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interannual temperature variability and northern
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Shushi Peng2,5, Anders Ahlström8, Josep G. Canadell9, Nan Cong1, Sam Levis10, Peter E. Levy11, Lingli Liu12,

Mark R. Lomas13, Jiafu Mao14, Ranga B. Myneni15, Philippe Peylin5, Ben Poulter5, Xiaoying Shi14, Guodong Yin2,

Nicolas Viovy5, Tao Wang1,5, Xuhui Wang2, Soenke Zaehle16, Ning Zeng17, Zhenzhong Zeng2 & Anping Chen18

Satellite-derived Normalized Difference Vegetation Index (NDVI), a proxy of vegetation

productivity, is known to be correlated with temperature in northern ecosystems. This

relationship, however, may change over time following alternations in other environmental

factors. Here we show that above 30�N, the strength of the relationship between the

interannual variability of growing season NDVI and temperature (partial correlation

coefficient RNDVI-GT) declined substantially between 1982 and 2011. This decrease in RNDVI-GT

is mainly observed in temperate and arctic ecosystems, and is also partly reproduced

by process-based ecosystem model results. In the temperate ecosystem, the decrease in

RNDVI-GT coincides with an increase in drought. In the arctic ecosystem, it may be related to a

nonlinear response of photosynthesis to temperature, increase of hot extreme days and

shrub expansion over grass-dominated tundra. Our results caution the use of results from

interannual time scales to constrain the decadal response of plants to ongoing warming.
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P
revious research has documented a tight positive relation-
ship between space-borne measurements of the Normalized
Difference Vegetation Index (NDVI) by National Oceanic

and Atmospheric Administration satellites and growing season
temperature in the Northern Hemisphere (NH)1–3. This
observation can be interpreted as an increase in photosynthesis
in response to warmer climate conditions, and the observed
‘northern greening’ over the past 30 years has been extrapolated
as a sign that northern ecosystems will continue to grow more
and thus accumulate more carbon in a warmer world4–5.
However, although future NH warming is projected to increase
in the future6, the response of vegetation remains uncertain, as
the relationship between temperature and vegetation productivity
may change over time, given other environmental limitations7,8.

Although direct warming is the most frequently discussed
change in recent times, major changes to other climate attributes
have been experienced by the northern vegetation over the last
three decades6. The Palmer Drought Severity Index (PDSI),
which is defined from a water-balance model forced with climate
data, shows a significant increase in drought over the NH in the
last several decades, and particularly in southern Europe and
eastern Asia and Siberia9. Increased drought stress can modify the
response of plant growth to temperature change7 and was
hypothesized to be a potential cause for the declined temperature
sensitivity of tree growth in tree rings time series during the last
part of the twentieth century10. The effect of climate drought on
the temperature sensitivity of vegetation growth, however, may be
partly alleviated by CO2-induced increase in vegetation water use
efficiency11,12. In addition, some species can also gradually adjust
to continuous warming by acclimation of their physiological
responses (for example, through their rates of photosynthesis and
autotrophic respiration)13–15. These issues all lead to the question
of how and where has the impact of temperature on vegetation
productivity changed over the last three decades?

Here, with simultaneous use of geographically complete
satellite-derived NDVI data, concurrent climate observations
and gridded land surface models (see Methods), we show that the
strength (correlation) of the linkage between vegetation produc-
tivity and temperature has declined from the early 1980s to 2011
for the NH. This weakening relationship is mainly found in
temperate and arctic biomes, with possible different causes.

Results
Satellite observation. We first detrend all quantities to allow
focused analysis on correlations in interannual variability. For the
entire period of 1982–2011 (Fig. 1a,b), the interannual variation
of the April to October growing season (GS) NDVI (NDVIGS)
north of 30�N is significantly correlated with the corresponding
GS temperature (GT) (R¼ 0.45, P¼ 0.01), but not with GS
precipitation (GP) (R¼ � 0.009, P¼ 0.96). This is consistent
with earlier studies1,3. However, we found that the yearly
correlation coefficient between NDVIGS and temperature
significantly declined from 0.72 (Po0.01) of the first half
period (1982–1996) to just 0.32 (P40.10) of the second half
period (1997–2011) (Fig. 1c). To determine whether this
decreasing strength of the relationship between NDVIGS and
temperature variation is due to a direct temperature physiological
response of vegetation, rather than forced through the emergence
of controlling effects of other climatic variables, we analyse the
change in partial correlation coefficient between NDVIGS and
temperature (RNDVI-GT). Partial correlation removes statistically
the effects of other controlling climate variables, including, for
instance, precipitation and cloud cover (see Methods). Here,
RNDVI-GT is calculated with a 15-year moving window, still for
variables detrended, and results are presented in Fig. 1d.

This shows that RNDVI-GT also decreased and with a high
significance level (Po0.01) from 1982 to 2011. Further, this
decline of RNDVI-GT is robust to different GS definitions (May–
September, May–October, or to the definition of the GS as the
period with greenness level 425% or 50% of the amplitude of the
seasonal cycle of NDVI for each year, Fig. 1d). Similar results are
also observed when all variables are not detrended (Supplemen-
tary Fig. 1a), annual precipitation from previous November to
current October is used instead of GS precipitation only
(Supplementary Fig. 1b), or satellite-observed leaf area index16

is used instead of NDVI as a proxy of vegetation productivity
(Supplementary Fig. 1c). These results point out to a recent
decreasing strength of the direct vegetation response to
temperature variation in NH over the last three decades at the
continental scale. The loss of a significant correlation between
NDVIGS and temperature in the recent period 1997–2011 hinders
calculation of changes in the temperature sensitivity of NDVIGS
(regression slope), as this sensitivity can no longer be statistically
defined.

We analysed the trend of RNDVI-GT separately for 30�N–60�N
and above 60�N, and found a significant decrease in RNDVI-GT in
both latitude bands (Supplementary Figs 2 and 3). The change of
RNDVI-GT is spatially heterogeneous and the declining trend of
RNDVI-GT is mostly observed in the temperate and the arctic
regions (Fig. 2a). Analysing partial correlations over the
temperate band south of 50oN excluding Tibet and subtropical
forests, NDVIGS is negatively correlated with GT (Fig. 2a), but is
also positively correlated with GP (Supplementary Figs 4 and 5),
indicating a co-effect of water limitation on interannual NDVI
variability. This is consistent with the hypothesis that plant
productivity in temperate ecosystems is subject to soil moisture
limitation during summer5,17,18. Further, we find that much of
the temperate region is experiencing an enhancement of its
negative RNDVI-GT (Fig. 2a). In contrast to temperate regions,
NDVIGS is positively correlated with temperature above that of
50�N, but the partial correlations RNDVI-GT trends are different
between Eurasia and North America (Fig. 2a). Eurasia boreal
regions show more areas with decreasing RNDVI-GT than that of
North America, where RNDVI-GT trends are of opposite sign
between northern and southern areas (roughly across the 60�N
latitude boundary; Fig. 2a). North of this boundary, RNDVI-GT
decreased with time, but RNDVI-GT continued to increase in the
south, notably in the southern part of Hudson Bay (Fig. 2a and
Supplementary Fig. 5).

For the boreal and arctic band, there is a nonsignificant
correlation between NDVI and GP (see slightly negative RNDVI-GP
values in Supplementary Fig. 4a). This weak negative value of
RNDVI-GP may be attributed to the coincident reduction of
incoming solar radiation19,20 during wet years (Supplementary
Fig. 6). To investigate the effect of solar radiation on vegetation
productivity, we investigated partial correlations of NDVI with
shortwave radiation interannual fluctuations (RNDVI-SR,
Supplementary Fig. 7). In general, these correlations with
radiation are weaker than those found for temperature and
precipitation (Fig. 2a and Supplementary Fig. 4a). They also vary
in sign, suggesting that a positive solar radiation anomaly could
either increase the photosynthetic response reflected by a positive
NDVI anomaly, or in some instances cause soil moisture
depletion from increased transpiration with the opposite effect.
The positive value of RNDVI-SR in the high latitude regions thus
suggests that vegetation productivity of these regions is not only
limited by temperature, but also by solar radiation5.

Process-based model simulations. To gain additional insights on
the drivers of the changes in RNDVI-GT, we analyse the response of
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vegetation productivity to climate variables using the output from
ten different global vegetation models (TRENDY ensemble, see
Methods). Outputs from these models forced by observed climate
fields and changing CO2 concentration are analysed for their
predictions during the period 1982–2010 (see Methods). Net
primary productivity (NPP) is chosen as a model diagnostic
representative of observed GS-integrated NDVI (similar results
are also found for gross primary productivity (GPP),
Supplementary Fig. 8a,b). After detrending all data, we find that
modelled NPP and GPP are both significantly positively
(Po0.05) correlated with observed NDVI over 47% of the NH.

Despite their different structure, the ten models produce
similar spatial patterns of the partial correlation coefficients
between NPP and temperature interannual variations (RNPP-GT)
(Supplementary Fig. 9). Comparing Fig. 2a with Fig. 2b shows
that the spatial patterns of modelled RNPP-GT are comparable to
the satellite data analysis. The models faithfully simulate positive

average values of RNPP-GT in high-latitude regions and negative
values in temperate regions, similar to that for RNDVI-GT. For
precipitation, however, the responses of modelled NPP are
different from that of NDVI. For example, unlike RNDVI-GP, a
positive correlation between NPP and precipitation (RNPP-GP) is
generally modelled in the high-latitude regions. The area with
significant positive RNPP-GP, when estimated by the models, is
about twice that diagnosed from satellite observations (6%)
(Supplementary Figs 10 and 11). Such an overestimation of the
positive sensitivity of vegetation productivity to precipitation
change by models has been noted in recent studies18,19.

Now looking at trends over the last 30 years, the geographic
patterns of the RNPP-GT trend is broadly similar to that of
RNDVI-GT trend (Fig. 2), providing two lines of evidence (that is,
both Earth Observing and model-based) for changes in the
interannual response of vegetation productivity to temperature,
against a background of climate change. Yet, when aggregated at
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the continental scale, most models generally do not show
significant negative trend of RNPP-GT (except for Sheffield–
DGVM and VEGAS, Supplementary Fig. 12). This is because
models produce a smaller area with decreasing trend of RNPP-GT
(Fig. 2 and Supplementary Fig. 11) than the NDVI observations.

Mechanisms. Mechanisms causing the observed decline in
RNDVI-GT cannot be elucidated from statistical analysis alone.
We focus here on two possible mechanisms: the effect of drought
trends attenuating the response of NDVI to temperature varia-
bility and the effect of increasing occurrence of extreme hot days
during the 2000s despite stalled mean temperature in the NH21.
Drought has increased in temperate regions during the last
decades9, particularly in the central and western United States,
northeast China and Central Asia (Supplementary Figs 13
and 14). Drought reduces water availability for plant growth
during the GS and extreme drought can even cause hydraulic
failure, therefore offsetting or masking positive RNDVI-GT values.
In addition, extreme hot days (T� 90p, the number of days with
temperature higher than the 90th percentile of the GS
temperature distribution during 1982–2011) show a positive
trend (Supplementary Fig. 15). The increased occurrence of hot
extremes can reach above the range of temperate and boreal
vegetation acclimation conditions and attenuate the sensitivity
of productivity to temperature22; for instance, by increasing
the fraction of assimilates needed for maintenance, leading to
reduced RNDVI-GT. To gain insights about these two mechanisms,
we show in Fig. 3 the trends of RNDVI-GT within phase space of
changes in precipitation and trend in T� 90p for the temperate
and boreal (30–60�N) and for the northern boreal and arctic
latitude bands (above 60�N).

We find that in the band 30–60�N, the trend of RNDVI-GT is
more often negative in regions that have experienced a reduction
in precipitation (increased drought) between the first and the last
parts of the past 30 years (Fig. 3a). However, there is no
significant change in the trend of RNDVI-GT along the gradient of

increasing number of hot days (Fig. 3a). This result suggests that
for northern temperate vegetation, where water is a limiting
factor for vegetation growth, lower precipitation rather than
increased hot days is associated with the decline of RNDVI-GT.
Decrease in precipitation can reduce soil water content and
indeed we find that a stronger negative RNDVI-GT or RNPP-GT
usually occurs (Fig. 2) in areas with decreasing soil moisture from
models (Supplementary Fig. 14). In contrast, NDVI observations
and most models show an upward trend of RNDVI-GT and RNPP-GT
in the lower Hudson Bay (Fig. 2 and Supplementary Fig. 9),
where models produce increasing soil moisture (Supplementary
Fig. 14). This is also supported by the spatial correlation analyses
between local partial correlation coefficient (RNDVI-GT) and
precipitation for 5� by 5� moving windows. This positive spatial
correlation between RNDVI-GT and precipitation indicates that a
stronger (and positive) association of vegetation productivity to
temperature occurred in areas receiving more precipitation
(Supplementary Fig. 16).

By contrast, in the Northern boreal and Arctic areas (above
60�N) a decline of RNDVI-GT is observed across most regions,
regardless of their precipitation trend (Fig. 3b). Thus, the
weakening RNDVI-GT in the arctic regions is unlikely caused by
changes in precipitation. On the other hand, the number of hot
days has also increased in most arctic regions over the past 30
years (Supplementary Fig. 15), which could reduce RNDVI-GT,
because the sensitivity of vegetation growth to heat waves is
generally different from that to normal temperature. Yet, the
trend in RNDVI-GT does not show a strong tendency along the
gradient of the trend of hot extreme days (Fig. 3b), suggesting that
other mechanisms may also be responsible for the reduced RNDVI-
GT in the arctic region. For example, the decreasing trends of
RNDVI-GT when climate becomes warmer can be qualitatively
explained if the physiological response of photosynthesis to
temperature follows a nonlinear (convex) curve with lower
sensitivity under warmer conditions23,24. Such a response to
temperature is expected to weaken the correlation strength
between vegetation growth and temperature in warmer years.
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To test this mechanism, we compare RNDVI-GT and its change
between cold and warm years north of 60�N in Fig. 4. The data in
this figure indicate that RNDVI-GT for cold years is systematically
higher than for warm years. Moreover, there is a more significant
and accelerating decrease of RNDVI-GT for warm years as
compared with that of cold years (Fig. 4), implying a
decoupling or even a reverse correlation between NDVI and
temperature with continuous climate warming. In addition,
woody encroachment and increase of the contribution of
shrubs to total productivity into tundra areas under climate
warming may also potentially contribute to the observed decrease
in RNDVI-GT due to the very different responses of grassland and

woody vegetation to temperature change25–27. For instance,
shrubs were shown to have a positive response to temperature
only in July, whereas grasses respond to GT27.

Rising CO2 also has the effect to reduce transpiration and
increase water use efficiency, as well as to increase productivity in
the absence of nutrient limitation. We used additional model
output to investigate NPP–climate relationships when removing
the simulated response of NPP to increasing CO2 (þ 50 p.p.m.)
that occurred in parallel to climate change over the period of
analysis. When removing the effects of increasing CO2 on the
modelled NPP–climate relationship analysis, the resulting
RNPP-GT partial correlations (Supplementary Fig. 17) are found
to be almost identical to those obtained when both climate and
CO2 vary (Fig. 2). Hence, at least in models, the correlation
changes observed do not depend on the effect of rising CO2

fertilization, but we note that only one model included elevated
CO2 and nitrogen interactions. Further research is needed,
combining process studies (for example, ecosystem warming
experiments) with large-scale data to further understand the
mechanisms that underlay the observed decline in the correlation
between temperature and vegetation growth in each region.

Discussion
Multiple uncertainties remain in understanding the evolution of
NH vegetation. These may include processes not modelled,
incorrect model drivers of radiation and extreme events, or
ill-parameterized descriptions of the vegetation response to a
changing hydrological cycle, for example, the effect of snow
change on vegetation productivity28. Resolving some of these may
aid to resolve the overestimation of precipitation sensitivity of
vegetation productivity by models in comparison with the
satellite-based data. Other indirect climate effects such as
insects29, frost damage during spring, fire disturbances8,
exposure to high surface ozone concentration, background
nutrient limitations and changes in nutrient availability30, land
use and land management changes (for example, over-grazing by
reindeers in the Taymyr Peninsula region where a strong decrease
of RNDVI-GT is observed31) also have the potential to attenuate the
observed NDVI–climate interannual correlations. These factors
could also explain some of the differences in the spatial patterns
of observed versus modelled NDVI–climate correlations (that is,
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For each 20-year series, we divide the 20 years into two groups based on

their ranks in GS temperature: the 10 years with higher GS temperature are

defined as warm years, and the other 10 years are cold years. We then

calculate RNDVI-GT for warm and cold years, separately, through controlling

for corresponding GS precipitation and cloud cover. Over the past three

decades, RNDVI-GT shows a significant decreasing trend for both warm

(R2¼0.71, P¼0.001) and cold (R2¼0.49, P¼0.016) years; and RNDVI-GT
for cold years is higher than that of warm years over all the 20-year series.
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Fig. 2a versus Fig. 2b), as many of these processes are not
systematically included in terrestrial ecosystem models.

However, despite large uncertainties, satellite NDVI measure-
ments and multi-model estimates of NPP and GPP provide
evidence of an overall decrease in the interannual correlation
between temperature and productivity over the last three decades.
Because of the relatively short time period of satellite data, we
cannot say whether these observed changes reflect decadal
variability, or a long-term transition in the vegetation–climate
relationship. NPP from TRENDY models show that there is
decadal variability in RNPP-T over the last century (Supplementary
Fig. 18), but we also note that these TRENDY models did not
capture the observed change of RNDVI-GT during the last three
decades at NH scale. Analysis of longer time series of proxies,
such as tree ring growth index32, should provide further insights
on this question. We also found compelling indications that
change in soil moisture is an important process that modulates
the temperature–productivity correlations, although the models
used in this study may be presently less trusted to fully describe
this. It is not straightforward to link changes in NDVI–
temperature relationships with changes in the net carbon
balance of northern ecosystems that has an impact on
seasonal33 and spatial gradients of atmospheric CO2, because of
the concurrent response of respiration and disturbances to
temperature. Further study focusing on both the temperature
dependence of vegetation productivity and ecosystem respiration
and their temporal trajectory is needed.

Methods
Data sets. Investigating satellite-derived vegetation greenness and its association
with climate provides useful information for the complex coupling of biosphere
and atmosphere. The biweekly NDVI data of 1982–2011 used in this study were
obtained from the GIMMS (Global Inventory Modeling and Mapping Studies)
team, with a spatial resolution of 0.083�. They were further aggregated to
0.5�� 0.5� to match the resolution of meteorological data. The calibrated
Advanced Very High Resolution Radiometer (AVHRR)-NDVI data have been
successfully used in many studies of vegetation monitoring34,35, although the
original AVHRR sensor series were not designed for vegetation monitoring and
thus suffered from lack of onboard calibration and navigation/georeferencing
problems. Here we used the third-generation GIMMS-NDVI3g data, which have
been corrected for sensor degradation, intersensor differences, cloud cover, solar
zenith angle, viewing angle effects due to satellite drift and volcanic aerosols36,37.

Monthly climatology (including air temperature, precipitation and cloud cover)
data with spatial resolution of 0.5�� 0.5� were compiled from meteorological data
stored at the Climate Research Unit, University of East Anglia (CRU TS 3.2)38. The
2.5�� 2.5�gridded data of monthly PDSI calculated from a simple water balance
model9 were provided by the University Corporation for Atmospheric Research.
Similar to the PDSI_PM used in Sheffield et al.39, evaporation in this PDSI data set
was also calculated using a more sophistical Penman–Monteith equation.

Ecosystem models. In this study, we simulated annual NPP and soil moisture
using ten process-based ecosystem models: HyLand, Lund-Potsdam-Jena DGVM
(LPJ), ORCHIDEE, Sheffield–DGVM, JULES, LPJ_GUESS, CLM4C, CLM4CN,
OCN and VEGAS. All models followed the protocol described by the historical
climate carbon cycle model intercomparison project (Trendy) (http://dgvm.ceh.
ac.uk/system/files/Trendy_protocol%20_Nov2011_0.pdf)40,41. All models used
prescribed static vegetation maps. Each model was run from its pre-industrial
equilibrium (assumed at the beginning of the 1900s) to 2010 with two scenarios: in
S1 scenario models are forced only by historical change of atmospheric CO2

concentrations, and in S2 scenario models are forced by both observed historic
climate changes and rising CO2 concentrations. All models can estimate NPP; six
of ten models provide leaf area index and seven of ten models provide soil moisture
information.

Analysis. This study covered the vegetated areas (defined as area with mean GS
NDVI during 1982–2011 larger than 0.05) north of 30�N and the study period was
1982–2011 based on the availability of satellite observations and meteorological
data sets. GS was defined as April–October, but results from other GS definitions
such as May–September and May–October were also presented in Supplementary
Figures 1–18, for robustness test. Change in GS length for each year was also taken
into account through defining GS as the period with greenness level 425% or 50%
of the amplitude of the seasonal cycle of NDVI.

The temperature variation signal in NDVI was calculated as the partial
correlation coefficient between GS NDVI and GS temperature (RNDVI-GT) after
statistically controlling for interannual variation in precipitation and cloud cover
over a 15-year moving window. Hence, RNDVI-GT can be influenced by general
background climate changes, occurring over periods of 15 years or longer. Within
each 15-year window, the linear trend derived from the least squares method was
removed for both NDVIGS and climate time series. Using similar method, we also
calculate the temperature variation signal in NPP estimated from the carbon cycle
models. All these analyses were first performed for the entire NH (430�N) and
then for each pixel. An alternative method to extract the climate variation signal in
NPP is to use two scenarios of model simulations (http://dgvm.ceh.ac.uk/system/
files/Trendy_protocol%20_Nov2011_0.pdf). In S1 scenario, models are driven by
historical change of atmospheric CO2 concentration; in S2 scenario, models are
driven by historical change of both atmospheric CO2 concentration and climate.
The difference of simulated NPP in these two scenarios should represent the
climate impacts on vegetation productivity. We also analysed simulated NPP with
this approach, resulting in similar conclusions (Supplementary Fig. 17).
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