
HAL Id: hal-02930192
https://hal.science/hal-02930192

Submitted on 4 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Knowledge Based Situation Discovery for Avionics
Maintenance

Luis Palacios Medinacelli, Yue Ma, Chantal Reynaud, Gaëlle Lortal

To cite this version:
Luis Palacios Medinacelli, Yue Ma, Chantal Reynaud, Gaëlle Lortal. Knowledge Based Situation
Discovery for Avionics Maintenance. K-CAP ’19: Knowledge Capture Conference, Nov 2019, Marina
Del Rey CA, United States. pp.155-162, �10.1145/3360901.3364430�. �hal-02930192�

https://hal.science/hal-02930192
https://hal.archives-ouvertes.fr

Knowledge Based Situation Discovery for Avionics Maintenance
Luis Palacios Medinacelli

1,2
, Yue Ma

1
,

Chantal Reynaud
1

1
LRI-CNRS, Unvi. Paris-Sud, Université Paris-Scalay

91405 Orsay cedex, France

Gaëlle Lortal
2

2
Thales TRT

91120 Palaiseau, France

ABSTRACT
For knowledge intensive domains, such as Avionics Maintenance,

applying automated analysis comes with a major challenge: for-

malizing complex domain knowledge and conceiving suitable au-

tomated algorithms for real world requirements. In this paper, we

propose a study on knowledge discovery to assist avionics mainte-

nance via identifying meaningful Description Logic based complex

concepts, called situation discovery, that corresponds to crucial sce-

narios during device repair.

We propose an approach to automatic learning of relevant situa-

tions hidden in an ontology, in an unsupervised way. Distinct from

ontology based concept learning, where a set of instances is given

as positive examples of a target concept, the challenge of learning

hidden situations consists in discovering significant situations from

exponentially many unknown situations. In this paper we formalize

the problem and study some related complexity results as well as

the algorithms to solve the problem, together with its application

to Avionics Maintenance. The approach has been integrated into

an enterprise system and achieves the state-of-the-art result in this

application.

ACM Reference Format:
Luis Palacios Medinacelli

1,2
, Yue Ma

1
, Chantal Reynaud

1
and Gaëlle Lortal

2
.

2019. Knowledge Based Situation Discovery for Avionics Maintenance. In

Proceedings of the 10th International Conference on Knowledge Capture (K-
CAP ’19), November 19–21, 2019, Marina Del Rey, CA, USA. ACM, New York,

NY, USA, 8 pages. https://doi.org/10.1145/3360901.3364430

1 INTRODUCTION
Complex real world processes generate large amounts of heteroge-

neous data, from heterogeneous sources and multiple actors and

locations. To exploit, verify, manage, access and share the informa-

tion, AI and machine learning techniques have got an increased

attention in the last decade. Part of the ramifications of this interest,

is the necessity to leverage from existing data and information that

the organizations already posses, and add value to it by making

analysis and structuring the available data, obtaining information,

and generating knowledge out of it.

Consider the avionics maintenance domain, where historical

repair data can be a valuable information source to assist technicians

when repairing a new failure. In avionics, a failure denotes the loss

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

K-CAP ’19, November 19–21, 2019, Marina Del Rey, CA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7008-0/19/11. . . $15.00

https://doi.org/10.1145/3360901.3364430

of the ability of a device to meet the performance specifications that

it was intended tomeet. A failure scenario in this context, represents

all sufficient and necessary information that is strongly related to

the failure mechanism [10]. Knowing the explicit description of

the scenarios allows us to better understand the failure, to predict

the behavior of the equipment, and to repair it. Formalizing such a

knowledge intensive application requires expertise in the domain

as well as in knowledge engineering. Moreover, even having both

skills, the knowledge acquisition bottleneck [15, 22, 24] poses a

major challenge: the knowledge might not be specific enough, that

is, information could be hidden in the ontology that is not directly

accessible via deduction.

As possible solutions to solve this task, the field of ontology

learning studies techniques that aim to the automatic or semi-

automatic construction of ontologies. Some of these approaches

[3, 5, 8, 13, 14, 17, 18, 20, 23] apply machine learning notions to

symbolic settings in a hybrid fashion, taking advantage of the two

fields to offer a system with both characteristics: clear and well

defined knowledge/semantics combined with automatic learning.

In this paper, we propose a novel way to discover (explainable)

knowledge that can be used to enrich an existing knowledge base,

and the newly acquired knowledge allows us to access to interesting

subsets of elements of a domain that share certain common proper-

ties. Note that different from the previous work, these subsets of

elements are unknown in advance. Once these sets of individuals

are given a name (concept), they are made available for further

references and the concept that describes them serves not only as

an explanation on why the instances can be put together, but on

why they can be separated from the rest.

As the explanation language, we adopt Description Logic (DL)

[2], which complies with the standards of OWL2, has a rich ex-

pressivity, and enables the machines not only to understand its

contents, but to automatically draw inferences over the represented

knowledge. The main contributions in this paper are the following:

1. In this paper, we are interested in the ability to determine

when a set of individuals can be perfectly distinguished from the

rest. Each such set, for which we can find a proper definition in

DL that covers exactly the set elements and no others, is called a

situation in our work. A concept description gives a detailed charac-

terization of the set of its instances, thus serving as an explanation

for the set. We formally define this problem in DL and study the

complexities of the related problems.

2. We propose a first algorithm to discover situations that can

be then used for grouping instances and generating their concept

descriptions. The model itself (ontology) is domain specific, and

the learning algorithm is of general use.

3. We discuss the application of the proposed situation discovery
technique to solve a repair suggestion scenario in Avionics Mainte-

nance, highlight the main features of the implemented prototype

https://doi.org/10.1145/3360901.3364430
https://doi.org/10.1145/3360901.3364430

and show some analytic results as well as some experiments on

real world data.

The paper is structured as follows: in Section 2, we briefly overview

the necessary notions. In Section 3, we formally define our prob-

lem and study its properties. In Section 4, we present an algorithm

for the situation discovery problem. We discuss its application for

Avionics maintenance in Section 5 and evaluate the approach in Sec-

tion 6. Related work is discussed in Section 7 before the conclusion

given in Section 8.

2 PRELIMINARIES
We consider the lightweight Description Logic ELO [1, 2], whose

concept descriptions are built from a set of concept names NC and

a set of role names NR using the constructors top concept ⊤, con-
junction ⊓, and existential restrictions ∃. The semantics of ELO

is defined using interpretations I = (∆I , ·
I) consisting of a non-

empty domain ∆I and an interpretation function ·I mapping role

names to binary relations on ∆I and concept descriptions to subsets

of ∆I according to Table 1.

Table 1: Syntax and Semantics of ELO

Name Syntax Semantics

individual name a aI ∈ ∆I

concept name A AI ⊆ ∆I

nominal {o} {oI } ⊆ ∆I

role name r r I ⊆ ∆I × ∆I

top concept ⊤ ⊤I = ∆I

conjunction C ⊓ D (C ⊓ D)I = CI ∩ DI

existential restriction ∃r .C (∃r .C)I = {
x | ∃y : (x ,y) ∈

r I and y ∈ CI
}

full definition A ≡ C AI = CI

As axiomswe allow full definitions and individual assertions. Full
definitions are statements of the form A ≡ C , primitive definitions
are statements of the form A ⊑ C where A is a concept name and

C is a concept description, individual assertions are statements of

the form A(a) or r (a,b) where A is a concept name and a,b are

individuals in ∆I . A TBox T is a set of definitions of these two

types and an ABox A is a set of individual assertions. We say that

the interpretation I is a model of T (resp. A) if AI = CI
(resp.

c I ∈ AI
or (aI ,bI) ∈ r I) holds for every full definition A ≡ C

(primitive definition A ⊑ C . respectively) from T (resp. assertions

A(a), r (a,b) from A). An ontology is composed of a TBox and an

ABox. A concept descriptionC is said to be subsumed by the concept

D with respect to an ontologyO = (T ,A) (denoted byO |= C ⊑ D)

if CI ⊆ DI
holds for all models I of T . An individual assertion

A(a) (resp. r (a,b)) is implied by an ontology, written O |= A(a)
(resp.O |= r (a,b)) if aI ∈ AI (resp. (aI ,bI) ∈ r I) for all models I of

O . It is well-known that subsumption reasoning in ELis tractable.

In this paper, we assume that ABoxes are acyclic. An ABox A is

called acyclic iff there are no n ≥ 1 and individuals a0,a1, · · · ,an

and roles r1, · · · , rn such that (1) a = a0, (2) ri (ai−1,ai) ∈ A for

1 ≤ i ≤ n, (3) there is j, 0 ≤ j < n such that aj = an .

3 SITUATION DISCOVERY: DEFINITIONS
AND PROPERTIES

Given an ontology O we aim to find interesting subsets of its in-

dividuals, and for each one of these sets provide a description in

Description Logic terms. Each such set is represented by a class of

DL concepts. We call each one of these DL concepts a situation in

O (defined next).

This section formally introduces the problem of finding situations
in an ontology in the form of complex DL concept definitions. We

start by introducing some terminology.

Definition 1 (A representative concept). Let ∆ be a set of all
individuals in an ontology O , and let X ⊆ ∆. For a concept C , we say
that X is represented by C (or C represents X) w.r.t. O and ∆, if:

C(x) holds for all x ∈ X , i.e. O |= C(x), and

C(y) does not hold for any y ∈ ∆ \ X , i.e., O ̸ |= C(y).

If there exists a concept C that represents the set X , we say that X is
representable.

Example 1 (Representative Concept). Consider the sets of in-
dividuals ∆ = { f1, f2, f3}, X = { f1, f2}, and the following ontology
O = ⟨T ,A⟩:

T = {C ≡ ∃r .⊤}
A = {A(f1),B(f2),E(f3), r (f 1, f 3), r (f2, f3)}

To determine if C represents X we check the two following conditions:

(1) O |= {C(f1),C(f2)}
(2) O ̸ |= {C(f3)}

Since (1) and (2) hold, X is represented by C .

However, it is not true that every set of instances can always be

represented, as illustrated in the following example.

Example 2 (Example 1 contd.). Consider the set X ′ = { f2, f3},
there is no ELO concept that can represent X ′.

Note that there are two sets of individuals which can always be

represented, as shown by the following lemma.

Lemma 1. Given an ontologyO and a set ∆ of individuals, we have
• ⊤ is a representative concept for ∆.
• ⊥ is a representative concept for ∅.

A set of individuals that can be represented need to share some

common properties merely among them, which are made explicit

by the representative concept. By reading the concept definition, we

get an explicit explanation of their common properties. In example 1,

the individuals f1 and f2 share the property that they are connected
to some individual via the role r , whilst f2 and f3 do not have any

property in common that can distinct them from f1. In fact the

problem of when a set of individuals can be distinguished, is central

to the approach, and is not trivial. The problem of separability has

been formally studied, and it remains undecidable even for very

simple DLs as ELO [9].

The following proposition states that the intersection of two sets

which can be represented, is representable as well.

Proposition 1. Given an ontology O , the set ∆ of individuals in
O , X ⊆ ∆ and X ′ ⊆ ∆. If X and X ′ are representable, then X ∩ X ′ is
representable in ELO.

However, the above conclusion is no longer true for set union

or set complement. Consider Example 1, let X1 = { f2},X2 = { f3}.
We can see that X1 is represented by the concept B w.r.t. O and ∆,
and X2 is represented by the concept E w.r.t.O and ∆. However, we
have seen that X1 ∪ X2 is not representable.

The following lemma tells that any concept naturally represents

a special set of individuals.

Lemma 2. Given a concept C , an ontology O and the set ∆ of
individuals in O , C represents the set of individuals S = {x ∈ ∆ |

O |= C(x)}.

Example 3 (Example 1 contd.). Concept A represents the set
{ f1}, B represents the set { f2}, and E represents represents the set
{ f3}. And the concept A ⊓ B represents ∅.

Note that when a concept represents an empty set of individuals

of an ontology, it means that this concept is irrelevant to character-

ize the properties of individuals from this ontology. Hence, from

now on, we are only interested in the concepts that represent a

non-empty set.

Proposition 2 (Representability). Given an ELO ontology O ,
a set ∆ of individuals, a concept C and a set X ⊆ ∆, the decision
problem Representability:

Does C represent X w.r.t. O?

can be solved in P-Time.

Proposition 3 (Representabilityn). Let O be an ELO ontology
and ∆ the set of individuals inO . For a given set of individualsX ⊆ ∆,
and an integer n > 0, the decision problem Representabilityn :

Is there a concept C with |C | < n that represents X w.r.t. O?

can be solved in ExpTime.

By the proof of Proposition 3, if n is bounded by a constant, then

the problem Representabilityn is solvable in P-Time.

Note that a set of instances X can be represented by more than

one concept, and that if no restrictions are imposed, their number

might even be infinite (Example 4). To avoid dealing with an infi-

nite number of concepts, we use the notion of equivalence classes.

The concepts representing X are equivalent in the sense of their

instances, and thus they define a class of equivalent concepts. Each

one of these classes is called a situation in O and it suffices to pro-

vide one concept belonging to the class to characterize it. Therefore

to define a situation, our problem is reduced to finding a single

representative for the situation instead of finding all of the concepts

that comprise it.

Definition 2 (Situation in O). Given an ontology O , a set ∆ of
individuals in O , and a set X ⊆ ∆, a situation for X in O is the set:

| |X | |O∆ = {C | C represents X w.r.t. O and ∆}.

Where ∆ is called the domain of the situation.

When the ontologyO and the set of individuals ∆ are clear from

the context, | |X | |O∆ is shortened as | |X | |. By an abuse of notation,

we also refer to an element from | |X | | as a situation.

Intuitively, a situation in O explicitly characterizes, via concept

descriptions, a given set of individuals in the ontology.

Additionally, among the concepts that belong to a situation there

might be some of them that are not equivalent in the classical sense

(i.e. w.r.t. subsumption), as illustrated by Example 4.

Example 4. Consider again example 1 and the following T-Box:

T2 = { C1 ≡ ∃r .⊤,
C2 ≡ ∃r .{ f3},
C3 ≡ ∃r .⊤ ⊓ ∃r .{ f3}}

Then, C1,C2,C3 all represent X = { f1, f2}. Therefore {C1,C2,C3} ∈

||X | |. Note that a concept of the formC4 ≡ ∃r .⊤⊓∃r .⊤⊓ · · · ⊓∃r .⊤
would also representX , which shows that the set | |X | | could be infinite,
even with very simple DLs. Furthermore note that C1 . C2 . C3, but
{C1,C2,C3} ∈ ||X | |.

Indeed, the notion of situation is more general than the notion of

standard equivalence class as stated by the following proposition.

Proposition 4. Given an ontology O and the set ∆ of individuals
inO , we assumeO |= A ≡ B. Then we have that A ∈ ||X | | if and only
if B ∈ ||X | | for any X ⊆ ∆.

Note that not every subset of individuals can lead to a (non-

empty) situation. For instance, the setX ′ = { f2, f3} from Example 1

can not be represented under ELO, therefore the set | |X ′ | | is

empty.

Assume we are given a set of individuals X ⊆ ∆, and we need to

determine whether a situation representingX exists. If the response

is negative, to ensure a complete and sound answer, we would

require to access all possible situations in O , and for each of them,

test if it represents X . We could also be interested in the possible

ways we could use DLs to discriminate between the individuals in

X , to extract a particular set. It is then natural to ask for the subsets

of X for which a DL representation exists, thus discovering the

situations in O .

Definition 3 (Situation discovery problem). Let O be an
ontology and ∆ a set of individuals in O . For X ⊆ ∆, the situation
discovery problem is to compute the following set:

ΞO (X) = {X1, . . . ,Xn | Xi ⊆ X , | |Xi | |O , ∅}

That is, to find all the subsets of X that are representable w.r.t. O .

We also shorten ΞO (X) as Ξ(X) when the ontology O is clear

from the context. Since eachXi ∈ ΞO (X) leads to a situation | |Xi | |O ,

we will also call such Xi a situation by an abuse of terminology.

By Lemma 1, it is easy to see that ∅ is representable by ⊥, i.e.

∅ ∈ Ξ(X), leading to the following conclusion.

Lemma 3. LetO be an ontology and ∆ be a set of individuals inO .
For any X ⊆ ∆, Ξ(X) , ∅.

Lemma 3 shows that we can obtain at least one situation with

no computational cost. Henceforth, we omit this trivial situation in

the rest of this paper.

Moreover, Example 2 shows that it happens that X is not repre-

sentable, but Ξ(X) contains subsets of individuals that are never-

theless representable, such as X1 = { f3} having a representative

concept E.

Definition 4. Let O be an ELO ontology and ∆ a set of individ-
uals in O . For a given set of individuals X ⊆ ∆ and an integer n > 0,
the decision problem SDn is defined as follows:
Does there exist a situation C for some X ′ ⊆ X in O with |C | ≤ n?

If the answer to SDn is positive, it means that there exists a

nonempty subset X ′ ⊆ X such that C is a representative concept

for X ′
w.r.t. O and |C | ≤ n.

Proposition 5. SDn is in ExpTime. Moreover, if |X | and n are
bounded by a constant, SDn is in P-Time.

The following conclusion shows that for a set of individuals X ,
the Ξ(·) operator satisfies monotonicity in the sense that (1) the

set of concepts representing X might decrease when the situation

domain increases; (2) a concept C that characterizes X still charac-

terizes some set of individuals when the situation domain increases.

Nevertheless, the set of individuals that concept C characterizes

might no longer beX . In fact, it could be the case thatX is no longer

representable.

Proposition 6. LetO be an ontology and ∆ be a set of individuals
in O . Consider ∆1 ⊆ ∆. Suppose that X ∈ Ξ(∆1) is represented by a
concept C w.r.t. O and ∆1. Then the following conclusions hold:

(1) | |X | |∆ ⊆ ||X | |∆1

(2) X is not necessarily representable w.r.t. ∆.
(3) The concept C still represents some set of individuals X ′, that

is, X ′ ∈ Ξ(∆).

4 COMPUTING SITUATIONS
In this section, we introduce an algorithm to compute situations for

a set of instances X . The intuition is: we first define a refinement

operator that can find the most specific concept from a general one

(e.g. ⊤), called MSR, that represents the given instances. Once we

can obtain the MSR for a set of individuals X , we know that any

refinement of such MSR obtained by the operator will define a strict

subset X ′ ⊂ X . This subset X ′
is characterized by a concept refined

from the MSR for X (via a refinement operator described later in

this section). Since all these individuals in X ′
are instances of the

obtained refinement, the set X ′
defines a situation. By iterating this

process over each subset found, and for each corresponding MSR,

we obtain situations in X .

Let us start with the definition of the most specific representative.

Definition 5 (Most Specific Representative MSR). Given a
set of individuals X = {x1, . . . ,xn } and the set of its representative
concepts | |X | | = {S | S represents X }, the Most Specific Represen-

tative of the set X , written MSRX , is the concept Si ∈ ||X | | such
that:

∀Sj ∈ ||X | |, we find Si ⊑ Sj .

Example 5 (Most Specific Representative). As an example
consider ∆ = {x ,y, z, z′}, the set X = {x}, the A-Box:

A3 = {r (x ,y), r (z, z′),A(y),B(y),C(z′)}

and the concepts:

S0 ≡ ∃r .⊤ = {x , z}
S1 ≡ ∃r .A = {x}
S2 ≡ ∃r .{y} = {x}
S3 ≡ ∃r .(A ⊓ B ⊓ {y}) = {x}
S4 ≡ ∃r .(A ⊓ B ⊓ {y}) ⊓ ∃r .A = {x}

We find that S0 < | |X | | since z ∈ S0. In contrast, all other concepts
do represent X = {x}, thus we have S1, S2, S3, S4 ∈ ||X | | (note that
the set | |X | | can be infinite). The subsumption relation between these
concepts is given by:

S3 ⊑ S1, S2, S4
S4 ⊑ S1, S2, S3
S3 ≡ S4

Two of these concepts are equivalent, and more specific than the rest:
S3 and S4. To select among equivalent concepts, we prefer shorter
concepts. Since |S3 | < |S4 |, the most specific representativeMSRX is
S3.

Next we define the notion of concept refinement operator.

Definition 6. Given an ontologyO , a concept C, and an instance
x , an operator αx (·) is called a concept refinement operator if αx (C) =
{C1, · · · ,Cn } and for each Ci ∈ αx (C), O |= Ci (x) and Ci ⊑ C . We
call a concept refinement operator a direct refinement operator if
|Sub(Ci)| − |Sub(C)| = 1, where Sub(C) is the set of subconcepts of a
concept C .

Using a refinement operator we can traverse the space of concept

expressions. Out of the concepts obtained through the operator, we

can obtain the most specific one. We now assume that Get-MSR(X)

is the procedure to compute the MSR of a set of instances X , and
α is an operator that can refine a concept to a direct refinement,

Algorithm 1 uses these elements to specify the process to extract

situations in a set X . That is the subsets of individuals in X that

can be represented by an ELO expression.

Algorithm 1 SD(X)

1: input: (C,O,X)

2: Ξ = {X }

3: ToRefine = {X }

4: while ToRefine , ∅ do
5: for Y ∈ ToRefine do
6: for y ∈ Y do
7: for D ∈ αy (Get-MSR(Y)) do
8: InstD = {y ∈ Y | O |= D(y)}
9: Add InstD to ToRefine
10: end for
11: end for
12: remove Y from ToRefine
13: end for
14: Add ToRefine to Ξ
15: end while
16: return: Ξ

In Algorithm 1 the set of all situations Ξ is initialized with X
(Line 2), since X always leads to a situation (Lemma 1). The set

ToRe f ine contains all those sets of individuals that need to be

analyzed to search for situations (Line 3). For each such set Y (Line

5) we obtain its MSR computed by algorithm Get-MSR 1
. Then, for

each individual in every set Y (Line 6), the MSR(Y) is refined. In
this fashion, we obtain the representable subsets of Y . Intuitively,
if there exists a sub-set of Y that can be represented, there exists a

conceptD ⊏ MSR. This concept can be found by applying αy (MSR)
for some y ∈ Y . For every such refinement found, we obtain its

instances and record them in InstD (Line 8). Because there exists

a concept D for each one of these sets, they define a situation as

well. And thus all the different subsets of Y are added to ToRe f ine
(Line 9), to explore if further sub-situations can be found in the

next iteration of the for loop (line 5). Since all subsets found this

way are representable, we add all of them to Ξ. This process is
repeated for the MSR of every subset found this way, and refined

with every instance. Finally, when no more subsets can be found.

The refinements of everyMSR will be empty (there no longer exists

concepts that are more specific than those already found) and thus

the while loop (Line 5) will stop. The output of Algorithm 1 are the

situations in X as illustrated in the following proposition.

Proposition 7. Given an ontology O , a concept C and the set
of its instances X . All elements in the output Ξ of Algorithm 1 are
situations in X .

5 APPLICATION DOMAIN AND PROTOTYPE
In this section we briefly describe the maintenance and diagnosis

process for the Elevator and Aileron Computer (ELAC) equipment,

for which we want to provide support through suggested repair

actions made to the technician. We start by presenting the data

sources and the ontology that captures the identified knowledge

and the functions the prototype should provide.

The ontology has been designed considering the two main data

sources: the .AR files and the corrective actions, presented next.

5.1 The Data Sources and the Ontology TAMO
The information about the diagnosis process has two main sources:

the .AR files containing the results of the tests made to each equip-

ment, and the corrective actions associated to each equipment. This

information has been modeled in the Thales Avionics Maintenance

Ontology (TAMO) [19], aided by the Thales Avionics experts.

In the diagnosis process the technician tests the ELAC in a special

unit called a Test-Bench. This unit checks exhaustively all the ELAC

functions, and the output of this process is an .AR file (All Results).

The .AR files are the main source of information for the ontology.

They are presented in plain text format and contain up to thousands

of lines. Each line of an .AR file represents an individual test on

a specific function of the ELAC, with the sanction GO or NOGO

which indicates if the test was passed. Thus, an .AR file is a set

of individual test results (thus the name All Results file). Figure 1

shows an extract of an .AR file, and the main sections it contains.

Note that the structure of each .AR file can be different according

to different tests performed.

On the other hand we have the corrective actions. In avionics

maintenance there aremultiple types ofmaintenance actions (repair,

1
This is achieved using a refinement operator. The algorithm, proofs and details on the

refinement operator can be found in [16].

Figure 1: An extraction of the structure of an .AR file.

cleaning, preventive maintenance tasks, upgrades, etc). From these

types of maintenance actions, we have selected the replacements of
the components in the ELAC as the actions to be modeled, since

these components have a direct influence in the results of the .AR

files. Each ELAC is a computer composed of several boards (six plus
two interface boards), and each board has hundreds of components
of different types that can be replaced.

A support tool for avionics maintenance should provide two

main functions: consult the ontology and integrate the users feed-

back. Note that we call TAMO plus all the situations discovered as

discussed above a knowledge base (KB).

5.2 Consult the KB
When the KB is used to obtain suggestions for a new .AR file fx , we
first determine the most specific situation inO for fx , then the files

already in the KB that belong to this situation are retrieved, and

finally the actions associated to each such files are extracted. These

actions represent the suggestions to solve the failure detected by

fx . These three steps are detailed in the following.

Let ∆ = { f1, . . . , fn } be the set of all .AR files inO , and assumeO
has been enriched (trained) using the refinement process in Section

3, where all situations in O have been discovered. Given a new

file fx < ∆, our task is to find the set ASfx of actions that can be

associated to fx .

Step 1: Obtain the most specific situation for an .AR file The
file fx , might belong to more than one situation inO , thus we select

the most specific one, since it provides the most detailed description

for the failure.

Consider the following example:

Given the set of individuals ∆ = { f1, f2, f3} the following DL
concept definitions are examples of concept refinements:

S0 ≡ ∃hasTestLine .(∃hasTestResult .{NOGO})

S1 ≡ ∃hasTestLine .(∃hasTestCode .{1234})
S2 ≡ ∃hasTestLine .(∃hasTestCode .{1234}

⊓∃hasTestResult .{NOGO})

S3 ≡ ∃hasTestLine .(∃hasTestCode .{1234}
⊓∃hasTestResult .{NOGO} ⊓ ∃hasTestPart .{Part1})

Let fx ≡ f3 (meaning that both files have exactly the same test
results). Then the situations for fx are S0 and S3 (since fx ∈ S0, S3).
Whilst, the most specific situation of fx (in symbols Sfx) is S3.

Example 6.

Graph A-Box

1234 hasTestCode(l1, 1234)

f1 l1
NOGO hasTestLine(f1, l1),hasTestResult(l1,NOGO)

Part1 hasTestPart(l1, Part1)

1234 hasTestCode(l2, 1234)

f2 l2
NOGO hasTestLine(f2, l2),hasTestResult(l2,NOGO)

l3
Part1 hasTestLoдLine(f2, l3),hasTestPart(l2, Part1),

2345 hasTestCode(l3, 2345),hasTestResult(l3,NOGO)

5678 hasTestCode(l4, 5678)

f3 l4
NOGO hasTestLine(f3, l4),hasTestResult(l4,NOGO)

Part2 hasTestPart(l4, Part2)

Figure 2: Graph representation and correspondingA-Box for
files f1, f2, f3.

Step 2: Obtain all the files in KB that belong to the selected
situation Once we have selected the situation for fx the second

step is to obtain all files that belong to the situation. That is the

files in O that are its instances.

In our example we have: Sfx = S3 = { f2, f3}.
Step 3: Obtain the actions associated to each file in the situ-
ation Once we obtain the .AR files that belong to the most spe-

cific situation Sfx = { f2, f3} for fx , we use a set FA which as-

sociates files-actions to obtain its suggestions. Consider the set:

FA = {(f1,a1), (f2,a2), (f3,a3)}. We find that Sfx = { f2, f3}, then
the corresponding actions are ASfx = {a2,a3}.

Finally, all those corrective actions associated to the situation

Sfx form the suggestions of file fx : Suддestionsfx = ASfx .

5.3 A more Fine-Grained KB through Feedback
After a file is consulted and the corresponding suggestions are

proposed to the technician, an investigations & repair phase follows.

During this process, the technician resolves the failure detected by

the .AR file. Once the true corrective action is known, the feedback

can be obtained. This process has two main tasks:

(1) It aims to integrate and validate the feedback from the tech-

nician by recording the true corrective action and associate it

to the corresponding .AR file. In this way it is made available

for future consultations.

(2) The .AR file in the feedback might contain information not

seen before in the training stage (additional properties). The

second task of the feedback is to analyze this new .AR file, in

search for new situation descriptions and, if found, integrate

these descriptions in the knowledge base.

As a result of this process, we obtain a more fine grained ontology

and a larger set of corrective actions that can be suggested.

6 EVALUATION
In this section we present the evaluation of the approach through

the implementation of the prototype. Section 6.1 provides a com-

parison with DL-Learner, showing that the proposed approach

achieves a state-of-the-art result on the ELAC maintenance task.

Then Section 6.2 further evaluates the relevance and the number of

suggestions proposed by the approach. Finally, Section 6.3 evalu-

ates the evolution of the knowledge base. Our hypothesis here is

that the more fine-grained the knowledge base, the more specific

situations we can find and therefore we can minimize the number

of suggested corrective actions. Full details on the experiments and

results can be found in [16].

6.1 Results TAMO vs DL-Learner
For the sake of clarity, in this section we refer to our approach as

TAMO, to differentiate our results from those obtained with DL-

Learner
2
. For this experiment we have selected a random subset

of 25 files out of the total files (150) available from the ELAC re-

pair workshop. For each file, we have obtained corrective actions

assigned, both with DL-learner and TAMO trained on other files.

Since our goal is to minimize the number of suggested actions,

we want to evaluate how many actions are proposed by each tool to

each file. In Figure 3 we show the number of actions returned using

the concepts learned by DL-Learner and the concepts learned by

TAMO, for each of the 25 selected files. Each file may belong to one

or more DL-Learner concepts, and therefore it will be associated to

all the actions those concepts represent. The concepts that are too

general, capture most/all individuals. From the figure we can see

that most of the concepts from DL-Learner will associate around

20 actions to each file, whereas in our case, most of the files are

associated to 3 or less actions. There are also a few cases where

we associate more than 30 actions to a file, this is mostly because

those files were not related to the set of files we used, to create our

classes (learning phase).

The low precision of the DL-Learner concepts, can be explained

by the fact that the tests that are solved by the same action might

be not only very different from each other, but they might not even

share anything in common among them. Given that the underlying

language is ELO, no disjunction is allowed (which would help to

capture files that are different by a single concept), there is no single

representation for all those tests in ELO and DL-learner returned

short but very imprecise concepts.

6.2 Relevance and Specificity of the
Suggestions

In this second experiment, we evaluate the relevance of the returned

suggestions and the specificity of the discovered signatures. For

both evaluations we use k-fold cross validation with a size of k = 3,

which represents a third of the samples. This means that the full set

of 150 samples (.AR files) is divided into three partitions p1,p2 and
p3, each one containing 50 .AR files. Each partition is used once

as the validation set, while the other two are used for training the

knowledge base.

2
https://dl-learner.org

Figure 3: Number of actions suggested for each file. DL-
Learner vs. TAMO.

We show in Figure 4 the number of relevant composed actions

and the number of relevant individual actions (Y-axis) for each

consulted file (X-axis) in partition p3. Each file has been consulted

against the knowledge base trained with partitions p1 ∪ p2, consist-

ing of 100 samples (KB
p1+p2
100

). A correct composed action, means

that one of the suggestions proposed by the tool contains all the

individual actions (replacements) that are required to solve the

failure detected by the consulted .AR file. From the figure, we can

see that this is the case only for 2 out of the 50 files in p3. In the

analysis made in the doctoral thesis [16] we showed that only 30%

of the files have the possibility to be correctly classified if the set of

samples is partitioned into training and validation sets. Therefore

a low rate of full correct answers is expected. Nevertheless, in the

awareness of these figures, the objective of these experiments is to

show if our assumptions really hold, and if the model can provide

valuable suggestions even under these circumstances.

To this end, we also consider partially correct suggestions, or cor-

rect individual answers. These are given by the individual replace-

ments in any of the suggestions, that are inline with the expected

results. From figure 4 it can be seen that the number of partial

suggestions is much higher than considering fully composed cor-

rective actions only. The model has given a partial answer for 14

out of the 50 files. This shows that if partial answers are considered,

more relevant information can be provided. This makes sense in

the context of suggested corrective actions, which do not intend to

impose a repair, but to give hints on its resolution.

The figure shows that the correct and partial suggestions can

be found by the approach, and that some of the suggestions may

require further refinement, to make them relevant.

6.3 Evolution of the KB
The third experiment, has the objective of evaluating whether there

exists an improvement in the quality of the knowledge base as more

information is presented to it, and to estimate the evolution of this

improvement.

To evaluate the quality of the knowledge base we use two criteria:

first, precision and recall based on the ratio of positive and negative

samples of the signatures found, and second, the average and the

median related to the specificity of the signatures.

Three versions of the knowledge base are constructed: KB25,
KB50 and KB100 using training sets of size 25, 50 and 100, respec-

tively, where each knowledge base doubles the size of the previous

Figure 4: The suggestions for the 50 files in partition p3,
when consulting the knowledge base KBp1+p2

100
. In the figure

are shown the correct atomic actions (green) and the correct
composed actions (orange).

one. In this paper we compare the results of KB25 vs. KB100 to

highlight their differences.

From all the situations each KB has discovered in the training

phase, only some one of them are selected when consulting a file,

ie. the most specific. We can see that KB25 has selected only 10

situations, compared to 25 situations selected by KB100. Evidently,
the more files used to train a KB, the more situations it has available.

From these, we would expect that those found by smaller training

sets (KB25) are more general than those found by larger training

sets (KB50, KB100).
If we focus on the individual actions in Figure 5, we can see that

KB25 has been able to provide relevant suggestions for the 50 files

using 5 situations (the other 5 situations shown were used, but

the answers were irrelevant), whereas KB100 has used 9 relevant

situations to classify the same 50 files. Even though the results from

KB25 are very good for its size, it has to be noticed that from the 10

files that are given a partial relevant suggestion, for half of them (5

files) the situations are too general and provide all possible sugges-

tions available in KB25. This is why “so many" files are provided

with a “correct" partial suggestion. This can be partially seen by

the precision of the situations, where a low precision means more

undesired files belong those situations, increasing the number of

false positives. In the case of KB100 we can see that the quality of

the situations is increased, since more situations have higher preci-

sion, and more situations are used to classify the 50 files. Showing

that a richer way to distinguish among files is obtained as more

information is presented to the KB.

7 RELATEDWORK
Model Based Diagnosis. In equipment diagnosis, the manifesta-

tion of a failure is put down to the bad interaction between some of

its components. Identifying the components involved, provides the

signature of the failure. In model based diagnosis this is known as a

diagnosis [6] and the model aims to predict the intended behaviour

of the modeled system. In our case we do not count with such

a model since it is sometimes unavailable. Instead, we are given

tests that report the status of the functions in the equipment, and

corrective actions made by the maintenance technicians.

Ontologies in Approaches for Maintenance. There exist several
works on the applicability, advantages and considerations of using

ontologies to model maintenance, and support the overall process.

The main objective in these works [4, 7, 11, 12, 19, 21] is to provide

Figure 5: Experimentation on the evolution of the KB. The
figures show the precision, recall and f-measure for the indi-
vidual actions. On top the results forKB25 and on the bottom,
the results for KB100. The x-axis shows the situations.

a formal model that considers all the available/necessary heteroge-

neous sources of information, in a single well-defined representa-

tion. We are in line with this direction, and focuses on conceiving

methods for capturing novel knowledge from such representations.

Concept Learning and Distinguishability. Concept Learning in

Description Logics and OWL is a direction of research that aims at

learning schema axioms, such as definitions of classes, from existing

ontologies and instance data. Most methods in this area are based on

Inductive Logic Programming methods [14, 18]. In [23] the related

work on methods of concept learning in DLs can be classified into

three groups. The first group focuses on learnability in DL and

presents some relatively simple algorithms [5]. The second group

studies concept learning in DLs using refinement operators as in

inductive logic programming [3, 8, 13, 20]. The third group exploits

bisimulation for concept learning in DLs [17, 23].

Distinct from ontology based concept learning where a set of

instances is given as positive examples of the target concept, the

challenge of learning hidden situations consists in discovering sig-

nificant situations from exponentially many unknown situations.

To this end, our approach is based on an unsupervised refinement

operator, where our aim is to cluster individuals in a way that we

can have a DL concept definition that merely describes them.

8 CONCLUSION AND FUTUREWORK
We have presented an approach to discover interesting subsets of

individuals in an ontology O , called situations. Each situation in O
defines a set of individuals that can be described by a DL concept.

We have formalized the problem of finding situations, provided

some of its main properties and presented an algorithm for situa-

tion discovery based on a unsupervised concept refinement operator

(detailed in the doctoral thesis [16]). We have also shown how the

problem of discovering failure signatures in avionics maintenance

can be posed as the problem of finding situations in an ontology,

thus enabling the developed algorithms to solve the problem. An

additional but also important product of this process is the TAMO

ontology, for avionics maintenance. The approach has been imple-

mented using real world data, and the evaluation of the underlying

techniques and the relevance of the suggestions obtained by the

prototype were provided for the application domain.

As future work, the results and properties of the operator can

be specified to support more expressive DLs (e.g. negation ¬ and

conjunction ⊔), since they can greatly increase the applicability

of the approach. Regarding the specific application domain, we

have considered only a specific equipment (ELAC) and a type of

maintenance action (replacement). The ontology and the KB can

be extended so that additional equipment and additional mainte-

nance tasks can be considered. In this sense, in general terms, the

approach can be applied to any maintenance process with similar

characteristics. Finally, some bottlenecks and limitations have been

evidenced thanks to the implementation and evaluation of the pro-

totype. Improvements in parallel processing and partitions of the

ontology can greatly benefit industrial implementations.

Acknowledgement. This work is partially supported by

the ANR project GOASQ under the number ANR-15-CE23-0022.

REFERENCES
[1] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proceedings of

IJCAI’05, 2005.
[2] F. Baader, I. Horrocks, C. Lutz, and U. Sattler. An Introduction to Description Logic.

Cambridge University Press, 2017.

[3] L. Badea and S.-H. Nienhuys-Cheng. A refinement operator for description logics.

In Proceedings of ILP’00, pages 40–59, 2000.
[4] C. C. Insaurralde. Intelligent autonomy for aerospace engineering systems. In

Proceedings of DASC’18, pages 1–10, 2018.
[5] W. W. Cohen and H. Hirsh. Learning the classic description logic: Theoretical

and experimental results. KR, 94:121–133, 1994.
[6] J. De Kleer and J. Kurien. Fundamentals of model-based diagnosis. IFAC Proceed-

ings Volumes, 36(5):25–36, 2003.
[7] V. Ebrahimipour and S. Yacout. Ontology-based schema to support mainte-

nance knowledge representation with a case study of a pneumatic valve. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 45(4):702–712, 2015.

[8] N. Fanizzi, C. d'Amato, and F. Esposito. Dl-foil concept learning in description

logics. In Proceedings of ILP’08, pages 107–121, 2008.
[9] M. Funk, J. C. Jung, C. Lutz, H. Pulcini, and F. Wolter. Learning description logic

concepts: When can positive and negative examples be separated. In Proceedings
of IJCAI’19, 2019.

[10] JEDEC. DICTIONARY OF TERMS FOR SOLID-STATE TECHNOLOGY, 7th Edition.
Global Standards for the Microelectronics Industry, 7 edition, 2018.

[11] M. H. Karray, B. Chebel-Morello, and N. Zerhouni. A formal ontology for indus-

trial maintenance. Applied Ontology, 7(3):269–310, 2012.
[12] R. M. Keller. Ontologies for aviation data management. In 2016 IEEE/AIAA 35th

Digital Avionics Systems Conference (DASC), pages 1–9. IEEE, 2016.
[13] J. Lehmann and P. Hitzler. Concept learning in description logics using refinement

operators. Machine Learning, 78(1-2):203, 2010.
[14] J. Lehmann and J. Voelker. An introduction to ontology learning. Perspectives on

Ontology Learning. Amsterdam: IOS Press, 2014.
[15] A. Maedche and S. Staab. Ontology learning for the semantic web. IEEE Intelligent

Systems, 16(2):72–79, Mar. 2001.

[16] P. Medinacelli. Knowledge Discovery for Avionics Maintenance, An Unsupervised
Concept Learning Approach. PhD thesis, Université Paris-Saclay / Paris-Sud, 2019.

[17] L. A. Nguyen and A. Szałas. Logic-based roughification. Rough Sets and Intelligent
Systems-Professor Zdzisław Pawlak in Memoriam, pages 517–543, 2013.

[18] S.-H. Nienhuys-Cheng and R. De Wolf. Foundations of inductive logic program-
ming, volume 1228. Springer Science & Business Media, 1997.

[19] L. Palacios Medinacelli, G. Lortal, C. Laudy, C. Sannino, L. Simon, G. Fusco, Y. Ma,

and C. Reynaud. Avionics maintenance ontology building for failure diagnosis

support. In Proceedings of IC3K’16, pages 204–209, 2016.
[20] D. Ratcliffe and K. Taylor. Refinement-based owl class induction with convex

measures. In Proceedings of JISTC’17, pages 49–65, 2017.
[21] T. Regal and C. Pereira. Building an ontology for intelligent maintenance systems

and spare parts supply chain integration. IFAC Proceedings Volumes, 19:7843–7848,
01 2014.

[22] M. Richardson and P. Domingos. Building large knowledge bases by mass

collaboration. In Proceedings of K-CAP ’03, 2003.
[23] T.-L. Tran, L. A. Nguyen, et al. Bisimulation-based concept learning for in-

formation systems in description logics. Vietnam Journal of Computer Science,
2(3):149–167, 2015.

[24] C. Wagner. Breaking the knowledge acquisition bottleneck through conversa-

tional knowledge management. Inf. Resour. Manage. J., 19(1):70–83, Jan. 2006.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Situation Discovery: Definitions and Properties
	4 Computing Situations
	5 Application Domain and Prototype
	5.1 The Data Sources and the Ontology TAMO
	5.2 Consult the KB
	5.3 A more Fine-Grained KB through Feedback

	6 Evaluation
	6.1 Results TAMO vs DL-Learner
	6.2 Relevance and Specificity of the Suggestions
	6.3 Evolution of the KB

	7 Related Work
	8 Conclusion and Future Work
	References

