:287-326, 1979.

[2] H. Liu., A. Abraham, Z. Wang. “A multi-swarm approach to multi-
objective flexible job-shop scheduling problems”. Fundamenta
Informaticae, 95:1-25, 2009.

[3] G. Toussaint, “Solving Geometric Problems with the Rotating
Calipers”. Proc. IEEE MELECON 1983, Athens, Greece, May 1983.
http://www-

cgrl.cs.mcgill.ca/~godfried/publications/calipers.ps.gz

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1

1 1 3 3 4

4

2

2

Figure 3: result of the cutting as supplied by the algorithm. The numbers

correspond to asset types ak,i.

