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Abstract: As the elderly demographic grows larger, the need for efficient healthcare becomes pressing. One solution is to
introduce Artificial Intelligence in the healthcare domain, which implies relevant dataset exploitation. In this
paper, we address the issue of imbalance prediction using open-access sensor-based datasets recorded on both
young adults and senior citizens. We highlight the need to adapt feature selection according to the population
age : strong signals for one population may be classified as weak for another. Although the obtained results are
encouraging, there remains a need for adaptive models developed using AI and under the guidance of medical
experts.

1 INTRODUCTION

The growing number of elderly people and particu-
larly in developed countries rises health challenges.
As the state of elderly people can rapidly decline from
robust to frail to dependant, the need for smart moni-
toring systems endowed with artificial intelligence be-
comes pressing.

Developing artificial intelligence based on the
data generated from Iot devices is challenging in the
case of elderly people studies: (i) first, gathering data
is restricted for various reasons (medical, ethical...).
So far, we found only one dataset (Sisfall) (Sucerquia
et al., 2017) registering falls concerning one elderly
person, (ii) second, deep learning or machine learning
needs a huge amount of labelled data to train efficient
models. If we consider fall or imbalance problems
their observation rate for elderly people would not be
sufficient. That’s why we found datasets (Kessentini
et al., 2018)(Ojetola et al., 2015) generated by young
participants imitating elderly problems.

Based on these facts, we propose in this paper an
experimental study that investigates the cross evalu-
ation of deep learning models generated on datasets
observed on elderly and young people. The aim
of this study is to highlight alternative methods to
develop deep learning approaches combining both
young and elderly observations. The topic of our in-
terest is imbalance prediction as it is less addressed in
the literature compared to fall and this degradation in
the gait occurs before fall.

The remainder of this paper is organized as fol-
lows : after reviewing the existing studies on fall and
imbalance detection, we introduce our experimental
settings, the datasets and the model architecture. We
then present the obtained results and conclude the pa-
per with a brief discussion and future work.

2 RELATED WORK

Imbalance prediction for elderly people is a topic re-
lated to the preservation of autonomy. This topic is
much less studied in the literature compared to fall
detection. Considering the correlation between im-
balance and fall, we present in this section the most
relevant studies related to our proposition. We sum-
marize in table 1 related work on either fall or im-
balance with a particular focus on the devices used,
the data mining algorithm employed and the possible
preprocessing techniques.

Concerning fall detection systems, we can dis-
tinguish three types of approaches : Camera-based,
sensor-based and hybrid approaches. As for camera-
based approaches, these solutions generate images
data that can be analysed for movement tracking. The
principal drawbacks of these solutions are :(i) the re-
strictive rules to the subject movement, (ii) the need
for a well equipped environment along with cameras
and dedicated storage. This environment is predomi-
nately indoor in elderly people houses. For this cate-
gory, we cite the work of (Adhikari et al., 2017) which
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uses a Kinect to track subject’s movement and im-
plements a convolutional network in order to process
captured images and classify human activities.

As for sensor-based approaches, we cite the work
of (Casilari et al., 2017) who propose a star topology
composed of a smartphone and SensorTags to record
motion data. The smartphone acts as a central node
and also produces acceleration data. The SensorTags
placed on the ankle, waist, right wrist and chest of the
subject, generate data through a 3D gyroscope and
a 3D magnetometer. The work of (Sucerquia et al.,
2017) also includes an accelerometer and a gyroscope
mounted in the belt buckle. The collected data are
available in the dataset SisFall1.The authors of (Musci
et al., 2018) used SisFall to classify human activi-
ties into three categories : fall, near fall and ADLs
using a Long Short Term Memory architecture and
achieved an accuracy of 97%. The authors of (Mah-
fuz et al., 2018) used both SisFall and another open
source dataset called ’MobiAct’. They achieved an
accuracy of 98.75% in ADLs and falls classification
task using a deep neural network. The authors per-
formed preprocessing on the raw data of SisFall and
MobiAct as well as new features generation.

Regarding accessory-mounted sensors, the work
of (Huang et al., 2008) uses a smart cane that con-
tains force sensors and a CCD camera. A two-state
finite state machine has been implemented containing
’Normal walking mode’ and ’Falling down mode’. In
this work, the distance between the center of legs and
the cane was investigated in order to classify the sub-
ject’s activity. The work of (Kessentini et al., 2018)
presents a system that contains a smart cane connect-
ing to ChisteraPi gateway. In this study, a dataset
was created by letting young adult subjects experi-
ence some ADLs and falls. They developed a K-
Nearest Neighbors classifier achieving 97% accuracy.

Hybrid approaches mix data obtained by cameras
and sensors. The work presented by (Kwolek and
Kepski, 2014) uses a wearable device mounted near
the pelvis, containing a 3D accelerometer and a 3D
gyroscope, and a smart Kinect camera. Data gener-
ated are used in a threshold based algorithm to detect
fall then compared with the results of an SVM model
(99.67% of accuracy).

To conclude this section, we noticed that pa-
pers focusing on fall detection consider activities like
Stumbling or Near Fall, besides Forward Fall, back-
ward Fall and lateral Fall while others consider these
activities as ADLs. Compared to these works, we will
focus on the non-fall state and investigate the ADLs
related to imbalance (or as said near fall) states in or-

1http://sistemic.udea.edu.co/en/
investigacion/proyectos/english-falls/

Table 1: Summary on related work
Approach Connected device Algorithm Preprocessing

(Chen et al., 2015) Smartphone enabled
3D Accelerometer

Finite state
machine No

(Roeing et al., 2017)
Cell phone that
contains invasive
sensors

not reported No

(Mahfuz et al., 2018) Smartphone Deep neural
network Yes

(Fontecha et al., 2013) 3D accelerometer Affinity Tree Yes

(Musci et al., 2018) 3D accelerometer/
3D gyroscope

Long Short
Term Memory No

(Sucerquia et al., 2017) 2*3D accelerometer/
3D gyroscope

Threshhold based
classification

algorithm
Yes

(Huang et al., 2008) Smart Cane Finite State
machine No

(Casilari et al., 2017)
3D accelerometer/
3D gyroscope/
3D magnetometer

not reported No

(Kwolek and Kepski, 2014) 3D accelerometer/
3D gyroscope

Support Vector
machine Yes

(Kessentini et al., 2018) Cane/Teensy 3.2/
Lora Receiver

K-Nearest
Neighbors No

der to establish predictive models and study their rel-
evance.

3 DEEP LEARNING FOR
IMBALANCE PREDICTION

In this section we present the datasets used, the data
preprocessing performed on them and the architecture
of the ANN network applied on our study.

3.1 Datasets

We identified two datasets for imbalance prediction.
These datasets, Sisfall (Sucerquia et al., 2017) and
Cogentlab (Ojetola et al., 2015), record falls and ADL
activities.

Table 2 compares both datasets. Sisfall is ob-
served on eldery people, while Cogentlab is observed
on young people so that we can study the stability of
imbalance model, the relevance of features as well as
the cross evaluation between models. Table 3 lists the
features in each dataset with their explanations. Given
these common criteria, it is easy to compare results of
these datasets.

Table 2: Sisfall vs Cogentlab comparison
Cogentlab SisFall

Sampling rate 100 Hz 200 Hz

Subjects
42 healthy adults
- 6 female
- 36 male

38 participants
- 15 elderly
- 23 young adult
only one elderly person recordings

Activities - 14 falls
- ADLs for 23 minutes ADLs and Fall activities

Sensors
Shimmer sensor
- 3D accelerometer
- 3D gyroscope

- 2* 3D accelerometer
- 3D gyroscope

Axis orientation

- x-axis : orthogonal
to the walking direction
- y-axis : upwards
- z-axis : forward direction

- x-axis : right side of the
participant
- y-axis : gravity direction
- z-axis forward direction

Algorithm J48 Decision Tree Thresh-hold based algorithm
Accuracy 94.4% not reported
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Table 3: Features description
Feature Description
Lx Linear acceleration in the x direction (orthogonal )
Ly Linear acceleration in the y direction ( upwards)
Lz Linear acceleration in the z direction ( Forward)
Gx Angular Velocity or Rotation in the x direction ( orthogonal)
Gy Angular Velocity or Rotation in the y direction ( upwards)
Gz Angular Velocity or Rotation in the z direction ( Forward)
Roll Rotation around the front-to-back axis
Pitch Rotation around the side-to-side axis
Yaw Rotation around the vertical axis

3.2 Data Preprocessing

In order to prepare our datasets for deep learning
tasks, we perform these preprocessing steps :

• Features computation;
• Target column extraction to obtain a binary clas-

sification problem (Imbalance / Not Imbalance);
• Feature scaling to get normalized data.

3.2.1 Features Computation

We note that for the Sisfall the acceleration and rota-
tion features are originally in bits. To convert them
into gravity, as suggested by the authors of Sisfall2,
we use the following equations:

Acceleration[g] :
2∗Range
2Resolution ∗AccelBin (1)

AngularVelocity[◦/s] :
2∗Range
2Resolution ∗RotationBin (2)

For both SisFall and Cogentlab datasets, we computed
the orientation data : pitch, roll, yaw using he formu-
las cited in (Lachtar et al., 2019).

3.2.2 Target Extraction

CogentLab For imbalance state, we took the
records corresponding to the Near-fall activity (”loss
imbalance” label) and extract rows annotated by the
normal walking. The resulting dataset for our study
contains 313503 rows including 211866 correspond-
ing to the normal walking state and 101637 corre-
sponding to the imbalance case.

Sisfall We took data that corresponds to the label
(Stumbling while walking) recorded for the 60-year
old subject. We extracted also rows corresponding
to the label (normal walking) recorded by the same
subject. The resulting dataset for our study contains
31999 rows including 19999 corresponding to the
normal walking state and 12000 corresponding to the
imbalance case.

2http://sistemic.udea.edu.co/wp-content/
uploads/2015/11/Readme1.txt.

3.2.3 Feature Scaling

For our datasets, we investigate two types of scaling
features standardization and Min-Max scaling. For
standardization we used this formula :

z =
x− v

s
(3)

Where z represents the modified value, v indicates the
variance of the feature x and s designates its standard
deviation.
For Min-Max scaling, we used this formula :

Xnorm =
X−Xmin

Xmax−Xmin
(4)

Where Xnorm represents the obtained value after per-
forming scaling, Xmin indicates the minimum value
of the feature X and Xmax designates its maximum
value.
Experimentations show that standardization is more
suitable and efficient than Min-Max scaling based on
the accuracy obtained in these two cases.

3.3 The ANN Model Architecture

In this paper, we implemented a fully connected neu-
ral network based on following architecture:

Figure 1: ANN architecture

• The input layer has 9 input units corresponding to
the features of Table 3

• The first hidden layer contains 512 neurons and
uses the ReLu activation function,

• The second hidden layer contains 128 neurons and
also uses the ReLu activation function,

• The output layer for the binary classification uses
the softmax activation function.

The choice of the different tuning parameters is
done heuristically. First, we have investigated both
the ReLu and Tanh functions for the hidden layers.
The model with ReLu gave better results than the
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one which used Tanh in particular with the Cogent-
lab dataset. This dataset being the largest, we retain
the ReLu function.

Concerning the number of neurons (units) which
are generally a power of 2, we tried all possible com-
binations in the interval [32−512]. Simulations show
that 512 for the first hidden layer and 128 for the sec-
ond one give the best results.

Finally, for the final activation function used in the
output layer, we experiment both sigmoid and soft-
max for our binary classification problem. Simula-
tions showed that Softmax is more precise than sig-
moid in term of correct predictions.

4 EVALUATION RESULTS

The aim of our evaluations is twofold: (1) check the
relevance of deep learning approaches for predicting
imbalance based on sensor’s data , (2) demonstrate
experimentally that there is a subtlety between weak
signals and strong signals for the prediction of im-
balance that should be considered when constructing
deep learning models. The first objective is presented
in the subsection 4.1. The second objective is ad-
dressed in subsections 4.2 and 4.3.

We note that the evaluation results presented in
this section were produced on a computer with an
Intel core i5 CPU and a 8 GB memory. The
code source was developed on the Anaconda plat-
form with the python 3.7 version. Several libraries
were employed such as numpy, pandas, matplotlib,
seaborn, tqdm, sklearn for data preparation, keras
for deep learning and eli5 for feature importance de-
termination.

4.1 Model Evaluation

Based on the architecture presented in previous sec-
tion, we carried out two evaluations on SisFall and
CogentLab data sets. These evaluations followed the
same experimental settings : (i) 100 epochs, (ii) 64
batch size, (iii) the Adam implementation for the gra-
dient descent algorithm, (iv) the categorical crossen-
tropy for the loss function and (v) 33% for test set ,
67% for train test.

As shown in Figure 2, we can observe the evolu-
tion of the Accuracy both on the train (green and blue
curves) and test (orange and red curves) sets through
the 100 epochs. The accuracy of our model applied
on these datasets for the train exceeds 90% which is
a very interesting result. We can notice, for the Co-
gentlab dataset, that the model starts overfitting on the
train set after the 30 th epoch. This can be explained

by the volume of this dataset compared to the Sisfall
dataset. But we highlight that we have a stability on
the test set so this overfitting problem can be fixed by
a good tuning of the number of epochs. In this exam-
ple, 40 epochs are sufficient to get a stable and good
model for both datasets.

Figure 2: Model accuracy evolution through 100 epochs

4.2 Feature Importance Determination

Discovering the most important characteristic(s) in
our study will lead to determining the most suitable
sensors for elderly people monitoring. To evaluate the
feature importance, we use the eli53 library. The con-
cept is to eliminate one feature at a time, run the train-
ing process and compute the accuracy of the model.
The most significant feature is the one which absence
most degrades the accuracy score. A second comple-
mentary alternative consists in observing the weights
of each feature according to the model by running it
with all the features.

Features observations for Cogentlab and Sisfall
Regarding the Cogentlab dataset, Figure 3 summa-
rizes the importance and the weights of the different
features. These figures show that the angular velocity
features generated by the 3D gyroscope, along the x
and z axes, and the pitch are the most influential fea-
tures in imbalance prediction. These observations are
similarly coherent with the work of (Lachtar et al.,
2019). Regarding Sisfall, we see in Figure 4 that
the most important features are the linear acceleration
data obtained by the 3D accelerometer.

Discussion. We observe a significant difference in
the prioritization of the features between Cogentlab
and Sisall. Therefore, we can make the following
assumption : elderly people movement is affected
the most by the linear acceleration while young adult

3https://eli5.readthedocs.io/en/latest/
overview.html
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Figure 3: Features importance for Cogentlab

Figure 4: Features importance for SisFall

movement is influenced the most by the angular ve-
locity. This means that the observation of imbalance
with sensors gives off two types of signals :

• The strong signals are the most important features
for the elderly people using sensors. These signals
are close to the state of fall or in advanced stages
of imbalance,

• The weak signals are the most influential features
for the young adult movement which are in the
same time among the least significant features for
the elderly people movement. These signals can
be observed for the starting stages of the imbal-
ance problems.
So for elderly people with advanced state imbal-

ance, the prediction models will be efficient with
strong signals. But for eldery people on the starting
stages of imbalance or in the middle stages, we should
think on new strategies of constructing the prediction
models.

4.3 A Cross Evaluation Of Models

In this section, we study the impact of weak and
strong signals on the quality of predictions on both
datasets. We proceed by a cross evaluation of models.
We use three settings: (1) Setting 1 consists in apply-
ing the prepared ANN on each complete data set sep-
arately, then saving each model and applying a cross
evaluation of models, (2) Setting 2 consists in using

only weak signals as features (which are in our case
rotation and pitch data) and applying a cross evalu-
ation of models, (3) Setting 3 consists in using only
strong signals as features (which are in our case accel-
eration and pitch data) and applying a cross evaluation
of models. For all these settings, let model1 refer to
the ANN trained on SisFall, while model2 refers to
the ANN trained on Cogentlab.

Setting 1 observations As shown in Table 4,
when we evaluate Cogentlab using model1 we get
an accuracy of 47%, whereas, the application of
model2 on Sisfall gives an accuracy of 57%. We have
an important decrease compared to the application
of each model on its dataset. Therefore, it’s clear
that our models with both weak and strong signals
aren’t stable. These results suggest that a composite
process of evaluation taking advantage of both signals
separately would be better.

Table 4: Setting 1 results

SisFall Model Cogentlab Model
SisFall 98% 57%
Cogentlab 47% 90%

Setting 2 observations As shown in Table 5, when
applying model 1 in SisFall using only weak signals,
we get an accuracy of 84%. We note a decrease in
accuracy from 98% to 84% by using weak signals. In
contrast, evaluating model2 in Cogentlab data set us-
ing only weak signals gives us an accuracy of 88%.
When applying model1 in Cogentlab we get an ac-
curacy of 60%, while the evaluation of SisFall us-
ing model2 gives us 72%. These results confirm the
relevance of weak signals in the imbalance detection
when observed individually.

Table 5: Setting 2 results

SisFall Model Cogentlab Model
SisFall 84% 72%
Cogentlab 60% 88%

Setting 3 observations As shown in Table 6 for Co-
gentlab data set, we evaluated it using model2 and
we get an accuracy of 76%. The decrease from 90%
to 76% can be explained by the absence of the most
significant features in the prediction of imbalance for
the young adult subjects present in Cogentlab. For
the model stability verification in this context, we ap-
plied model1 in Cogentlab which gave us a score of



51% while trying model2 in SisFall returned a score
of 33%.

Table 6: Setting 3 results

SisFall Model Cogentlab Model
SisFall 89% 33%
Cogentlab 51% 76%

We observe from these results a potential com-
plementarity in prediction between the weak signals
model, applied on young adult subjects and the strong
signals models, applied on elderly subjects. The re-
sults suggest that a twofold model would perform bet-
ter in this case: by following a composite process, the
model based on the weak signals would produce cor-
rect predictions in situations where the strong signals
model would fail and vice versa.

5 CONCLUSION

In this paper we presented an experimental study
to showcase new hypothesis related to imbalance pre-
diction for elderly populations. Thanks to an artifi-
cial neural network applied on Congentlab and SisFall
datasets and a cross evaluations of models, we ob-
served a complementarity between weak and strong
signals. Our results are encouraging but should be
validated by medical experts and tested on larger pop-
ulations. For future work, we develop new strategy of
deep learning compositions in the light of weak and
strong signals. It will be validated on a new collected
scalable dataset based on a smart stick. The Iot device
is connected with three communication technologies
LoRa, BLE and WiFi. We plan to collect data for both
young and eldery peoples on nursing residences.

REFERENCES

Adhikari, K., Bouchachia, H., and Nait-Charif, H.
(2017). Activity recognition for indoor fall de-
tection using convolutional neural network. In
2017 Fifteenth IAPR International Conference
on Machine Vision Applications (MVA), pages
81–84.

Casilari, E., Santoyo-Ramón, J. A., and Cano-Garcı́a,
J. M. (2017). Umafall: A multisensor dataset for
the research on automatic fall detection. Proce-
dia Computer Science, 110:32–39.

Chen, P.-H., Li, Y.-H., Chiou, C. W., Lee, C.-Y., and
Lin, J.-M. (2015). A smart safety cane for human
fall detection. International Journal of Ad Hoc
and Ubiquitous Computing, 20(1):49–65.

Fontecha, J., Navarro, F. J., Hervás, R., and Bravo,
J. (2013). Elderly frailty detection by using
accelerometer-enabled smartphones and clinical
information records. Personal and ubiquitous
computing, 17(6):1073–1083.

Huang, J., Di, P., Wakita, K., Fukuda, T., and
Sekiyama, K. (2008). Study of fall detection
using intelligent cane based on sensor fusion.
In 2008 International Symposium on Micro-
NanoMechatronics and Human Science, pages
495–500. IEEE.

Kessentini, O., Dalce, R., Megdiche, I., and Bastide,
R. (2018). Towards predicting frailty symp-
toms through a smart walking stick. In 2018
IFIP/IEEE International Conference on Perfor-
mance Evaluation and Modeling in Wired and
Wireless Networks (PEMWN), pages 1–7.

Kwolek, B. and Kepski, M. (2014). Human fall de-
tection on embedded platform using depth maps
and wireless accelerometer. Computer methods
and programs in biomedicine, 117(3):489–501.

Lachtar, A., Val, T., and Kachouri, A. (2019). Elderly
monitoring system in a smart city environment
using LoRa and MQTT. IET Wireless Sensor
Systems, 2043-6386:(on line).

Mahfuz, S., Isah, H., Zulkernine, F., and Nicholls,
P. (2018). Detecting irregular patterns in iot
streaming data for fall detection. In 2018 IEEE
9th Annual Information Technology, Electronics
and Mobile Communication Conference (IEM-
CON), pages 588–594. IEEE.

Musci, M., De Martini, D., Blago, N., Facchinetti,
T., and Piastra, M. (2018). Online fall
detection using recurrent neural networks.
arXiv:1804.04976.

Ojetola, O., Gaura, E., and Brusey, J. (2015). Data set
for fall events and daily activities from inertial
sensors.

Roeing, K. L., Hsieh, K. L., and Sosnoff, J. J.
(2017). A systematic review of balance and fall
risk assessments with mobile phone technology.
Archives of gerontology and geriatrics, 73:222–
226.
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