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Abstract—We propose an automatic method for pain intensity
measurement from video. For each video, pain intensity was
measured using the dynamics of facial movement using 66 facial
points. Gram matrices formulation was used for facial points
trajectory representations on the Riemannian manifold of sym-
metric positive semi-definite matrices of fixed rank. Curve fitting
and temporal alignment were then used to smooth the extracted
trajectories. A Support Vector Regression model was then trained
to encode the extracted trajectories into ten pain intensity levels
consistent with the Visual Analogue Scale for pain intensity
measurement. The proposed approach was evaluated using the
UNBC McMaster Shoulder Pain Archive and was compared to
the state-of-the-art on the same data. Using both 5-fold cross-
validation and leave-one-subject-out cross-validation, our results
are competitive with respect to state-of-the-art methods.

I. INTRODUCTION

Pain is an unpleasant sensory and emotional experience as-
sociated with actual or potential tissue damage and caused by
illness or injury [1]. The assessment of pain is accomplished
primarily through subjective self-report using the Visual Ana-
log Scale (VAS) or the Numerical Rating Scale (NRS) [2].
The most commonly used scale in clinical assessment is the
VAS [3], [4], [5], [6]. However, while useful, self-reported
pain is difficult to interpret and may be impaired or, in some
circumstances, not possible to obtain (e.g., for children or
patients requiring breathing assistance).

Significant efforts have been made in human behavioral
studies to identify reliable and valid facial indicators of
pain [7], [8], [9], [10]. In these studies, pain expression and
intensity were reliably characterized at the frame level by the
activation of a set of anatomical facial actions using the manual
Facial Action Coding System (FACS) [11]. However, manual
FACS based pain assessment requires over a hundred hours of
training for FACS certification, and approximately an hour or
more to manually annotate a minute of video. The intensive
time required to annotate videos using the FACS makes it ill
suited for real-time application and clinical use. A powerful
alternative to manual annotation is the automatic and objective
assessment of pain from facial expression [12].

The last decade has witnessed an increasing effort to address
the need for an automatic, objective, and efficient measurement
of pain from video. Most previous efforts in automatic assess-
ment of pain have focused on pain detection or pain intensity

estimation at the frame-level (see [12] and [13] for a detailed
review of previous efforts on the topic).

A few recent exceptions [14], [15], have investigated video
based pain intensity measurement consistent with self-reported
VAS. The VAS is a self-reported pain scale that indicates pain
experience on a 0 to 10 scale (where O is for "no pain” and 10
is for “worse possible pain”). For instance, using the UNBC-
McMaster Shoulder Pain Archive database [16], Martinez et
al. [14] proposed a two step learning approach to estimate pain
consistent with the VAS. The authors employed a Recurrent
Neural Network (RNN) to first estimate pain score at frame
level. The estimated scores were then fed into a personalized
Hidden Conditional Random Fields (HCRF) to estimate pain
score at the video level consistent with the VAS. Using the
same pain database, Liu er al. [15] proposed a two-stage
personalized model, named DeepFaceLIFT, for automatic es-
timation of the self-reported VAS score. The authors used a
Neural Network and Gaussian process regression model and
combined facial expression and a set of hand-crafted personal
features for pain score measurement at the video level.

Previous efforts for video based pain assessment used
artificial neural networks to first estimate pain score at the
frame level before combining them to estimate pain score
at the video level. We propose to extend previous work in
video based assessment of pain intensity by estimating VAS
score directly from video using a geometry based approach. To
capture changes in the dynamics of facial movement relevant
to pain expression, we propose an original framework based
on Gram matrix computation and trajectory modeling on
the Riemannian manifold of symmetric positive-semidefinite
(PSD) matrices [17]. With this representation, pain estimation
is modeled as a problem of computing similarity between
trajectories on the manifold using Support Vector Regres-
sion [18].

II. FACE REPRESENTATION

We propose a video based measurement of pain intensity
scores using the dynamics of facial movement. Figure 1
shows an overview of the proposed approach. Given a set
of ng, sequences, we first build the trajectories on the
manifold ST (d,m) from the Gram matrices of each frame
of each sequence using the landmark configurations (and their
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Fig. 1: Overview of the proposed approach: (left plot) First, facial landmarks are detected using Active Appearance Model
(AAM) on each video frame and velocities are computed as the displacement of the coordinates between two consecutive
frames. Then Gram matrices are computed from the combination of the landmark coordinates and velocities. These matrices
delineate a trajectory on the ST (d, m) manifold; (middle plot) We apply a curve fitting algorithm to the trajectory for smoothing
and noise reduction; (right plot) The Global Alignment Kernel (GAK) is then used to align the trajectories on the manifold,
which results in a similarity score between the trajectories. Finally, we use the kernel generated from GAK with SVR to

estimate the pain intensity.

velocities) as input features. We then compute the distances
between all the trajectories and build a kernel K that contains
all the similarity scores after aligning the trajectories with the
Global Alignment Kernel (GAK). Finally, we estimate pain
intensity score based on the similarity matrix.

A. Facial Shape Representation

Given an image sequence s, we represent the dynamics of
facial movements with a time series formed by the coordinates
(x,y) of n tracked facial landmarks. At a generic time
(frame) f, facial expression is represented by a configura-
tion Z € R™*? composed of n tracked facial landmarks
pi = (zi,v:), where ¢ € {1,...,n}. Thus, an image se-
quence is represented by a sequence of configuration matrices
Is={Z,...,Zy,... Z.} with f denoting the frame number
and 7 the number of frames of the sequence [s. In addition
to landmark coordinates, we compute for each landmark p;
its velocity as the magnitude of the displacement between two
consecutive landmark configurations Zy and Z;, 1. We denote
the velocity matrix at frame F as Vp = Zy41 — Zy € R,
with F' € {1,...,7 — 1}. The final facial representation R
is the concatenation of the configuration matrix Z and the
velocity matrix V, where R = [Z; V] € R?"*2,

We aim to measure the dynamic changes of the curves
made of landmark configurations, while remaining invariant to
rigid transformations like rotations and translations. Invariance
to rigid transformation within each frame is obtained by
computing coordinates of landmarks (and their velocities) as
offsets with respect to the center of the face that is measured

as the arithmetic mean of the landmarks:

1 n
CisYi) = — i»Yi) - 1
(73, 1) = — ;(m vi) (1)
We denote A the normalized facial configuration of matrix
R. Similarly to [17], [19], this representation is further refined
by extracting the Gram matrix G, which is the inner product
of each facial configuration matrix as:

G=AA" = (p;,p;), 1<i,j<2n. 2)

In the following, we denote m = 2n the size of the facial
configuration matrix for simplicity.

B. Riemannian Geometry of Gram Matrix

Given that each Gram matrix represents the landmarks
configuration at the frame level, we propose (1) a geometry
of space to model the dynamic changes of landmarks during
a video sequence, and (2) a metric that allows to compute the
distance between consecutive Gram matrices. In the following,
we present a general metric that works for both 2D or 3D data
and an optimized metric for 2D data.

Gram matrices are m X m positive-semidefinite (PSD)
matrices of rank smaller than or equal to d (in our case the
rank is always equal to d). In this representation, d is the
dimensionality of the space where each landmark lies (i.e.,
d = 2 for 2D landmarks and d = 3 for 3D landmarks).
We consider here the Riemannian geometry of the space
8*(d,m) of m x m positive-semidefinite matrices of rank
d. This Riemannian geometry has been studied in [20], [21],
[22], [23], [24], [25] and used in [26], [27], [28], [29]. In order
to develop algorithms on the manifold, we resort to first order



local approximations on the manifold. These approximations
are called the rangent spaces. This requires two fundamental
tools: the Riemannian logarithm, that maps points from the
manifold to the tangent space, and the Riemannian exponential
that allows us to map tangent vectors from the tangent space
to the manifold.

We consider here the manifold of S*(d, m) as the quotient
manifold R7*¢ /0, where R™*4 is the set of full-rank m x
d matrices and Oy is the orthogonal group in dimension d.
The identification of S*(d,m) with the quotient R™*? /0,
comes from the following observation: Any PSD matrix G €
S*(d,m) can be factorized as G = AAT, with A € R™*<.
However, this factorization is not unique, as any matrix A=
AQ, with Q € Oy, satisfies AAT = AQQT AT = G. The
two points A and A are thus equivalent with respect to this
factorization, and the set of equivalent points:

AOq :={AQ|Q € Oa} ,

is called the equivalence class associated to GG. The quotient
manifold R™*¢/0, is defined as the set of equivalence
classes. The mapping 7 : R™*? — R™*4 /O, between points
and their equivalence class, induces a Riemannian metric on
the quotient manifold from the Euclidean metric in R”*<.
This metric results in the following distance between PSD
matrices [22]:

d(Gy, G) = tr(Gy) + tr(Gy) — 2tr ((GGJG) ) e

This distance can be expressed in terms of the facial configu-
rations A;, A; € R™*? as follows:

d(G;,Gj) = &lgldHAjQ —Aillr, “4)

where ||.||F is the Frobenius norm. The optimal solution is
Q* = VUT, where ATA; = UXVT is a singular value
decomposition.

In the specific case of 2D landmarks, when d = 2, the
distance can be reformulated. Considering G;, G; € ST (2,m)
to be two Gram matrices obtained from facial configurations
A Aj € R™*2 the Riemannian distance (3) can be expressed
as:

d(Gy,Gj) = tr(Gy) +tr(Gy) —2¢/(a + d)2 + (c — )2, (5)

a b
where ATA; = d

the proof of this expression in [17, §9].

. The interested readers can find

III. REPRESENTATION OF FACE DYNAMICS
A. Trajectory Modeling

The dynamic changes of facial landmarks movement orig-
inate trajectories on the Riemannian manifold of positive-
semidefinite matrices of fixed rank. More specifically, we
fit a curve (g to a sequence of facial configurations
{Ay, ..., A;} represented by their corresponding Gram ma-
trices {Go,...,G,} in ST(d,m). This curve enables us
to model the spatio-temporal evolution of the elements on

87t (d, m). Modeling a sequence of landmarks as a piecewise-
geodesic curve on ST (d, m) showed very promising results
when the data are well acquired, i.e., without tracking errors
or missing data. To account for both missing data and tracking
errors, we rely on a more recent curve fitting algorithm: fitting
by composite cubic blended curves [30, §5]. Specifically, given
a set of points {Gy,...,G,} € ST(d, m) associated to times
{to,...,t;}, with t; := 4, the curve B¢, defined on the interval
[0, 7], is defined as:

Ba(t) == it —1),

where each curve +; is obtained by blending together fitting
cubic Bézier curves computed on the tangent spaces of the
data points d; and d;;1 (represented by Gram matrices on the
manifold).

These fitting cubic Bézier curves depend on a parameter A,
allowing us to balance two objectives: (1) proximity to the data
points at the associated time instants, and (2) regularity of the
curve (measured in terms of mean square acceleration). A high
value of A results in a curve with possibly high acceleration
that almost interpolates the data, while taking A — 0 results
in a smooth function approximating the original trajectory.

telii+1], (6)

B. Global Alignment

As explained in the previous section, we represent a se-
quence as a trajectory of Gram matrices in ST (d, mn).
Because videos could be of different duration (i.e., in our
case video sequences of pain), the length of corresponding
trajectories represented in this manifold can be different. A
commonly used method to compute the similarity between
trajectories with different length is Dynamic Time Warping
(DTW). However, DTW does not define a proper metric and
cannot be used to derive a valid positive-definite kernel. This
would hamper the use of many approaches (including Support
Vector Regression) to learn the mapping between trajectories
in ST (d,m) and pain intensity. Cuturi et al. [31] proposed
the Global Alignment Kernel (GAK) to address non-positive
definite kernel defined by DTW. GAK allows to derive a
valid positive-definite kernel when aligning two time series.
As opposed to the DTW, the GAK generated kernel, that is
the similarity matrix between all the sequences, can be used
directly with Support Vector Regression. In fact, the kernels
built with DTW do not show favorable positive definiteness
properties as they rely on the computation of an optimum
rather than the construction of a feature map. In terms of
complexity, similar to naive implementation of DTW, the
computational complexity of the GAK kernels is quadratic.

Let us now consider G = {G},--- ,GL} and G? =
{G§.--- ,G2,}, two trajectories of Gram matrices. Given a
metric to compute the distance between two elements of each
sequence, we propose to compute the matrix D of size 1 X 7o,
where each D(i, j) is the distance between two elements of
the sequences, with 1 <i <73 and 1 < j < 79:

D(i,j) = d(G{,G7) . (7)



The kernel k can now be computed using the halved
Gaussian Kernel on this same matrix D. Therefore, the kernel
k can be defined as:

Tl . 1 D<Z?.7)
k(i,j) = 3 *exp <— 2 ) . 8)
As reported in [31], we can redefine our kernel as:
K0, f) = —od) ©
(1 —k(i, 7))

This strategy guarantees that the kernel is positive-semidefinite
and can be used in its own. Finally, we can compute the
similarity score between the two trajectories G and G2. This
computation is performed in quadratic complexity, like DTW.
To do so, we define a new matrix M that contains the path
to the similarity between our two sequences. We define M
as a zeros matrix of size (71 + 1) X (12 + 1) and My = 1.
Computing the terms of M is done using Theorem 2 in [31,
§2.3]:

M ;=M j—1+ M1 j1+M_1;)*k(i,5). (10)
The similarity score between the trajectories G and G? is
given by the value at M, (1) (r,41)-

IV. PAIN ESTIMATION WITH SUPPORT VECTOR
REGRESSION

We build a new matrix K of size nNgeq X Ngeq, Where
Ngseq 1S the number of sequences in the dataset used to test
our method. This symmetric matrix contains all the similarity
scores between all the sequences of the dataset. This matrix is
built with values computed from positive-semidefinite kernel,
meaning that it is a positive-semidefinite matrix itself. Now
that we have a valid and positive-semidefinite kernel K, as
demonstrated by Cuturi et al. [31], we can use it directly
as a valid kernel for classification. To estimate pain intensity
score (i.e., self-reported VAS scores), we use a Support Vector
Regression (SVR) model. To train our SVR model, we give as
input a training set that is a part of our kernel K containing
the similarity scores between all training trajectories. This part
of the kernel, containing the training set, is also positive-
semidefinite by definition. We also give a vector containing the
labels for the trajectories in our training kernel. Because pain
scores are continuous, to test the performance of our method,
we compute the Mean Absolute Error (MAE) between the
estimated pain scores and the ground truth (i.e., self-reported
VAS pain scores). The MAE is computed as follows:

1 Nseq
MAE = — % |y — ] , (an
Mseq ;5

where n,., is the number of sequences in the dataset, y; is
the ground truth (i.e., self-reported VAS pain score), and z; is
the predicted pain score.

V. EXPERIMENTAL RESULTS
The UNBC-McMaster Shoulder Pain Archive [16] was
used to evaluate the reliability of the proposed approach
for pain intensity measurement from the dynamics of facial
landmark sequences. We used MatLab for the code and the
Manopt library [32].

A. The UNBC-McMaster Shoulder Pain Archive
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Fig. 2: Example images from the UNBC-McMaster Shoulder
Pain Archive in (a) and (c). In (b) and (d) their corresponding
landmark coordinates and velocities, respectively (best viewed
in color) [16].

The UNBC-McMaster Shoulder Pain Archive dataset [16]
is a widely used dataset for pain expression recognition and
intensity estimation. The dataset contains 200 facial videos of
25 different subjects performing a series of active and passive
range-of-motion of their affected and unaffected shoulders.
Each video sequence is annotated for pain intensity score using
three self-reported scales (including the VAS) and an Observer
Pain Rating scale. The sequences are also annotated at the
frame-level using the manual FACS (Facial Action Coding
System). Figure 2 shows two images from a sequence of the
dataset with their corresponding facial landmark representa-
tions and velocities. Our goal is to estimate pain intensity
scores consistent with the VAS. Table I shows the distribution
of the VAS scores across the dataset. We can observe that the
number of sequences are not the same for all the VAS scores.

Figure 3 shows the number of sequences per subject. We
can observe some disparity between the subjects that may
represent a challenge for training as the number of sequences
used will not be consistent across the dataset.

B. Evaluation protocols

We used three different protocols to evaluate the proposed
method: Leave-One-Sequence-Out cross validation, Leave-
One-Subject-Out cross validation, and 5-fold cross validation.



TABLE I: Distribution of the VAS pain scores in the UNBC-
McMaster Shoulder Pain Archive

VAS Score [ Number of Sequences

0 35
1 42
2 24
3 20
4 21
5 11
6 11
7 6
8 18
9 10
10

Number of sequences per subject

Nb of sequences

12345678 910111213141516171819202122232425
Subjects

Fig. 3: Number of sequences per subjects in the UNBC-
McMaster Shoulder pain archive dataset.

a) Leave-One-Sequence-Out cross validation protocol:
In this protocol, training and testing are performed on different
sequences. For each round, we use all sequences of the dataset
but one for training. and the remaining sequence for testing.
That is, data from the same subject can be used during
the training and the testing phase as there are at least two
sequences per subject in the dataset. Therefore, this protocol
is sequence-independent, but not subject-independent. We use
this protocol as a baseline for our approach.

b) Leave-One-Subject-Out cross validation protocol: In
this second protocol, for each round, we use all the sequences
from all subjects but one for training, and the remaining
subject for testing (no overlap between the training subjects
and the test subject). We perform this operation for all the
subjects (i.e., 25 rounds) in the dataset, so that each subject is
used for testing once.

c) 5-fold cross validation protocol: This third protocol
is similar to the Leave-One-Subject-Out cross validation pro-
tocol, but instead of taking only the sequences of one subject
at a time for testing, we take all the sequences of five subjects
for testing and the remaining sequences for the training. To
choose the five subjects for testing, we choose the five first
subjects in the dataset, then the five next subjects and so on
until all the subjects are used for testing.

The advantage of using cross validation is to prevent from

having performance results that are due to the chance (all
data will be used to train and test the proposed method). The
average across all folds is more representative of the whole
dataset.

C. Pain estimation from landmark coordinates and velocities

Our goal is to estimate the VAS pain score for each sequence
of the dataset. We test our method with the three protocols
described above and report the results in Table II. For each
protocol, we fix the value of the curve fitting parameter lambda
to 1000 and the Gaussian kernel in the sequence alignment
sigma to 0.8 (see Table II). Protocol indicates the protocol used
for training and testing our method; % of frames indicates the
percentage of frames used from each sequence for training and
testing; MAE indicates the Mean Absolute Error and RMSE the
Root Mean Square Error of our estimation (see Table II).

TABLE II: Results of our method with the three different
protocols.

Protocol | % of frames | MAE | RMSE
Leave-One-Sequence-Out 12050({070 gz;g? géggg
Leave-One-Subject-Out cross validation 12(;50({;27 22 ‘9512736 gg?gg
5-fold cross validation 12(;50(27 gggﬁ ;;6&
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Fig. 4: Distribution of the predicted VAS values compared
with the real VAS using the 5-fold cross validation protocol
with 25% of frames. The red line is a least-square fitting of
the predicted values.

From Table II, we notice that in every cases, the MAE is
lower when we down-sample 1 frame each 4 frames, leading
to 25% of the frames available for pain assessment. This is
due to the high amount of non-pain frames that are present in
the dataset. We also notice that the best MAE we obtained is
2.3166 with the Leave-One-Sequence-Out protocol. This result
is expected as this protocol is not subject-independent and
sequences of the same subject can be used for both training and



testing. The second best MAE we obtained is 2.4365, using
the 5-fold cross validation protocol. We report the RMSE as
a second measure of the error of our estimation. Results show
the same trend as the MAE with the best RMSE observed for
the Leave-One-Sequence-Out protocol.

Similar to [15], we present in Fig. 4 the distribution of the
predicted VAS score against the true reported VAS. This allows
us to observe that our approach is capable of predicting many
low VAS scores and can have difficulty in estimating higher
values.

D. Comparison with state-of-the-art

We compared our approach to the two state-of-the-art
methods for VAS pain intensity measurement from video
(see Table III). Here, we report the best results for Deep-
FaceLIFT [15] that only uses the VAS as training labels as
the authors also present results while combining VAS and
OPR labels. They obtained a MAE of 2.30 using a 5-fold
cross validation protocol. Our results are close to theirs, while
only using a geometry based formulation of facial landmark
dynamics (meaning that our method is less expensive as we do
not have to train a neural network). Our results are comparable
to RNN-HCREF [14] results, as they obtain a MAE of 2.46,
though using a different protocol. In fact, in the results for
RNN-HCREF, data have been randomly split by taking the
sequences of 15 subjects for training and the sequences of
10 subjects for testing. It is also important to highlight that
in RNN-HCREF the face appearance is also used, while our
method only considers the shape of the face.

One of the advantage of our method over the two approaches
presented here is the explainability of the results. As our
method is based on facial landmarks and modeling of their
dynamics as a trajectory on the manifold, it is possible to
interpret the predicted VAS score for a new observation based
on distances of this observation to train trajectories. This
makes it possible to support the explanation of results on a
much more solid base than would be by using alternative
models for prediction, such as those based on deep neural
networks. Interpretability is also very important in a day-to-
day use by practitioners as they can better estimate the pain
from the different parts of the face.

TABLE III: Comparison of our method with state-of-the-art
results

Method | Protocol | Labels for training | MAE
DeepFaceLift [15] | 5-fold cross validation | VAS 2.30
RNN-HCRF [14] ‘ random split ‘ VAS & PSPI ‘ 2.46
Ours [ 5-fold cross validation | VAS [ 2.4365

VI. CONCLUSION

We proposed a method based on facial landmarks dynamics
to estimate pain intensity from video. Our approach shows
competitive results with respect to state-of-the-art methods
on the UNBC-McMaster Shoulder Pain Archive, while only
considering the shape of the face. Future work will focus on
the combination of facial shape and appearance as well as the

inclusion of other pain scales such as the observer pain rating
scale to further improve the pain scores estimation.
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