
HAL Id: hal-02932844
https://hal.science/hal-02932844

Submitted on 8 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Efficient Algorithm to Discover Intra-Periodic
Frequent Sequences

Edith Belise Kenmogne, Clementin Tayou Djamegni

To cite this version:
Edith Belise Kenmogne, Clementin Tayou Djamegni. An Efficient Algorithm to Discover Intra-
Periodic Frequent Sequences. CARI 2020 - Colloque Africain sur la Recherche en Informatique et
en Mathématiques Apliquées, Oct 2020, Thiès, Senegal. �hal-02932844�

https://hal.science/hal-02932844
https://hal.archives-ouvertes.fr

An Efficient Algorithm to Discover
Intra-Periodic Frequent Sequences

Kenmogne Edith Belise* — Tayou Djamegni Clementin*,**

* Department of Mathematics and Computer Science, URIFIA
** Department of Computer Engineering, IUT-FV
University of Dschang, Cameroon
ebkenmogne@gmail.com
dtayou@gmail.com

ABSTRACT. Sequential pattern mining techniques permit to discover recurring structures or pat-
terns from very large datasets, with a very large field of applications. It aims at extracting a set of
attributes, shared across time among a large number of objects in a given database. It is a challeng-
ing problem since mining algorithms are well known to be both time and memory consuming for large
databases. In this paper, we extend the traditional problem of mining frequent sequences with intra-
periodicity constraints. Then, we study issues related to intra-periodicity constraints such as search
space pruning and partitioning. This study leads to a new efficient algorithm called Intra-Periodic
Frequent Sequence Miner (IPFSM). Experimental results confirm the efficiency of IPFSM.

RÉSUMÉ. Les techniques de recherche des motifs séquentiels permettent de découvrir des struc-
tures ou modèles récurrents à partir de très grandes bases de données, avec un très large champ
d’applications. Elles visent à extraire un ensemble d’attributs, partagés dans le temps entre un grand
nombre d’objets dans une base de données. C’est un problème difficile, car les algorithmes de
recherche des motifs séquentiels sont gourmandes en temps CPU et en mémoire sur des grandes
bases de données. Dans ce papier, nous étendons le problème traditionnel de l’extraction des
séquences fréquentes avec des contraintes d’intra-périodicité. Ensuite, nous étudions les problèmes
liés aux contraintes de périodicité, notament l’élagage et le partitionnement de l’espace de recherche.
Cette étude conduit à un nouvel algorithme efficace appelé Intra-Periodic Frequent Sequence Miner
(IPFSM). Les résultats expérimentaux confirment l’éfficacité de l’IPFSM.

KEYWORDS : Frequent sequence, intra-periodicity, pruning, partitioning

MOTS-CLÉS : Séquence fréquente, intra-périodicité, élargage, partitionnement

Proceedings of CARI 2020
Bruce Watson, Eric Badouel, Oumar Niang

Ecole Polytechnique de Thiès, Sénégal
October 2020

1. Introduction
Nowadays, the generalized use of new technologies of information and communica-

tion allows us to gather more data automatically. Because of the fast computerization
of administrations, enterprises, trade and telecommunications, the rate of stored data in-
creases quickly. However, the analysis and exploitation of these data is sometimes very
difficult. In this context, sequential pattern mining [13, 5, 4, 2, 8, 17, 1, 9, 11, 12, 3] is an
important data mining problem widely addressed by the data mining community. It aims
at extracting a set of attributes, shared across time among a large number of objects in a
given data base. It is a challenging problem since mining algorithms are well known to be
both time and memory consuming for large databases, and improvements are motivated
by the need to process more data at a faster speed with lower cost. This trend and the
integration of intra-periodicity constraints in the mining process are the main motivations
for this paper. Previous work in frequent sequence mining and periodicty only consider
extra periodicity [18, 19, 20].

In this paper, we extend the traditional problem of mining frequent sequences with
intra-periodicity constraints. Then, we study issues related to intra-periodicity constraints
such as search space pruning and partitioning. This study leads to a new efficient al-
gorithm called Intra-Periodic Frequent Sequence Miner (IPFSM). Experimental results
confirm the efficiency of IPFSM.

The sequel of this paper is organized as follows. Section 2 states the problem. Section
3 studies search space pruning and partitioning under intra-periodicity constraints. Sec-
tion 4 presents algorithm IPFSM. Section 5 presents experimental results. Concluding
remarks are stated in section 6.

2. Statement of the problem

2.1. The traditional problem of mining frequent sequences
The traditional problem of mining sequential patterns [13, 5, 4, 2, 8, 17, 1, 9, 11, 12, 3]

and its associated notation, can be given as follows:
Let I = {i1, i2, ..., in} be a set of literals, termed items, which comprise the alpha-

bet. An itemset is a subset of items. For sake of simplicity [13, 5, 12, 3], we assume that
all the items of an itemset are alphabetically sorted.

A sequence is an ordered list of itemsets. A sequence s is denoted by≺ s1, s2, ...sn �,
where sj is an itemset. sj is also called an element of the sequence, and denoted as
(x1, x2, ..., xm), where xk is an item. For brevity, the brackets are omitted if an element
has only one item, i.e. element (x) is written as x. An item can occur at most once
in an element of a sequence, but can occur multiple times in different elements of a se-
quence. The number of instances of items (resp. elements) in a sequence α is denoted
|α| (resp. ||α||). The value of |α| is called the length of the sequence. The number of
A sequence with length l is called an l-sequence. A sequence α =≺ a1a2...an � is
called subsequence of another sequence β =≺ b1b2...bm � and β a supersequence of
α, denoted as α ⊆ β, if there exist integers 1 ≤ j1 < j2 < ... < jn ≤ m such that
a1 ⊆ bj1, a2 ⊆ bj2, ... , an ⊆ bjn. Symbol ε denotes the empty sequence.

We are given a database S of input-sequences. A sequence database is a set of tuples
of the form ≺ sid, s � where sid is a sequence_id and s a sequence. A tuple ≺ sid, s �

ARIMA

Proceedings of CARI 2020

is said to contain a sequence α, if α is a subsequence of s. The support of a sequence α
in a sequence database S is the number of tuples in the database containing α, i.e.

support(S, α) = |{≺ sid, s � | ≺ sid, s �∈ S ∧ α ⊆ s}|.

It can be denoted as support(α) if the sequence database is clear from the context. Given
a user-specified positive integer denoted min_support, termed the minimum support or
the support threshold, a sequence α is called a sequential pattern in sequence database
S if support(S, α) ≥ min_support. A sequential pattern with length l is called an l-
pattern. Given a sequence database and the min_support threshold, sequential pattern
mining is to find the complete set of sequential patterns in the database.

2.2. Extending the traditional problem with intra-periodicity
Definition 1 ("." and "_" o perators) Let e and e ′ be two i temsets that do not contain
the underscore symbol (_). Assume that all the items in e′ are alphabetically sorted after
those in e. Let l (resp. l′) denotes itemset e (resp. e′) without brackets. Let γ =≺
e1 . . . en−1a � and µ =≺ be′2 . . . e′m � be two sequences, where ei and e′i are
itemsets that do not contain the underscore symbol, a ∈ {(l), (_l), (l_), (_l_)} and b ∈
{(l′), (_l′), (l′_), (_l′_)}. The dot operator is defined as follows : (1) (l).(l′) = (l)(l′),
(2) (l).(_l′) = (ll′), (3) (l).(l′_) = (l)(l′_), (4) (l).(_l′_) = (ll′_), (5) (l).(l′) = (ll′),
(6) (i).(_l′) = (ll′), (7) (l_).(_l′_) = (ll′_), (8) (l_).(l′_) = (ll′_), (9) (_l).(l′) =
(_l)(l′), (10) (_l).(l′_) = (_l)(l′_), (11) (_l).(_l′_) = (_ll′_), (12) (_l).(_l′) = (_ll′),
(13) (_l_).(l′) = (_ll′), (14) (_l_).(_l′_) = (_ll′_), (15) (_l_).(l′_) = (_ll′_), (16)
(_l_).(_l′) = (_ll′), (17) γ.µ =≺ e1 . . . en−1a.be′2 . . . e′m �.

For example, denote s =≺a(abc)(ac)(efgh)�, we have s =≺ (a).(a_).(_b_).(_c).(a_)
.(_c).(e_).(_f_). (_g_). (_h) � and s =≺ (a) � . ≺ (a_) � . ≺ (_b_) � . ≺ (_c) �
. ≺ (a_) � . ≺ (_c) � . ≺ (e_) � . ≺ (_f_) � . ≺ (_g_) � . ≺ (_h) �.

Definition 2 (Prefix and suffix of a s eq uence) Consider three sequences α, β and γ such
that α = β.γ. Sequence β (resp. γ) is a prefix (resp. suffix) of α

Definition 3 (Sequence p artition) Given a sequence s =≺ s 1, s 2, ... , s n �, a partition
of s is any subsequence of s which is made of consecutive itemsets of s, i.e. which is on
the form p =≺ sj1 , sj1+1, sj1+2 ..., , sjk−1 , sjk �, where 1 ≤ j1 < jk ≤ n. Partition
p is said to be strict if p 6= s, i.e. j1 > 1 or jk < n.

Definition 4 (inclusion-carried m apping) An inclusion-carried mapping imα,s : index(α)
→ index(s) from the set of indexes of the elements sequence α =≺ α1, α2, ... , αm � to
the set of indexes of the elements of a supersequence s =≺ s1, s2, ... , sn � is an injective
index-mapping which is (1) is monotonous, i.e. imα,s(i) < imα,s(i + 1), 1 ≤ i < m,
(2) and such that element αi of α is mapped to a distinct element simα,s(i) of s which
contains αi, i.e. αi ⊆ simα,s(i).

For example, let α =≺ (ab)(gh)� and s =≺a(abc)(ac)(efgh)�. Denote α1 = (ab),
α2 = (gh), s1 = (a), s2 = (abc), s3 = (ac) and s4 = (efgh). We have α =≺ α1α2 �
and s =≺ s1s2s3s4 �. Thus index(α) = {1, 2} and index(s) = {1, 2, 3, 4}. Denote
imα,s : index(α) → index(s), imα,s(1) = 2 and imα,s(2) = 4. Function imα,s is
monotonous and αi ⊆ simα,s(i) for all i ∈ index(α). Thus function imα,s is an inclusion-
carried mapping from sequence α to s.

For sake of simplicity, when the sets of indexes are known, imα,s will be referred to
as an inclusion-carried mapping from sequence α to sequence s.

ARIMA

An Efficient Algorithm to Discover intra-Periodic Frequent Sequences

Lemma 1 (The set inclusion-carried mappings is closed under ” ◦ ” operator) Consider
three sequences α =≺ α1, α2, ... , αm �, β and γ, an inclusion-carried mapping imα,β

from index(α) to index(β), and another one from index(β) to index(γ), denoted imβ,γ .
The composition of imα,β and imβ,γ defined as (imα,β◦imβ,γ)(i) = imβ,γ(imα,β(i)), 1 ≤
i ≤ m, is an inclusion-carried mapping from index(α) to index(γ).

PROOF Function imα,β ◦ imβ,γ is injective and monotonous as imα,β and imβ,γ are in-
jective and monotonous. From definition 4, we have αi ⊆ βimα,β(i) ⊆ γimβ,γ(imα,β(i)) =
γ(imα,β◦imβ,γ)(i), 1 ≤ i ≤ m.

Definition 5 (The restriction of an inclusion-carried mapping) Consider three sequences
α, β and s such that α ⊆ β and β ⊆ s, and an inclusion-carried mapping imβ,s from
index(β) to index(s). A restriction of imβ,s to index(α), denoted imα,β,s, is the com-
position of an inclusion-carried mapping from index(α) to index(β), denoted imβ,s, and
imβ,s, i.e. imα,β,s = imα,β ◦ imβ,s : index(α)→ index(β)→ index(s).

A restriction of imβ,s to index(α) is unique if β contains only one occurrence of α.

Definition 6 (Sequence intra-periodicity) Let s and α =≺ α1, α2, ... , αm �, m > 1,
be two sequences such that α ⊆ s. Consider an inclusion-carried mapping imα,s from
index(α) to index(s). The set of intra-periods of α in s following mapping imα,s, also
called periods of appearance of the elements of α in s with respect to imα,s, is defined as
ips(α, s, imα,s) = {imα,s(i+ 1)− imα,s(i) | i ∈ {1, 2, ... ,m− 1}}.

Definition 7 (Minimal and maximal intra-periodicities) Consider two sequencesα and
s such that α ⊆ s. The minimal (resp. maximal) intra-periodicity of α in s following an
iclusion-carried mapping imα,s is the minimal (resp. maximal) value of ips(α, s, imα,s).

Definition 8 (Sequence inclusion) Denote i1 (resp. i2) the minimal (resp. maximal)
intra-periodicity threshold. A sequence α is contained in another sequence s following
(i1, i2), denoted as α ⊆(i1,i2) s, if there exists an inclusion-carried mapping imα,s from
index(α) to index(s) such that i1 ≤ min(ips(α, s, imα,s)) andmax(ips(α, s, imα,s)) ≤
i2. Sequence α is called (i1, i2)-subsequence of s, and s is called (i1, i2)-supersequence
of α.

Lemma 2 (Distributivity of ⊆(i1,i2) operator) Consider a couple of intra-periodicity thresh-
olds (i1, i2) and three sequences α, β and s that do not contain the underscore operator
(_). If α.β ⊆(i1,i2) s then there exist three sequences α′, µ and β′ such that s = α′.µ.β′,
α ⊆(i1,i2) α′ and β ⊆(i1,i2) β′

PROOF Assume that α.β ⊆(i1,i2) γ. From definition 8, this means that there exists an
inclusion-carried mapping imα.β,s fromα.β to s such that i1 ≤ min(ips(α.β, s, imα.β,s))
andmax(ips(α.β, s, imα.β,s)) ≤ i2. Denoteα′ =≺ s1, ... simα.β,s(1), ... , smα.β,s(||α||) �,
µ = ε if imα.β,s(||α|| + 1) = (mα.β,s(||α||) + 1) and µ =≺ simα.β,s(||α||)+1), ... ,
simα.β,s(||α||+1)−1) � otherwise, and β′ =≺ simα.β,s(||α||+1), ... , simα.β,s(||s||) �. We
have s = α′.µ.β′, α ⊆(i1,i2) α′ and β ⊆(i1,i2) β′. Hence the result.

Definition 9 (irreducible supersequence) A supersequence s of another sequence α is
said to be irreducible following α and a couple of intra-periodicity thresholds (i1, i2) if
no strict partition of s is a (i1, i2)-supersequence of α.

ARIMA

Proceedings of CARI 2020

Definition 10 (Sequence s upport) The support of a sequence α in a dataset S following
a couple (i1, i2) of intra-periodicity thresholds, denoted supporti1,i2(S, α), is defined as
the number of sequences of S which contain α following (i1, i2), i.e. supporti1,i2(S, α) =
|{≺ sid, s �∈ S | α ⊆(i1,i2) s}|.

Definition 11 (Intra-periodic frequent s equence) Given a minimum support threshold
minS, and a couple (i1, i2) of intra-periodicity thresholds, a sequence α is an Intra-
Periodic Frequent Sequence (IPFS) frequent if supporti1,i2(s, α) ≥ minS.

Definition 12 (Problem d efinition) Let there be a user-specified database D and three
thresholds i1 ≥ 0, i2 ≥ 0, minS ≥ 0. The problem of mining intra-periodic frequent
sequences is to find all IPFS in D.

3. Search space pruning and partitioning
Due to space restriction, the proofs of lemmas are removed.

Lemma 3 (Intra-periodicity-set stability/growth based itemset growth/addition) Letα,
β and s be three sequences such that β ⊆ s. Assume that β = its1_.α._its2 or
β = its1.α._its2 or β = its1_.α.its2 or β = its1.α.its2, where its1 and its2 are
two itemsets, and α, its1 and its2 do not contain the underscore operator(_). Given an
inclusion-carried mapping imβ,s from index(β) to index(s), there exists a restriction of
imβ,s to index(α), denoted imα,β,s, such that ips(α, s, imα,β,s) = ips(β, s, imβ,s) if
β = its1_.α._its2 and ips(α, s, imα,β,s) ⊆ ips(β, s, imβ,s) otherwise.

Lemma 4 (Intra-periodicity-set growth based prefix-suffix growth) Consider three se-
quences α, β and s such that β ⊆ s and β = µ.α.γ where µ and γ denote sequences
that may contain the underscore operator (_). Given an inclusion-carried mapping imβ,s

from index(β) to index(s), there exists a restriction of imβ,s to index(α), denoted imα,β,s,
such that ips(α, s, imα,β,s) ⊆ ips(β, s, imβ,s).

Lemma 5 (Search space pruning using intra-periodicity thresholds) Denote minip (
resp. maxip) the minimal (resp. maximal) intra-periodicity threshold. Consider three
sequences α, β and s such that β ⊆ s and β = µ.α.γ where µ and γ denote sequences
that may contain the underscore operator (_). We have :

1) If min(ips(α, s, imα,s)) < minip for any inclusion-carried mapping imα,s

from index(α) to index(s) thenmin(ips(β, s, imβ,s)) < minip for any inclusion-carried
mapping imβ,s from index(β) to index(s).

2) If max(ips(α, s, imα,s)) > maxip for any inclusion-carried mapping imα,s

from index(α) to index(s) then max(ips(β, s, imβ,s)) > maxip for any inclusion-
carried mapping imβ,s from index(β) to index(s).

Lemma 6 (Search space pruning using ⊆(i1,i2) operator) Consider three sequencesα,
β and s such that β = µ.α.γ, where µ and γ are two sequences, and two inta-periodicity
thresholds i1 and i2, we have: (1) if β ⊆(i1,i2) s then α ⊆(i1,i2) s, (2) if α 6⊆(i1,i2) s then
β 6⊆(i1,i2) s.

Lemma 7 (Anti-monotonicity of the support following prefix-suffix growth) Given a
couple (i1, i2) of intra-periodicity thresholds and two sequences α and s such that s =
µ.α.γ, we have: supporti1,i2(S, α) ≥ supporti1,i2(S, s).

ARIMA

An Efficient Algorithm to Discover intra-Periodic Frequent Sequences

Given two sequences s and α, and a couple (i1, i2) of intra-periodicity thresholds,
lmip(s, α, i1, i2) denotes the leftmost partition of s which is irreducible following α and
(i1, i2). Such a partition may not exist, and in this case, we assume that lmip(s, α, i1, i2) =
ε. If such a partition exists, it induces a decomposition of sequence s into three parts, (1)
the left part, denoted lp(s, α, i1, i2), (2) the middle part, denoted lmip(s, α, i1, i2), (3)
and the right part, denoted rp(s, α, i1, i2). We have s = lp(s, α, i1, i2) . lmip(s, α, i1, i2)
. rp(s, α, i1, i2). Denote q(s, α, i1; i2) = lmip(s, α, i1, i2) .rp(s, α, i1, i2) the concate-
nation of the middle and right parts. If lmip(s, α, i1, i2) = ε, we set lp(s, α, i1, i2) = ε,
rp(s, α, i1, i2) = ε and q(s, α, i1, i2) = ε.

The projection of dataset S following sequence α and the couple of intra-periodicity
thresholds (i1, i2), denoted S(α, i1, i2), is the set obtained by removing the left part of
any sequence for which the middle part exists : S(α, i1, i2) = {≺ sid, lmip(s, α, i1, i2)
.rp(s, α, i1, i2) � | ≺ sid, s � ∈ S and lmip(s, α, i1, i2) 6= ε}. If the couple
(i1, i2) is known, they could be removed from the notation of projected databases, i.e.
S(α, i1, i2) = S(α), Note that, this definition is slightly different from the one intro-
duced in [2].

Lemma 8 (Search-space partitioning based on prefix) We have the following:

1) Let {x1, x2, . . . , xn} be the complete set of length-1 intra-periodic frequent
sequences in a sequence database S. The complete set of sequential patterns in S can be
divided into n disjoint subsets based on prefix-items. The i-th (1 ≤ i ≤ n) subset of the
search-space partitioning is the set of intra-periodic frequent sequences with prefix xi.

2) Let α be a length-l intra-periodic frequent sequence and {β1, β2, . . . , βp} be
the complete of length-(l+1) intra-periodic frequent sequences with prefix α. The com-
plete set of intra-periodic frequent sequences with prefix α, except for α itself, can be
divided into p disjoint subsets. The i-th subset (1 ≤ i ≤ p) is the set of intra-periodic
frequent sequences prefixed with βi.

4. The IPFSM algorithm

Algorithm 1 Intra-Periodic Frequent Sequence Miner. The initial call is IPFSM(S, ε,
minS, minip, maxip) with S as the initial dataset

1: function IPFSM(Dataset S, Prefix α, float minS, int minip, int maxip)
2: X ← {Item x |minS ≤ |{s ∈ S | lmip(s, α.x,minip,maxip) 6= ε}|}
3: Comment: Item x may contains the underscore operator (_)
4: for all xi ∈ X do
5: SAVEINTRAPERIODICFREQUENTSEQUENCE(α.xi)
6: end for
7: for all xi ∈ X do
8: IPFSM(S(α.xi,minip,maxip), α.xi, minS, minip, maxip)
9: end for

10: end function

In this section, we translate the study made in section 2 into a function called Intra
Periodic Frequent Sequence Miner (IPFSM). It is presented in algorithm 1. A IPFSM call

ARIMA

Proceedings of CARI 2020

(1) takes as arguments a database S, the current prefix value, the minimal support thresh-
old, the minimal and maximal intra-periodicity thresholds, (2) searches for the complete
list X = {x1, x2, . . . , xp} of all the length-1 sequential patterns of S which are such that
α.xi, i ∈ {1, 2, . . . , p}, are frequent intra-periodic sequences of S, (4) saves α.xi as a
new sequential pattern for each pattern xi found, assuming that the current prefix is α, (5)
constructs, following lemma 8, a new database S(α.xi, minip, maxip) for each length-1
pattern xi ∈ X found, and (6) makes a recursive call per new constructed database with
α.xi as the new current prefix value.

Function IPFSM recursively generates sub-databases from a partitioning of the current
database following lemma 8. We consider that initial database, denoted S, is of depth 0.
The initial database is used to generate databases of depth-1 dadabases of the form s(y1),
where y1 is an item. The depth-1 database S(y1) is used to generate depth-2 dadabases of
the form S(y1)(y2), where y2 is an item. A generated database is of depth d if it has been
constructed using d length-1 patterns. Such a database is denoted S(y1.y2 ... yd), where
y1, y2, ... , yd are the length-1 patterns used to construct that database step by step in this
order. Database S(y1.y2 ... xd), d > 1, is generated from S(y1.y2 ... xd−1) In terms of
IPFSM calls, the initial call, i.e. IPFSM(S, ε, minS, minip, maxip), if of depth 0. The
depth of a IPFSM call is the depth of its database argument. This depth is equal to the
length of its prefix argument.

5. Experimental evaluation
We consider four real live data sets collected from the webpage (http://www.philippe-

fournier-viger. com/spmf/index.php) of SPMF software [12]. This webpage provides
large data sets in SPMF format that are often used in the data mining litterature for eval-
uating and comparing algorithm performance. All experiments are done on a 4-cores
of 2.16GHz Intel(R) Pentium(R) CPU N3530 with 4 gigabytes main memory, running
Ubuntu 18.04 LTS. All the algorithms are implemented in Java and grounded on SPMF
software [12].

For each data set, we consider a number of support thresholds. For each support
threshold, we fix the minimal intra-periodicity threshold at zero (0), initialize the maxi-
mal intra-periodicity threshold at zero (0) and run algorithm IPFSM while increasing the
maximal intra-periodicity threshold until all the frequent sequences are found. The ex-
periments presented in the annex section show that the number of intra-periodic frequent
sequences, the runtime and the memory usage increase with the maximal intra-periodicity
threshold for a given support threshold.

6. conclusion
Previous work in frequent sequence mining and periodicty only consider extra peri-

odicity. In this paper, we have formalised the problem of mining intra-periodic frequent
sequences and studied its related issues, namely search space pruning and partitioning.
This study has enabled us to design a new efficient algorithm called Intra-Periodic Fre-
quent Sequence Miner (IPFSM). Experimental results confirm its efficiency. In future
work, we will consider adapting the proposed model for various pattern structures.

ARIMA

An Efficient Algorithm to Discover intra-Periodic Frequent Sequences

7. References

[1] CHIA-YING HSIEH , DON-LIN YANG , JUNGPIN WU, “An Efficient Sequential Pattern Min-
ing Algorithm Based on the 2-Sequence Matrix”, Workshops Proceedings of the 8th IEEE
International Conference on Data Mining (ICDM 2008), December 15-19, 2008, Pisa, Italy,
583–591, 2008.

[2] JIAN PEI , JIAWEI HAN , BEHZAD MORTAZAVI-ASL , JIANYONG WANG , HELEN PINTO

, QIMING CHEN , UMESHWAR DAYAL , MEICHUN HSU, “Mining Sequential Patterns by
Pattern-Growth: The PrefixSpan Approach”, IEEE Trans. Knowl. Data Eng., vol. 16, num. 11,
1424–1440, 2004.

[3] JIAWEI HAN , MICHELINE KAMBER, “Data Mining: Concepts and Techniques”, Morgan
Kaufmann, 2000.

[4] JIAWEI HAN , JIAN PEI , YIWEN YIN, “Mining Frequent Patterns without Candidate Gener-
ation”, Proceedings of the 2000 ACM SIGMOD International Conference on Management of
Data, May 16-18, 2000, Dallas, Texas, USA., 1–12, 2000.

[5] KARAM GOUDA , MOSAB HASSAAN , MOHAMMED J. ZAKI, “Prism: An effective approach
for frequent sequence mining via prime-block encoding”, J. Comput. Syst. Sci., vol. 276,
num. 1, 88–102 2010.

[6] KENMOGNE EDITH BELISE , TADMON CALVIN , ROGER NKAMBOU, “A pattern growth-
based sequential pattern mining algorithm called prefixSuffixSpan”, EAI Endorsed Trans. Scal-
able Information Systemsurnal, vol. 4, num. 12, e4, 2017.

[7] KENMOGNE EDITH BELISE, “Contribution to the sequential and parallel discovery of sequen-
tial patterns with an application to the design of e-learning recommenders”, PhD Thesis. The
University of Dschang, Faculty of Sciences, Department of Mathematics and Computer Science,
October 2018.

[8] LIONEL SAVARY , KARINE ZEITOUNI, “Indexed Bit Map (IBM) for Mining Frequent Se-
quences”, Knowledge Discovery in Databases: PKDD 2005, 9th European Conference on
Principles and Practice of Knowledge Discovery in Databases, Porto, Portugal, October 3-7,
2005, Proceedings, 659–666, 2005.

[9] MOHAMMED JAVEED ZAKI, “TSPADE: An Efficient Algorithm for Mining Frequent Se-
quences”, Machine Learning, vol. 42, num. 1/2, 31–60 2001.

[10] MOHAMMED JAVEED ZAKI, “Parallel Sequence Mining on Shared-Memory Machines, J.
Parallel Distrib. Comput., vol. 61, num. 3, 401–426 2001.

[11] NIZAR R. MABROUKEH , CHRISTIE I. EZEIFE, “A taxonomy of sequential pattern mining
algorithms”, ACM Comput. Surv., vol. 43, num. 1, 3 2010.

[12] PHILIPPE FOURNIER-VIGER , ANTONIO GOMARIZ , TED GUENICHE , AZADEH SOLTANI

, CHENG-WEI WU , VINCENT S. TSENG, “SPMF: a Java open-source pattern mining library”,
Journal of Machine Learning Research, vol. 15, num. 1, 3389–3393 2014.

[13] RAKESH AGRAWAL , RAMAKRISHNAN SRIKANT, “Proceedings of the Eleventh Interna-
tional Conference on Data Engineering, March 6-10, 1995, Taipei, Taiwan”, Mining Sequential
Patterns, 3–14, 1995.

[14] SABEUR ARIDHI , LAURENT D’ORAZIO , MONDHER MADDOURI , ENGELBERT MEPHU

NGUIFO, “Density-based data partitioning strategy to approximate large-scale subgraph min-
ing”, Inf. Syst., vol. 48, 213–223 2015.

[15] SHENGNAN CONG , JIAWEI HAN , JAY HOEFLINGER , DAVID A. PADUA, “A sampling-
based framework for parallel data mining”, Proceedings of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPOPP 2005, June 15-17, 2005, Chicago,
IL, USA, 255–265, 2005.

ARIMA

Proceedings of CARI 2020

[16] VALERIE GURALNIK , GEORGE KARYPIS, “Parallel tree-projection-based sequence mining
algorithms”, Parallel Computing, vol. 30, num. 4, 443–472 2004.

[17] ZHENGLU YANG , YITONG WANG , MASARU KITSUREGAWA, “LAPIN: Effective Sequen-
tial Pattern Mining Algorithms by Last Position Induction for Dense Databases”, Advances in
Databases: Concepts, Systems and Applications, 12th International Conference on Database
Systems for Advanced Applications, DASFAA 2007, Bangkok, Thailand, April 9-12, 2007, Pro-
ceedings, 1020–1023 2007.

[18] PHILIPPE FOURNIER-VIGER , ZHITIAN LI , , JERRY CHUN-WEI LI, , RAGE UDAY

KIRAN , , HAMIDO FUJITA, “ EFFICIENT ALGORITHMS TO IDENTIFY PERIODIC PATTERNS

IN MULTIPLE SEQUENCES, Inf. Sci., 489, 205–226, 2019.

[19] DUY-TAI DINH , BAC LE, , PHILIPPE FOURNIER-VIGER , , VAN-NAM HUYNH, “ An
efficient algorithm for mining periodic high-utility sequential patterns, Appl. Intell., 48, 12,
4694–4714,2018

[20] , J. N. Venkatesh , R. UDAY KIRAN , , P. KRISHNA REDDY , , MASARU KITSUREGAWA,
“ Discovering Periodic-Correlated Patterns in Temporal Databases, T. Large-Scale Data- and
Knowledge-Centered Systems, 38, 146–172, 2018.

ARIMA

An Efficient Algorithm to Discover intra-Periodic Frequent Sequences

8. Annex

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 5 10 15 20 25 30 35 40

R
u
n
ti

m
e
 (

in
 m

ill
is

e
co

n
d
s)

Periode

bible runtime

"time=f(periode)0.1"
"time=f(periode)0.2"
"time=f(periode)0.3"
"time=f(periode)0.4"

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25 30 35 40

S
e
q
u
e
n
ce

 c
o
u
n
t

Periode

bible nbre-seq

"nbre_seq=f(periode)0.1"
"nbre_seq=f(periode)0.2"
"nbre_seq=f(periode)0.3"
"nbre_seq=f(periode)0.4"

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 0 5 10 15 20 25 30 35 40

M
e
m

o
ry

 u
sa

g
e
(i

n
 M

B
s)

Periode

"memory=f(periode)0.1"
"memory=f(periode)0.2"
"memory=f(periode)0.3"
"memory=f(periode)0.4"

Performance analysis of IPFSM on the real-life data set BIBLE

ARIMA

Proceedings of CARI 2020

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 5 10 15 20 25 30 35 40 45

Ti
m

e
 (

in
 m

ill
is

e
co

n
d
s)

Periode

fifa time

"time=f(periode)0.2"
"time=f(periode)0.3"
"time=f(periode)0.4"

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35 40 45

S
e
q
u
e
n
ce

 c
o
u
n
t

Periode

fifa nbre-seq

"nbre_seq=f(periode)0.2"
"nbre_seq=f(periode)0.3"
"nbre_seq=f(periode)0.4"

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35 40 45

m
e
m

o
ry

 u
sa

g
e
 (

in
 M

B
s)

Periode

fifa memory

"memory=f(periode)0.2"
"memory=f(periode)0.3"
"memory=f(periode)0.4"

Performance analysis of IPFSM on the real-life data set FIFA

ARIMA

An Efficient Algorithm to Discover intra-Periodic Frequent Sequences

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 5 10 15 20 25 30 35

R
u
n
ti

m
e
(i

n
 m

ill
is

e
co

n
d
s)

Periode

leviathan time

"time=f(periode)0.1"
"time=f(periode)0.2"
"time=f(periode)0.3"
"time=f(periode)0.4"

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35

se
q
u
e
n
ce

 c
o
u
n
t

Periode

leviathan nbre seq

"nbre_seq=f(periode)0.1"
"nbre_seq=f(periode)0.2"
"nbre_seq=f(periode)0.3"
"nbre_seq=f(periode)0.4"

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35

m
e
m

o
ry

 u
sa

g
e
 (

M
B

s)

Periode

leviathan memory usage

"memory=f(periode)0.1"
"memory=f(periode)0.2"
"memory=f(periode)0.3"
"memory=f(periode)0.4"

Performance analysis of IPFSM on the real-life data set LEVIATHAN

ARIMA

Proceedings of CARI 2020

