
HAL Id: hal-02930770
https://hal.science/hal-02930770

Submitted on 4 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Formalism for Specifying Model Merging Conflicts
Mohammadreza Sharbaf, Bahman Zamani, Gerson Sunyé

To cite this version:
Mohammadreza Sharbaf, Bahman Zamani, Gerson Sunyé. A Formalism for Specifying Model Merging
Conflicts. System Analysis and Modelling (SAM) conference, Oct 2020, Virtual Event, Canada.
�10.1145/3419804.3421447�. �hal-02930770�

https://hal.science/hal-02930770
https://hal.archives-ouvertes.fr

A Formalism for Specifying Model Merging Conflicts
Mohammadreza Sharbaf ∗

MDSE Group, University of Isfahan
Isfahan, Iran

m.sharbaf@eng.ui.ac.ir

Bahman Zamani
MDSE Group, University of Isfahan

Isfahan, Iran
zamani@eng.ui.ac.ir

Gerson Sunyé
LS2N, University of Nantes

Nantes, France
gerson.sunye@univ-nantes.fr

ABSTRACT
Verifying the consistency of model merging is an important step to-
wards the support for team collaboration in software modeling and
evolution. Since merging conflicts are inevitable, this has triggered
intensive research on conflict management in different domains. De-
spite these efforts, techniques for high-level conflict representation
have hardly been investigated yet. In this paper, we propose an ap-
proach to specify model merging conflicts. This approach includes
the Conflict Pattern Language (CPL), a formalism for specifying
conflicts in different modeling languages. CPL is based on the OCL
grammar and is tooled by an editor and a parser. CPL facilitates the
slow and error-prone task of specifying model merging conflicts
and can be used to specify conflicts in any EMF-based model. We
evaluated our approach with a case study, including five different
conflict cases. The results are promising about how CPL can be
used for specifying syntactic and semantic conflicts.

CCS CONCEPTS
• Software and its engineering → Specification languages;
Formal language definitions.

KEYWORDS
Model Merging Conflict, Conflict Specification Formalism, Conflict
Representation, Collaborative Modeling, Model Driven Engineering
ACM Reference Format:
Mohammadreza Sharbaf, Bahman Zamani, and Gerson Sunyé. 2020. A For-
malism for Specifying Model Merging Conflicts. In 12th System Analysis and
Modelling Conference (SAM ’20), October 19–20, 2020, Virtual Event, Canada.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3419804.3421447

1 INTRODUCTION
Software development includes several activities, analysis, design,
and implementation, to name a few. These activities are mainly com-
plex and require collaboration between different experts, coming
from a wide variety of fields [32]. Modeling, which is mainly used
in the analysis and design phases of software development is no
exception. When the software is complex, the size and complexity
of models increases dramatically. This enforces that many heteroge-
neous partners participate in large teams and work collaboratively
together [22]. Some of the participants may work concurrently
and independently on the same model from different geographical
∗Also with LS2N, University of Nantes, Nantes, France.

SAM ’20, October 19–20, 2020, Virtual Event, Canada
© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in 12th System
Analysis andModelling Conference (SAM ’20), October 19–20, 2020, Virtual Event, Canada,
https://doi.org/10.1145/3419804.3421447.

sites. Each of the participants focuses on specific aspects of the
system and locally modifies only a particular part of the model.
When participants deliver locally modified models, those need to
be integrated into a common relevant model for continuing the soft-
ware evolution. The problem is that some concurrent updates may
be incompatible and contribute to conflicts during the integration
process. Therefore, it is critical to focus on conflict management to
maintain the model consistent [11].

To support conflict management in model merging, several ap-
proaches have been proposed so far. Most of them provide conflict
detection techniques to discover conflicts which may occur due to
concurrent changes. Some of them focus on reconciling conflicts
with context-free techniques based on a three-way model merging
strategy [11]. Furthermore, some approaches try to prevent conflict
occurrence by using mechanisms to inform the user about con-
flicting situations for concurrent actions [17]. Despite these efforts,
techniques for high-level conflict representation have been rarely
studied yet. The fact is that, for performing conflict management
activities, we have to know which situation is considered as a con-
flict. In merging models, we face different kinds of conflicts. Each
conflict refers to a particular context that depends on the syntax
and semantics of the modeling language [1]. Potential conflicts
are mainly domain-specific; hence, they can be hard to understand
and be recognized solely by language engineers. However, in the
collaborative evolution of models, in merging new versions, it is
necessary to automatically check for potential conflicts, which is
not possible without a precise or formal specification of conflicts.
To this end, an approach to specify merging conflicts for different
modeling languages is needed, which is still remained as an issue.

In this paper, we present a formalism for specifying model merg-
ing conflicts to solve the issue previously mentioned. Our proposal
is based on the concept of patterns as approved solutions to recur-
ring specification and design problems. We define each conflict as a
pattern that describes the situation of model elements at the time of
conflict. To propose the conflict representation formalism, we pro-
vide an extension to the Graphical Extension of BNF (GEBNF) [3].
Based on this formalism, we designed a language called Conflict
Pattern Language (CPL), which applies to any EMF-based model. To
facilitate the slow and error-prone task of writing and syntactically
validating the specification of model merging conflict patterns, we
also extended the Object Constraint Language (OCL) grammar to
provide a grammar parser and a syntax-aware editor.

The proposed conflict representation approach is illustrated by
the “Pull-Up Method” refactoring conflict [19] for the UML Class
diagram; however, it is applicable to specify conflict patterns for
models conforming to arbitrary metamodels. To evaluate the ap-
plicability of our proposed formalism and language, we ran a case
study to answer the following research questions:

https://doi.org/10.1145/3419804.3421447
https://doi.org/10.1145/3419804.3421447

SAM ’20, October 19–20, 2020, Virtual Event, Canada M. Sharbaf, et al.

RQ1) Is it possible to specify any model merging conflict as
a pattern?
RQ2) Is the proposed formalism able to represent model
merging conflicts?
RQ3) Is our formalism able to support the representation of
conflicts for different modeling languages?

The rest of this paper is organized as follows. Section 2 briefly
provides background information on collaborative modeling as well
as model merging conflicts and introduces our running example.
Section 3 provides the idea of using patterns for representing model
merging conflicts and presents the conflict specification formal-
ism. The combination of conflict pattern specification with OCL to
implement the Conflict Pattern Language (CPL) parser and editor
is reported in Section 4. Section 5 presents the case study which
is amended by a discussion on each research question. Section 6
reports related work. Finally, Section 7 concludes the paper and
highlights areas for future work.

2 BACKGROUND
2.1 Collaborative Modeling
In software development, different stakeholders collaborate to build
complex systems. This collaboration results in the specification,
architecture, and design of the system, each of which can be consid-
ered as a model of the system. Stakeholders use specific modeling
languages to build these models. The joint creation of models is
considered as collaborative modeling [24].

In collaborative modeling, change propagation occurs in both,
offline or online scenarios [14]. Offline collaboration is based on
asynchronous interactions. In this scenario, users check out models
from a version control system (VCS) and commit local changes to
the repository.

In the online scenario, users work synchronously and may si-
multaneously edit a model. Changes are immediately propagated to
all users. While changes are propagated in both offline and online
scenarios, appropriate mechanisms for conflict management are
required in destinations [17]. This includes support for (a) conflict
detection in which potential conflicts are discovered, (b) conflict
awareness that warns users of potential conflicts, and (c) conflict
resolution by which detected conflicts are fixed.

2.2 Model Merging Conflicts
In the model merging process, conflicts may arise when concurrent
incompatible modifications are applied to the same element. In such
a situation, either the modifications cannot be integrated to produce
a unique model, or the integration would result in an inconsistent
merged version of the model. The main reason for conflicts is the
existence of contradicting changes, which do not commute [5].
However, different types of conflicts in the merge of models can be
defined by considering syntax and semantics of models [18].

Syntactic conflicts are those which take the modeling language
syntax into account. However, syntactic conflicts may not necessar-
ily produce a language syntax violation. For instance, contradicting
updates to the name of the same element constitutes a syntactic
conflict. This type of conflict may be detected by checking the
structure of models and comparing the similarity of elements.

Semantic conflicts go beyond the generic conflicts and need to
consider the system behavior and the modeling language seman-
tics. Indeed, the integration of concurrent changes may result in a
syntactically correct merged version, yet semantically invalid [1].
Semantic conflicts are divided into three categories: Static seman-
tics, behavioral semantics, and semantic equivalence [2].

In this context, static semantic conflicts refer to issues and side
effects detected at compile-time, such as violation of hierarchy
constraints and incompatible types, which remain hidden in the
merged version without considering the model semantics. In most
modeling languages, e. g. UML, these conflicts violate their well-
formedness rules and are perceived as syntax conflicts. Behavioral
semantic conflicts denote different or unexpected behavior in the
merged model, which relies on the runtime semantics. It considers
the execution behavior of modeled systems based on the data and
control flow. Semantic equivalence conflicts denote contradicting
conditions in which the modeler can express the same meaning in
different ways using equivalent concepts or equivalent constructs.
In those conditions, syntactically, both modifications can be applied
because of their different appearance, while only one of them should
be applied to perform a valid merged model.

2.3 Running Example: the Pull Up Method
Refactoring Conflict

One conflict that may occur in a UML Class Diagram is when the
designer applies the Pull Up Method refactoring operation [31]. We
use this refactoring to illustrate the idea of using patterns to specify
and formalize model merging conflict representation.

Figure 1 shows an instance of the Pull-Up Method conflict for
different versions of an Order Management System [28]. The Pull-
Up Method conflict occurs when two modelers apply two different
actions on methods that are common among all subclasses of a su-
perclass in the original version. On the left hand, the first modeler
moves the authorized method from the subclasses to the superclass.
On the right hand, the second modeler creates a new class Cash,
which is inherited from the class Payment as the superclass. The
newly added subclass does not have the common method (autho-
rized). In this case, at the merged version, the authorized method, as
a common feature, is added only to the superclass (Payment). Also,
the Cash class is added as the new subclass of class Payment in the
merged version. Consequently, the merged version is semantically
incorrect because the new subclass (Cash) inherits the authorized
method, while this is not what the second modeler meant to do.

3 CONFLICT SPECIFICATION FORMALISM
3.1 Specifying Conflict by Pattern
In the parallel modification of a model, users apply a series of
changes that turn the model into different versions. After various
modifications, these versions may have non-similar parts, which at
the merge process may lead to the failure of integration or result in
an invalid mergedmodel. More precisely, the structure and situation
of elements in different versions lead to a model merging conflict.
Hence, a model merging conflict can be identified by describing
the situation of the parts of each version that are involved in the
conflict.

A Formalism for Specifying Model Merging Conflicts SAM ’20, October 19–20, 2020, Virtual Event, Canada

Payment

-amount : Real
-date : String

Credit

-expDate : String

-authorized()

Check

-name : String

-authorized()

-bankID : String
-number : Integer

Payment

-amount : Real
-date : String

Credit

-expDate : String

Check

-name : String
-number : Integer

-authorized()

Payment

-amount : Real
-date : String

Credit

-expDate : String

-authorized()

Check

-name : String

-authorized()

-bankID : String

-number : Integer

Cash

-CashTendered : Real
-ID : Integer

Base version

Left version Right version

Figure 1: An Example of the Pull Up Method Conflict in Class Diagrams (adapted from [28])

Patterns express the structure and characteristics of repeated or
regular situations. Therefore, in conflict management, patterns can
describe detectable conflicts, expressing the structures, elements,
and the relationships between the elements of the different ver-
sions that led to a conflict. To this end, we propose a template for
specifying a model merging conflicts as patterns. It should be noted
that the proposed pattern is only an approach for representing the
model merging conflict; it does not provide a solution to resolve
that conflict.

1 conflict <name>{

2 domain <domainName>:<domainPath>
3 (, <domainName>:<domainPath>)*

4 (inmodel <modelName>{

5 component (, component)∗

6 (, statement)∗)?

7 })+

8 (where {

9 condition (, (or|and) condition)∗

10 })?

11 (description (:<expression>))?
12 }

Listing 1: Template of a Conflict Pattern

Listing 1 illustrates the template of a conflict pattern, where a
named conflict block contains several named domain and inmodel
statement blocks. Each domain has a name and a path. The domain
name allows the identification of all elements belonging to that do-
main, while the domain path specifies a URI that contains a domain
modeling language. Each inmodel block describes components and
statements that identify sets of model elements with specific prop-
erties. Each conflict pattern description also includes an optional
where condition, which describes the relationship among elements
in the specified inmodel blocks. Finally, the optional description
block defines a diagnostic message describing the situation that
satisfies this pattern. In its simplest form, a conflict pattern consists
of two inmodel statement blocks, which include the description of
elements in two different versions.

In the following section, we formalize the proposed template
for specifying conflict patterns to investigate in more detail the
component, statement, condition, and expression blocks, which are
introduced in Listing 1.

3.2 Conflict Pattern Formalism Using GEBNF
In this section, we specify the conflict pattern formalism using a
set of rules in the meta-notation GEBNF [34], inspired from Rouhi
and Zamani specification scheme [25].

Hereafter, these rules are indicated from Rule 1 to Rule 26. In
these rules, each non-terminal symbol is reachable from the Con-
flictPattern root, and there exists one and only one description rule
for each non-terminal symbol. These facts show that the proposed
notation satisfies the Reachability and Completeness conditions, re-
spectively. Hence, the conflict pattern formalism is a well-formed
syntax [33].

Rule 1 defines that a model merging conflict pattern, as men-
tioned in the template of conflict pattern (Listing 1), includes (i) a
name, (ii) the domains of involved models, (iii) the different frag-
ments of models that raise the conflict, (iv) the relations between
model elements in the different fragments, and finally, (v) the de-
scription that should be displayed to the user. According to Rule 1,
each pattern starts with the ‘conflict’ keyword, followed by the
name of conflict pattern and then the parts that specify the body of
the pattern and are surrounded by braces (‘{’ and ‘}’).

ConflictPattern ::= ‘conflict’, patternName : String, ‘{’,
modelDomain : domainExpression+,

modelFragment : fragDeclaration+,
modelRelations : [relStatement],

conflictDescription : [dscExpression],
‘}’ (1)

In the body of a pattern, the domainExpression field (Rule 2) de-
fines the modeling language that contextualizes the conflict pattern.

SAM ’20, October 19–20, 2020, Virtual Event, Canada M. Sharbaf, et al.

Each domain expression consists of a ‘domain’ keyword, a string
name (Rule 3), and an address (Rule 4), which is a URI to access the
definition of the specified modeling language.

domainExpression ::= ‘domain’, domainName, ‘ : ’, address(2)

domainName ::= name : String (3)
address ::= ‘ “ ’, uri : String, [‘/’, id : String]∗, ‘ ” ’ (4)

The fragDeclaration field (Rule 5) defines the constituent sub-
models. Each fragment declaration consists of the ‘inmodel’ key-
word, the desired model, and a number of declarations and optional
conditions to specify a set of model elements.

fragDeclaration ::= ‘inmodel’, model :modelContext,

declaration :modelElement+,

condition : condFormula∗ (5)

In each fragDeclaration, the modelContext (Rule 6) includes a
string modelName and a reference domainName, which refers to a
domain that is specified by a domianExpression (Rule 2). The mod-
elElement (Rule 7) consists of a string name and a collection of
model elements that can be defined as a inclusionSet (Rule 8), e. g.,
{source, target} ⊆ Node or a membershipSet (Rule 9), e. g., c ∈ Class.
TheMember (Rule 10) is a single named identifier or an ordered list
of them. The classifier and variable identifiers, or attribute and func-
tion names, are instances of the Member rule. Rule 11 specifies the
different types of model elements, which can be EDataType, EClass,
or power-set type, to support all Ecore. According to this rule, the
user can also introduce other user-defined types by a named string.
The condition field as the last part of fragDeclaration rule is defined
by condFormula (Rule 12). The conditional formula is either a posi-
tive or a negative formula which can be defined as simpleFormula
(Rule 13), quantFormula (Rule 18), or a conjunction/disjunction
composition of them.

modelContext ::= modelName : String, ‘ : ’, domainName (6)
modelElement ::= name : String, ‘ = ’,

inclusionSet | membershipSet (7)
inclusionSet ::= ‘{’,Member, [‘, ’,Member]∗, ‘}’,

‘ ⊆ ’, Type (8)
membershipSet ::= Member, ‘ ∈ ’, Type (9)

Member ::= name : String,
[‘(’, [id : String, [‘(’, ‘)’], [‘, ’]]∗, ‘)’] (10)

Type ::= EDataType | EClass | ‘P ’, Type |

id : String (11)
condFormula ::= [‘¬ ’], simpleFormula | quantFormula |

‘(’, [[‘ ∨ ’], condFormula]∗ |

[[‘ ∧ ’], condFormula]∗, ‘)’ (12)

A simpleFormula (Rule 13) consists of two Operands (Rule 14) in-
terleaved by a comparison operator, introduced in the comparisonOp
(Rule 15). Each Operand is either a single user-defined identifier
that is specified by a string name or a collection of elements that are
expressed by a inclusionSet (Rule 8), a membershipSet (Rule 9), or a
Function (Rule 16). The Function consists of a return Type (Rule 13), a
string name, and an ordered list of input parameters that are defined

by the Param (Rule 17). Each parameter consists of a user-defined
identifier, whose type is defined based on the Type rule after the
‘ : ’ notation.

simpleFormula ::= Operand, comparisonOp, Operand (13)
Operand ::= name : String | membershipSet |

inclusionSet | Function (14)
comparisonOp ::= ‘ < ’ | ‘ ≤ ’ | ‘ > ’ | ‘ ≥ ’ | ‘ = ’ |

‘ <> ’ | ‘ ∈ ’ | ‘ < ’ (15)
Function ::= Type, name : String, ‘(’, (Param, [‘, ’])∗, ‘)’(16)
Param ::= id : String, ‘ : ’, Type (17)

The quantFormula (Rule 18) introduces the quantifier formula,
which consists of a Quantifier symbol (‘∀ ’ or ‘∃ ’), a list of variables
with a specific type based on the varType (Rule 20), an optional
such that condFormula preceded by a ‘ | ’, an optional consequent
symbol (‘ ⇒ ’ or ‘ ⇔ ’), and a condFormula, which provides the
capability of introducing quantifier formula by the recursive form.

quantFormula ::= [Quantifier, varType]+, [‘ | ’, condFormula],

[ConseqCon], condFormula (18)
Quantifier ::= ‘∀ ’ | ‘∃ ’ (19)
varType ::= id1 : String, [‘, ’, id2 : String]∗, ‘ : ’, Type (20)

ConseqCon ::= ‘ ⇒ ’ | ‘ ⇔ ’ (21)

In the ConflictPattern rule (Rule 1), the relStatement field ex-
presses the relationships between the collected elements in dif-
ferent modelFragments. The relStatement (Rule 22) is defined as
either a negative or a positive statement preceded by the ‘where’
keyword. The statement is defined as a simpleRelation (Rule 23), a
quantRelation (Rule 25), or a conjunction/disjunction composition
of them. The simpleRelation consists of two modelElements that
are compared by an operator based on the relCompOp (Rule 24).
Each modelElement refers to a defined element in a modelFragment
(Rule 5). The reference to a modelElement consists of a modelCon-
text name and a number of modelElements’ names, chained by dots.
The relCompOp (Rule 24) consists of all comparison operators of
comparisonOp (Rule 15) and two new operators, ‘isEquivalent’ and
‘isContradict’, which can be used to compare the semantics of two
operands.

Finally, the quantRelation (Rule 25) is a list that consists of a
quantifier symbol (‘∀ ’ or ‘∃ ’), a list of varType variables (Rule 20),
an optional relStatement preceded by a ‘ | ’, an optional consequent
symbol (‘ ⇒ ’ or ‘ ⇔ ’), and a relStatement.

relStatement ::= ‘where’, [‘¬ ’], simpleRelation |

quantRelation |

‘(’, [[‘ ∨ ’], relStatement]∗ |

[[‘ ∧ ’], relStatement]∗, ‘)’ (22)
simpleRelation ::= modelContext, [‘.’,modelElement]+,

relCompOp,

modelContext, [‘.’,modelElement]+ (23)

A Formalism for Specifying Model Merging Conflicts SAM ’20, October 19–20, 2020, Virtual Event, Canada

relCompOp ::= comparisonOp | ‘isEquivalent’ |

‘isContradict’ (24)
quantRelation ::= [Quantifier, varType]+, [‘ | ’, relStatement],

[ConseqCon], relStatement (25)

At last, the dscExpression field (Rule 26) defines a diagnostic
message, which includes the ‘description’ keyword followed by the
‘ : ’ notation and a textual expression.

dscExpression ::= ‘description’, ‘ : ’ , expression : String (26)

3.3 Formalizing the Pull-Up Method Conflict
To clarify the presented formalism for conflict pattern specification,
let us refer to the illustrated running example. In this running
example, we introduced a model merging conflict in the domain
of UML class diagram, named the Pull-Up Method conflict. This
conflict consists of three model fragments: Base, Left, and Right.
Each fragment expresses a collection of involved classes in a specific
inheritance relationship, including superclass and subclasses.

In the Base fragment, all subclasses must contain a common
method. In the Left fragment, only the superclass has the common
method, and in the Right, there is at least one subclass that does
not contain the common method.

To raise a Pull-Up Method conflict, the common method, and
superclass, which are specified in the Base, Left, and Right fragments,
must be the same. The modelRelations part of the Pull-Up method
conflict pattern is used to specify the similarity between superclass
and common method of three fragments. Also, in the last part of the
pattern, a textual description can be added to introduce the Pull-Up
conflict pattern to the user.

In the following, we sketch the Pull-Up Method conflict pattern
specification using the proposed GEBNF formalism. According to
Rule 1, the specification consists of five parts that are presented sep-
arately. To show which rule is applied for each part, we added next
to each predicate a comment containing the related rule numbers.

• patternName: //Rule 1
conflict Pull-Up Method

• modelDomain: //Rules 1-4
domain UML : "http://www.eclipse.org/uml2/5.0.0/UML"

• modelFragment: //Rules 1,5
inmodel Base : UML //Rule 6
set1 = sc ∈ Class, set2 = op ∈ Operation //Rules 7,9-11
∀ c1 : Class | (c1 ∈ subclassOf (sc)) //Rules 11-21

⇒ ∃ op1 : Operation | op == op1
∧ c1 ∈ (ownerOf (op1))

inmodel Left : UML //Rule 6
set1 = sc ∈ Class, set2 = op ∈ Operation //Rules 7,9-11
∀ c1 : Class | (c1 ∈ subclassOf (sc)) //Rules 11-20
∧ (ownerOf (op) == sc)

inmodel Right : UML //Rule 6
set1 = sc ∈ Class, set2 = op ∈ Operation //Rules 7,9-11
∃ c1 : Class | (c1 ∈ subclassOf (sc) //Rules 11-20

∧ c1 < (ownerOf (op)))

• modelRelations: //Rules 1,22
where (Left.set1.sc = Base.set1.sc //Rules 15,22-24

∧ Base.set1.sc = Right.set1.sc
∧ Left.set2.op = Base.set2.op
∧ Base.set2.op = Right.set2.op)

• conflictDescription: //Rule 1,26
description: "Due to concurrent modifications, a class inherits
some methods which were not inherited from the original model!"

4 TOOL SUPPORT
4.1 Enriching Conflict Specification with OCL
In section 3.2, we introduced a formalism for specifying model
merging conflicts. Based on this formalism, we design and imple-
ment a language named the Conflict Pattern Language (CPL). The
implementation provides language tool support, including a syntax-
aware editor and a parser, which can be used by modelers or by
any person in charge of model merging.

To enable conflict specification on models conforming to arbi-
trary metamodels, we need to address the vital issue of expressing
model elements in the modelFragment part of conflict pattern for-
malism. A possible solution to declare the condition of specific
elements is the Object Constraint Language, OCL.

OCL is one of the well-known languages in the modeling commu-
nity, which is frequently used for validating and querying UML and
EMF models [13, 20]. OCL provides a convenient set of logical oper-
ators and predicate operations for single elements and collections,
which can facilitate the formal specification of model properties in
a comprehensible way. Additionally, OCL allows the specification
of invariants for any modeling element. Since the latest version of
its specification [20], OCL is based on the common core of MOF and
Ecore: it applies indiscriminately to UML models or to any model
conforming to an arbitrary EMF metamodel.

We propose to use OCL Queries in the modelFragment part of
conflict pattern, to express the specific fragments of models. To
this purpose, we should reuse most of the Essential OCL notations
in CPL. Essential OCL is an extension of OCL, which is closer to
support EMF-based modeling technologies [23]. However, reusing
the Essential OCL is not enough, since we need to add some new op-
erations for describing semantic relationships in themodelRelations
part. Therefore, we extend OCL operations by adding isEquivalent
and isContradict operations. The isEquivalent operation expresses
different modifications with the same meaning, whereas the isCon-
tradict operation describes elements that are changed in parallel by
semantically or linguistically different modifications.

4.2 The Conflict Pattern Language
To facilitate the slow and error-prone process of writing and syn-
tactically validating the specification of conflict patterns, we have
developed the Conflict Pattern Language (CPL) as a set of plug-ins
for Eclipse. CPL is available from GitHub1 under the EPL 2.0 license.
CPL is implemented using Xtext [4], a language workbench that
provides automatic generation of parsers and syntax-aware editors
from grammar specifications.

1https://github.com/MSharbaf/CPL2020

https://github.com/MSharbaf/CPL2020

SAM ’20, October 19–20, 2020, Virtual Event, Canada M. Sharbaf, et al.

Figure 2: An Excerpt of the CPL Xtext Grammar

One of the main advantages of Xtext is that the Eclipse Founda-
tion already provides an OCL Xtext grammar. Since CPL is based on
OCL, we first reused this grammar of OCL by a way of the grammar
mixin mechanism. Then, we redefined the necessary parts of Ba-
sic, EssentialOCL, and CompleteOCL to enrich modelFragment part
of CPL for performing queries against the UML and EMF models.
Finally, we completed the CPL grammar and its syntax validator
according to the specific rules and keywords in the conflict pat-
tern formalism. CPL is able to suggest appropriate variables and
operations on writing conflict specifications, which helps language
engineers write the correct conflict specification faster. Figure 2
shows a partial Xtext grammar for CPL, which presents the Con-
flictPattern rule (Rule 1) of the CPL formalism.

Figure 3 illustrates the use of the developed editor to specify the
Pull-Up Method conflict in CPL. Line 1 specifies the name of the
conflict pattern and line 2 defines the domain metamodel, which
is loaded under the local name UML. Then, lines 3-9 express a set
of queries that will be applied to collect a set of elements in the
Base version. As such, lines 10-14 and 15-21 express queries for
identifying elements in Left and Right versions, respectively. Lines
22-25, specify the relationships between expressed elements that
need to be satisfied to occur conflict. Finally, lines 26-28 provide the
conflict description that explains the reason of conflict occurrence.

5 CASE STUDY
To evaluate our conflict specification formalism, we run a case study
with a range of model merging conflicts. Our evaluation aims at
investigating the applicability of our formalism and illustrates the
conflict pattern expressiveness by examples. To this end, we chose
a set of model merging conflicts that correspond to the different
types of conflicts, including syntactic, static semantics, behavioral
semantics, and semantically equivalence, presented in Section 2.2.

In the following, we introduce the following merge conflicts: dan-
gling reference, polyforest cycle, equivalent associations, data flow
inconsistency, and control flow loop. After each conflict description,
we present its representation in CPL. Finally, we discuss the results
and the answers to the research questions.

5.1 Conflict Cases
Dangling Reference. A syntactic conflict in the UML class diagram
is the dangling reference conflict [2]. As illustrated in Figure 4, a
dangling reference may arise when one user adds an association
between the Person and Car, whereas the other user deletes the Car
class. The representation of dangling reference conflict by CPL is
illustrated in Listing 2.

Person

-name : String

Car

-name : String

Person Car

-name : String-name : String

Base

Left Right

has

Person

-name : String

Figure 4: Dangling Reference: a Syntactic Conflict

1 conflict DanglingReference{

2 domain UML: 'http://www.eclipse.org/uml2/5.0.0/UML#/'

3 inmodel Base{

4 context UML::Class

5 def: bSet:Set(Class)=Class.allInstances()→select(c1|

6 Class.allInstances()→exists(c2:Class|c1< >c2))

7 }

8 inmodel Left{

9 context UML::Class

10 def:lSet:Set(Class)=Class.allInstances()→select(c1|c1< >null)
11 }

12 inmodel Right{

13 context UML::Class

14 def: rSet:Set(Class)=Class.allInstances()→select(c1| Class.

15 allInstances()→exists(c2| c1< >c2 and c1.getAssociations()

16 →intersection(c2.getAssociations())→notEmpty()))

17 }

18 where{
19 Base.bSet.c1=Right.rSet.c1 and Base.bSet.c1=Left.lSet.c1 and
20 Base.bSet.c2=Right.rSet.c2 and Base.bSet.c2 NotIN Left.lSet

21 }

22 description {

23 "One added an association to a class while other removed class."

24 }

25 }

Listing 2: CPL Specification of Dangling Reference Conflict

Polyforest Cycle. The occurrence of a cycle in a polyforest is an
example of a static semantic conflict for an EMF-based model. A
polyforest is a directed acyclic graph, known as a collection of di-
rected trees with potentially multiple roots and no graph cycles [26].
Figure 5 illustrates an example of this conflict, in which models
conform to a simple Graph metamodel. While there is no cycle in
the base model version, if modelers add different edges that lead
to a cycle in the merged version, the cyclic conflict would arise.
Listing 3 illustrates the polyforest cycle conflict expressed in CPL.

A Formalism for Specifying Model Merging Conflicts SAM ’20, October 19–20, 2020, Virtual Event, Canada

Figure 3: Specification of the Pull-Up Method Conflict in the CPL Editor

Base

Left Right

A

B C

A

B C

A

B C

Figure 5: Polyforest Cycle: a Static Semantic Conflict

1 conflict PolyforestCycleConflict{

2 domain Graph : '../TestProject/Graph.ecore#/'

3 inmodel Left{

4 context Graph::Node

5 def: origin:Node = self
6 def: lSet:Set(Node) = Node.allInstances()→select(

7 self.outgoing→closure(target.outgoing).target)

8 }

9 inmodel Right{

10 context Graph::Node

11 def: origin:Node = self
12 def: rSet:Set(Node) = Node.allInstances()→select(

13 self.incoming→closure(source.incoming).source)

14 }

15 where{
16 Left.origin=Right.origin and Left.lSet.Node IN Right.rSet

17 }

18 description {

19 "The merged concurrent modifications result in a cycle."

20 }

21 }

Listing 3: CPL Specification of the Polyforest Cycle Conflict

Equivalent Associations. Figure 6 depicts a semantical equivalence
conflict in UML class diagrams. In this example, adapted from [1],
two users express the fact that each Person has parents in different
ways. The first user adds two associations as the mother and father
of a Person to create the left version. In his side, the second user adds
an association to express that a Person has two parents. In this case,
the merged version will contain three associations that express the
same information. Hence, a semantical equivalence conflict should
be reported. Listing 4 illustrates the CPL representation for this
conflict.

1 conflict Equivalent_Associations{

2 domain UML: 'http://www.eclipse.org/uml2/5.0.0/UML#/'

3 inmodel Left{

4 context UML::Association

5 def: lSt:Set(Association) = Association.allInstances()

6 →select(a:Association| Association.allInstances()

7 →exists(a2| a.ownedEnd→at(1)=a2.ownedEnd→at(1) and
8 a.ownedEnd→at(1)=a2.ownedEnd→at(2)) and a< >a2))

9 }

10 inmodel Right{

11 context UML::Association

12 def: rSt:Set(Association) = Association.allInstances()

13 →select(a:Association|a< >null)
14 }

15 where{
16 Left.lSt.a.ownedEnd = Right.rSt.a.ownedEnd and
17 Left.lSt isEquivalent Right.rSt.a

18 }

19 description {

20 "Some associations define the same facts in different ways."

21 }

22 }

Listing 4: CPL Spec. of the Equivalent Associations Conflict

SAM ’20, October 19–20, 2020, Virtual Event, Canada M. Sharbaf, et al.

Person

Person

Base

Left Right

child
Person

mother

child

child
father

parent
2

1

1 *

*

*

Figure 6: Equivalent Associations: a Semantical Equivalence
Conflict

Data Flow Inconsistency. Figure 7 shows a behavioral semantic
conflict for WSBPEL models, adapted from [1]. WSBPEL is a lan-
guage for specifying business process behavior as web services [12].
In Figure 7, the WSBPEL model expresses the calculation of pay-
ment fees for a shopping system as the variable sum, which is equal
to the summation of the charge and tax variables. In this example,
the concurrent modification of charge and tax variables cause incon-
sistency in the value of variable sum, which leads to a behavioral
semantic conflict due to inequality in the expected output for the
variable sum. This conflict can be specified by expressing the con-
dition and checking the data value of sum variable, which should
be the same in the new versions. Listing 5 the CPL representation
for this conflict.

1 conflict Data_Flow_Inconsistency{

2 domain WSBPEL : '../TestProject/bpel.ecore#/'

3 inmodel Base{

4 context WSBPEL::Assign

5 def: bS:Assign=Assign.allInstances()→select(a:Assign|

6 a.copy.to.var=Reply.sum and Assign.allInstances()→exists

7 (b,c:Assign|a.copy.from=b.copy.to+c.copy.to))

8 }

9 inmodel Left{

10 context WSBPEL::Assign

11 def: lS:Assign=Assign.allInstances()→select(a:Assign|

12 a.copy.to.var=Reply.sum and Assign.allInstances()→exists

13 (b,c:Assign| a.copy.from=b.copy.to+c.copy.to) and
14 let Sum:Real=b.copy.to→value()+c.copy.to→value() in Sum)

15 }

16 inmodel Right{

17 context WSBPEL::Assign

18 def: rS:Assign=Assign.allInstances()→select(a:Assign|

19 a.copy.to.var=Reply.sum and Assign.allInstances()→exists

20 (b,c:Assign|a.copy.from=b.copy.to+c.copy.to) and
21 let Sum:Real=b.copy.to→value()+c.copy.to→value() in Sum)

22 }

23 where{
24 Base.bS=Left.lS and Base.bS=Right.rS and Left.Sum< >Right.Sum

25 }

26 description {

27 "Conflict in the value of the sum variable."

28 }

29 }

Listing 5: CPL Specification of the Data Flow Inconsistency
Conflict

Control Flow Loop. A behavioral semantic conflict that occurs
in the UML state machine is an unwanted loop that leads to a
deadlock. Figure 8 shows an example of behavioral semantic conflict
(adapted from [1]) in which one user adds a simple stateAccessibility
as part of composite state Evaluation, while the other user adds

Base

Left Right

CalcCharge Sequence

Assign

ReplyOut

Copy1
From1

To1

0.1

charge

Copy2
From2

To2

0.03

tax

Copy3
From3

To3

charge+tax

sum

CalcCharge

Sequence

Assign

ReplyOut

Copy1
From1

To1

0.1

charge

Copy2
From2

To2

0.04

tax

Copy3
From3

To3

charge+tax

sum

CalcCharge

Sequence

Assign

ReplyOut

Copy1
From1

To1

0.12

charge

Copy2
From2

To2

0.03

tax

Copy3
From3

To3

charge+tax

sum

Figure 7: Data Flow Inconsistency: a Behavioral Semantic
Conflict

a decision vertex after the join vertex. The integration of these
modifications results in a syntactically correct model. However, the
runtime execution behavior of the merged model shows that an
accessibility error would result in a loop, resulting in a control flow
deadlock for the Launch state [1].

The control flow loop occurrence is an example of behavioral
semantic conflict, which is identified at runtime. This conflict may
happen in unknown situations based on the different values of
elements at the execution time. Therefore, our formalism is unable
to specify the control flow loop by conflict pattern and to express
the situation and relationships between elements upon the conflict
occurrence.

Evaluation

Evaluation

Evaluation

Base

Left Right

Rough
Concept

Detailed
Concept Usability

Inspection

Usability
Tests

Launch
Design

Concept
Impleme
ntation

Briefing/
Proposal

Rough Concept

Detailed Concept

Usability Inspection

Usability Tests

Launch

Design Concept

Implementation

Briefing/Proposal

Rough Concept

Detailed Concept

Usability
Inspection

Usability
Tests

Launch

Design Concept

Implementation

Briefing/Proposal

Accessibility

evaluaiton error

evaluation ok

Figure 8: Control Flow Loop: a Behavioral Semantic Conflict

5.2 Discussion
In this section, we structure our discussion to answer the three
research questions raised in Section 1.

RQ1) Is it possible to specify any model merging conflict as
a pattern?

To answer the first question, we used conflict patterns to specify
at least one example for each conflict category described in Sec-
tion 2.2. In this context, we could specify 4 of 5 merge conflicts.
Indeed, conflict patterns cannot express behavioral semantic con-
flicts [7, 29], which rely on the control flow behavior of the system,

A Formalism for Specifying Model Merging Conflicts SAM ’20, October 19–20, 2020, Virtual Event, Canada

and can only be detected at execution time. For the other types of
merging conflict, their specification relies on the expressivity of the
language that represents model fragments and their relationships:
if the language is able to express any fragment of a given model,
then the pattern can specify any merge conflict (other than the
control flow behavioral semantic ones). Consequently, based on the
results of our experiments on specifying conflicts using the pro-
posed template, we cannot claim that all kinds of model merging
conflicts can be specified as a pattern. However, for most of them,
this is possible, particularly the conflicts that are not dependent on
the unknown situations at the execution time.

RQ2) Is the proposed formalismable to representmodelmerg-
ing conflicts?

To answer the second question, we used CPL, the implemen-
tation of the proposed formalism, to represent the same 4 of 5
conflicts. CPL relies on OCL queries to represent model fragments,
therefore it dependents directly on the expressiveness of OCL [16].
The examples show that our formalism can represent syntactic and
semantic conflicts without ambiguities. We strongly believe that
the proposed formalism can represent any model merging conflict,
other than control flow behavioral semantic conflicts that cannot
be specified as a pattern. Consequently, the proposed formalism is
appropriately able to represent model merging conflicts.

RQ3) Is the formalism able to support the representation of
conflicts for different modeling languages?

To answer the third question, we use our formalism to repre-
sent conflict patterns for models conforming to different modeling
languages such as UML class diagram, WSBPEL, and Graph di-
agram. Although the representation of model merging conflicts
for only three modeling languages is not enough, we attribute the
ability of our formalism with the domain and fragment declaration
parts, which provide access to different elements of any EMF-based
models. The proposed formalism is based on the Ecore and user-
defined types and its implementation is based on the OCL grammar,
which applies to UML and EMF-based models. Consequently, the
CPL formalism can be used to represent conflicts in any UML and
EMF-based models.

5.3 Threats to Validity
The main threat to the validity of our study is the choice of conflict
cases. While the Pull-Up Method example shows the applicability
of the CPL formalism, we have selected five more conflict cases for
different modeling languages that contain all conflict categories.
This demonstrates that the CPL formalism can be used in the speci-
fication of different conflicts from different domains. Nevertheless,
in future work, we need to conduct additional conflict cases to
assess the generalizability of the CPL formalism.

6 RELATEDWORK
There exist several research efforts that use formal specifications to
detect conflict or check the consistency of models merging [10, 28–
30]. In this section we will restrict ourselves to efforts that propose
approaches for expressing model merging conflicts or for model
pattern matching.

Cicchetti et al. [8] propose a model-based approach to represent
conflicts, based on the differences amongst models. Regarding dif-
ference models, a conflict model can be defined to specify model
merging conflicts as not allowed contemporary matches between
parallel model modifications. In contrast to our approach, their con-
flict model is not able to describe the conflicts that may arise based
on the modification side effects, it can only be used to represent
some syntactic and static semantic conflicts.

Sharbaf and Zamani [27] propose to use UML profiles for model-
ing three-way merging conflicts. In their approach, a conflict model
consists of three conflict parts, where each part illustrates the con-
flict conditions by an example of a model version. However, their
approach is restricted for specifying three-way merging conflicts
on UML models, whereas we propose a comprehensive approach to
represent conflicts for UML and EMF-based models, which includes
conflicts concerning two or more models.

Brosch et al. [6] propose an UML profile-based approach visualize
conflicts on the merged version of the same UML model. Contrary
to our work, their approach only represents conflicts in the concrete
syntax of UML modeling language, and the conflict specification is
not addressed.

Clark [9] presents an extension to OCL for declarative pattern
matching for specifying system states. While Clark introduces an
object-expression that is used to express instances over one model,
our proposal focuses on specifying elements and conditions over
multiple models that express a conflict occurrence.

Based on Clark’s proposal, Jouault et al. [13] propose an OCL
extension called OCLT, which uses pattern matching to enable the
declaration of functional model transformations. Similarly to our
approach, OCLT also uses OCL for expressing model fragments,
however for a different purpose.

Kolovos and Paige [15] present the Epsilon pattern language
(EPL), which is a textual language to express the specification of
structural patterns on models that conform to arbitrary metamod-
els. EPL has been implemented on the Epsilon platform [21], which
leads to benefit from EOL as a model querying language. EPL sup-
ports the pattern matching algorithm to detect specified patterns
on multiple models. While EPL is a generic pattern language that
works on the Epsilon platform, CPL focuses on model merging
conflict specification for all Eclipse-based modeling frameworks.
Epsilon could be an alternative to OCL in our work, although less
popular to OCL in the modeling community.

7 CONCLUSION AND FUTUREWORK
Concurrent and contradicting changes across collaborative soft-
ware model evolution in the project lifecycle lead to inconsistencies
in software systems. Model merging conflicts are inevitable, rising
conflict management to an essential role in collaborative develop-
ment. However, there is no consensus on a representation approach
to specifying a model-merging conflict. To address this problem, we
presented the Conflict Pattern Language (CPL), a textual language
built upon a well-formed syntax formalism for conflict specification,
in terms of examples, syntax definitions, parser, and syntax-aware
editor. Using CPL, language engineers are able to formally specify
model merging conflicts. The conflict specification can be used to

SAM ’20, October 19–20, 2020, Virtual Event, Canada M. Sharbaf, et al.

automatically express the conflict situaitons in the conflict detection
and resolution engines for different model merging tools.

CPL helps the slow and error-prone task of specifying and syn-
tactically validating model-merging conflicts by suggesting options
while writing conflict specifications. It provides a structural con-
flict pattern template for specifying model-merging syntactic and
semantic conflicts for any EMF-based model. CPL supports model-
merging techniques that include N concurrent model versions by
allowing unlimited fragments for a conflict pattern. It is based on
OCL grammar and tooled by an editor and a parser.

To show the applicability of CPL, we defined a case study, in-
cluding conflict cases from five different conflict categories. The
results showed how CPL could represent different syntactic and
semantic conflicts.

As future work, we will investigate further conflict cases to eval-
uate the generalizability of the CPL formalism. The complementary
work is required to implement the semantics of conflict patterns
and use them to detect model merging conflicts. Furthermore, we
intend to extend the textual editor of CPL by developing a graphical
editor to help the specification of conflicts. Finally, we further plan
to conduct a systematic comparative analysis to investigate the
required effort for the specification of conflicts.

REFERENCES
[1] Kerstin Altmanninger and Alfonso Pierantonio. 2011. A categorization for con-

flicts in model versioning. e & i Elektrotechnik und Informationstechnik 128, 11-12
(2011), 421–426.

[2] Kerstin Altmanninger, Martina Seidl, and Manuel Wimmer. 2009. A survey on
model versioning approaches. International Journal of Web Information Systems.
5, 3 (2009), 271–304. https://doi.org/10.1108/17440080910983556

[3] Ian Bayley and Hong Zhu. 2010. Formal specification of the variants and be-
havioural features of design patterns. Journal of Systems and Software 83, 2 (2010),
209–221. https://doi.org/10.1016/j.jss.2009.09.039

[4] Lorenzo Bettini. 2016. Implementing domain-specific languages with Xtext and
Xtend. Packt Publishing Ltd.

[5] Petra Brosch, Gerti Kappel, Philip Langer, Martina Seidl, Konrad Wieland, and
Manuel Wimmer. 2012. An introduction to model versioning. In International
School on Formal Methods for the Design of Computer, Communication and Software
Systems. Springer, 336–398. https://doi.org/10.1007/978-3-642-30982-3_10

[6] Petra Brosch, Horst Kargl, Philip Langer, Martina Seidl, Konrad Wieland, Manuel
Wimmer, and Gerti Kappel. 2010. Conflicts as first-class entities: a UML profile
for model versioning. In International Conference on Model Driven Engineering
Languages and Systems. Springer, 184–193. https://doi.org/10.1007/978-3-642-
21210-9_18

[7] Petra Brosch, Martina Seidl, andMagdalenaWidl. 2013. Semantics-Aware Version-
ing Challenge: Merging Sequence Diagrams along with State Machine Diagrams.
Softwaretechnik-Trends 33, 2 (2013), 84–86.

[8] Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio. 2008. Managing
model conflicts in distributed development. In International Conference on Model
Driven Engineering Languages and Systems. Springer, 311–325. https://doi.org/
10.1007/978-3-540-87875-9_23

[9] Tony Clark. 2013. OCL Pattern Matching. In OCLWorkshop @MoDELS, ser. CEUR
Workshop Proceedings, vol. 1092. CEUR-WS.org, 33–42. http://ceur-ws.org/Vol-
1092/clark.pdf

[10] Hoa Khanh Dam, Alexander Egyed, Michael Winikoff, Alexander Reder, and
Roberto E. Lopez-Herrejon. 2016. Consistent merging of model versions. Journal
of Systems and Software. 112, 1 (feb 2016), 137–155. https://doi.org/10.1016/j.jss.
2015.06.044

[11] Mirco Franzago, Davide Di Ruscio, Ivano Malavolta, and Henry Muccini. 2017.
Collaborative model-driven software engineering: a classification framework
and a research map. IEEE Transactions on Software Engineering 44, 12 (2017),
1146–1175.

[12] Diane Jordan, John Evdemon, Alexandre Alves, Assaf Arkin, Sid Askary, Charlton
Barreto, Ben Bloch, Francisco Curbera, Mark Ford, Yaron Goland, et al. 2007. Web
services business process execution language version 2.0. OASIS standard 11, 120
(2007), 5.

[13] Frédéric Jouault, Olivier Beaudoux, Matthias Brun, Mickael Clavreul, and Guil-
laume Savaton. 2015. Towards functional model transformations with ocl. In
International Conference on Theory and Practice ofModel Transformations. Springer,

111–120.
[14] Nirmal Kanagasabai, Omar Alam, and Jörg Kienzle. 2018. Towards online collab-

orative multi-view modelling. In International Conference on System Analysis and
Modeling. Springer, 202–218.

[15] Dimitris S Kolovos and Richard F Paige. 2017. The epsilon pattern language. In
International Workshop on Modelling in Software Engineering (MiSE). IEEE, 54–60.
https://doi.org/10.1109/MiSE.2017.8

[16] Luis Mandel and María Victoria Cengarle. 1999. On the Expressive Power of OCL.
In FM’99 - Formal Methods, World Congress on Formal Methods in the Development
of Computing Systems, Toulouse, France, September 20-24, 1999, Proceedings, Volume
I (Lecture Notes in Computer Science), Jeannette M. Wing, Jim Woodcock, and Jim
Davies (Eds.), Vol. 1708. Springer, 854–874. https://doi.org/10.1007/3-540-48119-
2_47

[17] ConstantinMasson, Jonathan Corley, and Eugene Syriani. 2017. FeatureModel for
Collaborative Modeling Environments.. In MODELS (Satellite Events). 164–173.

[18] T. Mens. 2002. A state-of-the-art survey on software merging. IEEE Transactions
on Software Engineering. 28, 5 (may 2002), 449–462. https://doi.org/10.1109/TSE.
2002.1000449

[19] Tom Mens, Gabriele Taentzer, and Olga Runge. 2005. Detecting Structural Refac-
toring Conflicts Using Critical Pair Analysis. Electronic Notes in Theoretical
Computer Science 127, 3 (April 2005), 113–128. https://doi.org/10.1016/j.entcs.
2004.08.038

[20] Object Management Group. 2014. Object Constraint Language (OCL) Specifica-
tion. Version 2.4. https://www.omg.org/spec/OCL/2.4/

[21] Richard F Paige, Dimitrios S Kolovos, Louis M Rose, Nicholas Drivalos, and
Fiona A.C. Polack. 2009. The Design of a Conceptual Framework and Technical
Infrastructure for Model Management Language Engineering (14th IEEE Interna-
tional Conference on Engineering of Complex Computer Systems). IEEE, 162–171.
https://doi.org/10.1109/ICECCS.2009.14

[22] Sara Pérez-Soler, Esther Guerra, and Juan de Lara. 2018. Collaborative modeling
and group decision making using chatbots in social networks. IEEE Software 35,
6 (2018), 48–54.

[23] Hendrik Radke, Thorsten Arendt, Jan Steffen Becker, Annegret Habel, and
Gabriele Taentzer. 2018. Translating essential OCL invariants to nested graph
constraints for generating instances of meta-models. Science of Computer Pro-
gramming 152 (2018), 38–62.

[24] Sudha Ram and V. Ramesh. 1998. Collaborative Conceptual Schema Design: A
Process Model and Prototype System. ACM Trans. Inf. Syst. 16, 4 (Oct. 1998),
347–371. https://doi.org/10.1145/291128.291130

[25] Alireza Rouhi and Bahman Zamani. 2016. Towards a formal model of patterns
and pattern languages. Information and Software Technology 79 (2016), 1–16.
https://doi.org/10.1016/j.infsof.2016.06.002

[26] Firoozeh Sepehr and Donatello Materassi. 2019. Blind Learning of Tree Network
Topologies in the Presence of Hidden Nodes. IEEE Trans. Automat. Control (2019).

[27] Mohammadreza Sharbaf and Bahman Zamani. 2017. A UML profile for modeling
the conflicts in model merging. In International Conference on Knowledge-Based
Engineering and Innovation (KBEI). IEEE, 0197–0202. https://doi.org/10.1109/
KBEI.2017.8324972

[28] Mohammadreza Sharbaf and Bahman Zamani. 2020. Configurable Three-way
Model Merging. Software: Practice and Experience 50, 8 (2020), 1565–1599. https:
//doi.org/10.1002/spe.2835

[29] Mohammadreza Sharbaf, Bahman Zamani, and Behrouz Tork Ladani. 2015. To-
wards automatic generation of formal specifications for UML consistency verifica-
tion. In International Conference on Knowledge-Based Engineering and Innovation
(KBEI). IEEE, 860–865. https://doi.org/10.1109/KBEI.2015.7436156

[30] Gerson Sunyé. 2017. Model Consistency for Distributed Collaborative Modeling.
In Modelling Foundations and Applications - 13th European Conference, ECMFA
2017, Held as Part of STAF 2017, Marburg, Germany, July 19-20, 2017, Proceedings
(Lecture Notes in Computer Science), Anthony Anjorin and Huáscar Espinoza
(Eds.), Vol. 10376. Springer International Publishing, Cham, 197–212. https:
//doi.org/10.1007/978-3-319-61482-3_12

[31] Gerson Sunyé, Damien Pollet, Yves Le Traon, and Jean-Marc Jézéquel. 2001. Refac-
toring UML Models. In «UML» 2001 - The Unified Modeling Language, Modeling
Languages, Concepts, and Tools, 4th International Conference, Toronto, Canada,
October 1-5, 2001, Proceedings (Lecture Notes in Computer Science), Martin Gogolla
and Cris Kobryn (Eds.), Vol. 2185. Springer, 134–148. https://doi.org/10.1007/3-
540-45441-1_11

[32] Jim Whitehead. 2007. Collaboration in software engineering: A roadmap. In
Future of Software Engineering (FOSE’07). IEEE, 214–225.

[33] Hong Zhu. 2010. On the theoretical foundation of meta-modelling in graphically
extended BNF and first order logic. In International Symposium on Theoretical
Aspects of Software Engineering. IEEE, 95–104. https://doi.org/10.1109/TASE.
2010.11

[34] Hong Zhu and Lijun Shan. 2006. Well-formedness, consistency and completeness
of graphic models. In 9th UKSim-AMSS International Conference on Computer
Modelling and Simulation, UKSim 2006, Oriel College, Oxford, United Kingdom, 4-6
April 2006. 47–53.

https://doi.org/10.1108/17440080910983556
https://doi.org/10.1016/j.jss.2009.09.039
https://doi.org/10.1007/978-3-642-30982-3_10
https://doi.org/10.1007/978-3-642-21210-9_18
https://doi.org/10.1007/978-3-642-21210-9_18
https://doi.org/10.1007/978-3-540-87875-9_23
https://doi.org/10.1007/978-3-540-87875-9_23
http://ceur-ws.org/Vol-1092/clark.pdf
http://ceur-ws.org/Vol-1092/clark.pdf
https://doi.org/10.1016/j.jss.2015.06.044
https://doi.org/10.1016/j.jss.2015.06.044
https://doi.org/10.1109/MiSE.2017.8
https://doi.org/10.1007/3-540-48119-2_47
https://doi.org/10.1007/3-540-48119-2_47
https://doi.org/10.1109/TSE.2002.1000449
https://doi.org/10.1109/TSE.2002.1000449
https://doi.org/10.1016/j.entcs.2004.08.038
https://doi.org/10.1016/j.entcs.2004.08.038
https://www.omg.org/spec/OCL/2.4/
https://doi.org/10.1109/ICECCS.2009.14
https://doi.org/10.1145/291128.291130
https://doi.org/10.1016/j.infsof.2016.06.002
https://doi.org/10.1109/KBEI.2017.8324972
https://doi.org/10.1109/KBEI.2017.8324972
https://doi.org/10.1002/spe.2835
https://doi.org/10.1002/spe.2835
https://doi.org/10.1109/KBEI.2015.7436156
https://doi.org/10.1007/978-3-319-61482-3_12
https://doi.org/10.1007/978-3-319-61482-3_12
https://doi.org/10.1007/3-540-45441-1_11
https://doi.org/10.1007/3-540-45441-1_11
https://doi.org/10.1109/TASE.2010.11
https://doi.org/10.1109/TASE.2010.11

	Abstract
	1 Introduction
	2 Background
	2.1 Collaborative Modeling
	2.2 Model Merging Conflicts
	2.3 Running Example: the Pull Up Method Refactoring Conflict

	3 Conflict Specification Formalism
	3.1 Specifying Conflict by Pattern
	3.2 Conflict Pattern Formalism Using GEBNF
	3.3 Formalizing the Pull-Up Method Conflict

	4 Tool Support
	4.1 Enriching Conflict Specification with OCL
	4.2 The Conflict Pattern Language

	5 Case Study
	5.1 Conflict Cases
	5.2 Discussion
	5.3 Threats to Validity

	6 Related Work
	7 Conclusion and Future Work
	References

