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Abstract—This paper proposes an algorithm which allows Alice
to simulate the game played between her and Eve. Under the
condition that the set of detectors that Alice assumes Eve to have
is sufficiently rich (e.g. CNNs), and that she has an algorithm
enabling to avoid detection by a single classifier (e.g adversarial
embedding, gibbs sampler, dynamic STCs), the proposed algo-
rithm converges to an efficient steganographic algorithm. This
is possible by using a min max strategy which consists at each
iteration in selecting the least detectable stego image for the best
classifier among the set of Eve’s learned classifiers. The algorithm
is extensively evaluated and compared to prior arts and results
show the potential to increase the practical security of classical
steganographic methods. For example the error probability P.,,.
of XU-Net on detecting stego images with payload of 0.4 bpnzAC
embedded by J-Uniward and QF 75 starts at 7.1% and is
increased by +13.6 % to reach 20.7% after eight iterations. For the
same embedding rate and for QF 95, undetectability by XU-Net
with J-Uniward embedding is 23.4%, and it jumps by +25.8%
to reach 49.2% at iteration 3.

I. INTRODUCTION

Since the formal definition of the prisoners’ problem by
Simmons [1], steganography and steganalysis have been con-
sidered as a hide and seek game, where the goal of the
steganographer, a.k.a. Alice, is to embed messages into cover
objects while being undetectable by the steganalyst, a.k.a.
Eve. For image steganography, Alice embeds a message by
modulating either pixels or quantized DCT coefficients for
JPEG images. As opposed to Alice, Eve wishes to detect
the presence of a possibly hidden message using an image
model, which can be either built using machine learning tech-
niques or by domain knowledge (see [2] for an introduction
to history of steganography and steganalysis). Historically,
this game played in academia led to a succession of better
and better steganography schemes (for example for spatial
domain steganography we can cite the evolution from LSB
replacement, to LSB matching, Hugo [3], S-Uniward [4],
HILL [5], MiPod [6]) but also to better steganalysis methods
(e.g. Sample-pair steganalysis [7], SPAM features [8], SRM
features [9] and deep-learning methods such as Yedrouj-
Net [10], XU-Net [11] or SRNet [12]).

In this paper, we ask ourselves if playing this cat and
mouse game virtually without human intervention can lead
to a more secure steganographic algorithm. We answer by the

affirmative in this paper and show that it is possible to achieve
this goal by using convolution neural networks (CNNs) which
encompass a general and very complete class of detectors.
The experimental results support this finding, since the error
of a detector implemented by XU-Net detecting messages
with payload 0.4 hidden in JPEGs QF 95 has increased to
49.2%, which is by 25.8% more than J-Uniward, presently
still considered to be a state of the art.

On an historical note, the possibility of playing the stegano-
graphic game explicitly has been already investigated but
it was rarely played (exceptions known to us are listed in
subsection I-A on related works), as attempts to explicitly
defeat a particular (set of) detector(s) were considered as an
extremely dangerous practice due to the belief that fixing one
security hole might generate other unknown ones. For example
in the JPEG domain, Model-Based steganography [13], con-
trary to F5 [14], was designed in order to offer no statistical
distortion between marginal distributions of DCT coefficients
before and after embedding, but was more detectable than
F5 using features capturing joint distributions such as SPAM
features [8].

This paper therefore investigates a trend, which we believe
will become prevalent in upcoming years, where a generic
class of steganalyzers are used to implicitly design a distortion
function used during the embedding of a message. The security
of the resulting steganographic algorithm depends on the
assumptions that (i) the class of detectors used by Alice to
learn the image model is general enough to not offer other
security holes', (ii) Alice knows how to embed a message
while being undetected by a single detector.

A. Relation to prior art

Most state of the art steganographic algorithms relies on
adaptive embedding [16], where each image coefficient is
modified according to its assumed impact on the detectability.
This impact is captured in so-called embedding costs, which
are designed to be approximately additive [17].

A wide class of algorithms compute these costs using
heuristic principles, for example in HILL [5], UNIWARD
[4] or UERD [18]. In these algorithms, the formula used
to compute costs has free parameters which are empirically
tweaked in order to maximize the detection error w.r.t a large
set of detectors. Notice that although the game between Alice
and Eve is not formally defined, it is actually played through

'We believe this holds reasonably well for state-of-the-art deep-learning
schemes such as [15] or [12].



many iterative adjustments during which the researcher tweaks
the formula used to compute costs. Note that these iterations
are not automatic and they can exhibit a large computational
burden, which is typically unknown by the user of the method,
as one typically publishes the solution without reporting the
failed attempts.

Yet, a more sophisticated class of steganographic algorithms
derive costs by explicitly taking into account Eve’s capabil-
ities. Part of theses strategies derive costs from the detector
performance, computed through a proxy such as the deflection
of the likelihood ratio test for MiPod [6], the distance between
cover and stego feature sets for Hugo [3] and Gibbs con-
structions [19], the explicit assumption that Eve knows Alice’s
embedding probabilities [20], or mimicking the distribution of
the sensor noise for Natural Steganography [21].

Other strategies explicitly target Eve’s detector to embed
a message while defeating it. A terminology akin to present
Machine Learning topics would call these “adversarial embed-
dings”. To the best of our knowledge the first attempt in this
direction was ASO [22], which derives embedding costs from
an ensemble of Fisher Linear Discriminants [23] computed
using SRM features [9]. For a pixel i, the cost of adding 1 to
the pixel value is proportional to >, (fx(z; + 1) — fr(zs)),
fi being the function returning the soft output of a weak clas-
sifier of the ensemble. By doing this, the embedding scheme
succeeds to defeat Eve’s classifier after the first iteration, but
not in successive ones. Note that for this scheme empirical
costs computed using Hugo [3] are used only to train the
first classifier and the costs after the first iteration are directly
computed using the classifier outputs.

Another more recent strategy, called ADV-EMB [24] (for
adversarial embedding), attacks a detector implemented by
some CNN and relies on the gradient of the loss function
to modify the costs (since the attack from this work is used
here as well, it is reviewed in more details in Section II).
The very same work also proposes an algorithm creating a
sequence of embeddings and classifiers in the hope to obtain
a better classifier and better embeddings. Interestingly, both
ADV-EMB and ASO adopt a similar strategy to generate stego
images through iterations which consists in selecting the image
defeating Eve’s last trained classifier. One important difference
between our work and ASO or ADV-EMB is the choice of
classifiers-to-attack / images-to-use to train a new detector. As
will be seen in the experimental section, this has an important
effect on the security.

Furthermore, there is a prior art explicitly linking Steganog-
raphy and Game theory. To the best of our knowledge, Ker
in the context of batch steganography [25] proposes to solve
the problem of how Alice should spread the message among a
large number of covers while Eve anticipates this and tries to
detect the existence of at least one secret message (pooled
steganalysis). In this game, Alice chooses the number of
images carrying the total payload and Eve sets her detector
threshold. Ref. [26] studies the optimal strategy of both
parties where Alice uses adaptive steganography while taking
Eve’s knowledge on Alice embedding strategy into account.
Finally [27] studies the optimum strategy for choosing 3 (the
ratio of adversarial coefficients) in ADV-EMB [24] by setting

a zero-sum game.

On a more general note, an inspiring work comes from
the domain of adversarial machine learning to train robust
classifiers [28], where the goal is to train a classifier by itera-
tively performing on one side efficient adversarial attacks (the
max strategy), using the Projected Gradient Descent algorithm
on the evolving loss, and on the other side to learn using
new adversarial examples to train a more secure classifier
(the min strategy). One difference between this reference and
the proposed scheme is that we are not actually interested in
training a better classifier but in designing a better stegano-
graphic embedding (even if a more robust classifier may be
obtained as a bonus). Also, the iterative procedure [28] does
not operate under the hidden message embedding constraints
of the steganographic game.

Another popular class of models in the field of adver-
sarial machine learning are Generative Adversarial Networks
(GANS) [29], which have been recently used in steganography
to learn the cost function [30]. The algorithm proposed in this
paper shares to some extent some ideas with GANs. Indeed,
GANs have a game theoretic setting in which two neural
networks (called the generator and the discriminator) are
opponents in a min-max optimization problem. In theory [31],
the solution of GANs corresponds to a Nash equilibrium of
a zero-sum game where the cost function is the loglikelihood
of the discriminator. As will be later exposed, our algorithm
converge to the Stackelberg equilibrium of a game, where
Alice and Eve are rivals and Alice is a leader.

In addition to having different game theoretical grounds,
a major difference between our approach and steganographic
GANs such as [30] lies in the definition of the generator.
In [30], the generator is implemented explicitly by an opti-
mized network assigning costs to individual coefficients, which
are then used in the embedding simulator. This is in sharp
contrast to this paper, where the generator is implicit and
corresponds to an attack of a particular classifier (or a set of
them). The convergence (or training) of our algorithm should
be therefore simpler, more stable, and Alice is saved from the
hassle of designing an architecture of the generator. Indeed,
Ref. [30] reports the error of detection by XU-Net of a GAN
JPEG stego images with payload 0.4 bpnzAC equal to 11.8%,
whereas that of the steganography proposed here is equal
to 20.7%, which makes the proposed approach twice more
secure.

However, an advantage of GAN-based steganography is that
it can directly estimate embedding costs, a possibility that the
proposed scheme does not offer yet.

B. Contributions of the paper

This paper proposes an algorithm which can be used to
automatically iterate through Alice’s embedding strategies in
order to find better ones in a simple steganographic game. The
algorithm is general and can be applied on any adversarial-
embedding-scheme/detector pair. This paper uses the adver-
sarial attack presented in section II as a potential candidate,
and two different CNNs, namely XU-Net [15] and SRNet [12],
as detectors. It is an extension of the paper published in [32]
in following directions:



o Theoretical and practical convergence issues with links
to other iterative strategies;

« Evaluations of avoidance of classifiers with different ar-
chitectures, which are here combined using an appropriate
calibration function (novel), which has further improved
the quality of the algorithm;

o Analysis of the transferability of ADV-EMB attacks be-
tween classifiers;

o Evaluation of the protocol on different quality factors,
embedding rates, initial distortion functions, and also in
spatial domain;

o Study of the increasing robustness of the learned classi-
fier, it shows that this algorithm enables both to increase
the security of the embedding scheme but also the ro-
bustness of the trained detector.

Notations

In the following, letters in bold are used to represent
vectors. The corresponding non bold letters are used for vector
elements. The calligraphic letters are used for sets. Cover and
stego objects are respectively denoted as x = (x;)#*" and
y = (y;)*W where H and W are the height and width of
the image. We use z = (z;)*W to denote the stego objects
that will be communicated by Alice. Note that z is a special
type of y. The corresponding sets are denoted as X, ), and
Z respectively. w € {0, 1} denotes the class of a object which
is either cover (w = 0) or stego (w = 1). N is the number of
objects in the data base.

More specifically, the next section uses the following ad-
ditional notations. A steganographic algorithm is any pair of
functions Aepmp (X, m, k) : TXM XK — T and gexs (%, k) : TX
K — M for which it holds that gext(hemb (X, m, k), k) = m
for al m € M, k € K, and x € Z. Spaces Z, M,
and /C are respectively the space of all images, messages
and keys with appropriate distributions, P., defined over
them. Furthermore a steganographic detector is any function
faet(x) : T — {cover, stego}, although it is more convenient
to assume fqet(x) : Z — R and x is assigned to stego class if
the output is greater than some threshold 7. Lastly, we define a
a distribution of stego images induced by the above mentioned
distributions of cover images, messages, keys, and embedding

emb)

algorithm hep,p as P_g,h .

II. THE ADV-EMB SCHEME

The pioneering work of Goodfellow et al. [33] demonstrated
that classifiers based on neural networks can be forced to
mis-classify an image by adding a specific signal of small
amplitude. While in the field of computer vision the attacker
has the freedom to change the image, attacking a stegano-
graphic detector is more difficult due to the constraint that the
resulting stego image has to carry a particular message. Note
that this property was known in Steganography before long
before (see [19], [22] and recently also [17]).

A method ADV-EMB inpired by those in field of adversarial
learning was proposed in [24] and due to low computational
complexity it is used in this paper. ADV-EMB modifies costs
of DCT coefficients, such that changes of coefficients during

embedding are correlated with the gradient of the soft output
of a CNN steganalyzer. Since the embedding function hep,y, is
not differentiable with respect to costs, ADV-EMB [24] comes
with an heuristic which proposes modify costs p;" and p; for
increasing and decreasing the i*"-DCT coefficient obtained by
some existing cost function p (e.g. J-Uniward, UERD) in the
following way:

pifa it 2L (x) <0,
pimer =4 pf it 2L (x) =0, (1)
pia if gﬁ (x) >0,
and
pi o if 9L (x) >0,
;mew _ pz_ if % (x) =0, (2)
p; o ifg—f(x)<0,
where 2L is the partial derivative of f with respect to the

ox;
value of the i*"-DCT coefficient at its current value x; and «
is a parameter set to recommended value 2.

The partial derivative of f is computed for a cover object x
that we wish to be assigned to a low probability of being stego
(i.e. a small f(x)) after embedding. Therefore, for instance
if % (x) > 0, a positive increment on z; would increase
this probability and consequently, this situation is penalized
by increasing the corresponding modification cost pf by a
factor a.

Since steganalyzers are usually not good models of cover
images,> modulating costs of all coefficients would probably
lead to very detectable models. The solution adopted by
ADV-EMB is to dispatch DCT coefficients into common and
adjustable groups, L. / L,, corresponding to (1 — §) / 8
fractions of coefficients, and then modify only coefficients in
the adjustable group. By minimizing 3, ADV-EMB changes
costs of a minimal number of coefficients. ADV-EMB finds
the minimal $ by exhaustive search in 8 € {0.1,0.2,...,1.0}.
The gradient used to modulate costs is calculated after coeffi-
cients from the common group are used for embedding a 1 — 33
fraction of bits of the message m.

In this paper, the spatial version of ADV-EMB is tested as
well; the idea is exactly the same in the explanation before,
but where ¢ designates the index of pixel instead of DCT
coefficient.

III. OPTIMIZING UNDETECTABILITY BY USING
WORST-CASE DETECTORS

The ADV-EMB algorithm embeds a message while de-
creasing detectability w.r.t. a particular fixed detector f. The
fundamental question answered in this section is:

how to use this general attack to design a more secure
steganographic scheme?

2Steganalyzer models discriminate cover from stego images, but they do
not model cover images themselves.



A. Kerckhoffs’ principle and Game Theory

Kerckhoffs’ principle [34] states that in a security game,
the adversary should know everything except the shared key.
Applied in the context of steganography, it means that we
can assume that Eve knows Alice’s steganographic algorithm,
distribution of messages, keys, and it is also customary to
assume that Eve knows the length of message possibly hidden
by Alice.

Assuming a worst case attack from Eve, Alice should
consequently select an algorithm heyy, minimizing the utility
of Eve’s best detector fy.i. Without loss of generality it is
assumed here the utility to be given by the accuracy under
equal prior,} i.e. the average of the true positive rate and
true negative rate, but other scores such as FP50 [35] (the
false positive rate when the false negative rate equals 50%) or
MDS5 [36] (the miss detection rate when the false positive rate
equals 5%) could also be used. Alice consequently wishes to
solve the following optimization problem:

arg min r?ax Exnpay [faet(x) < 7] + EyNP;hemb) [faet(¥)>T]-

hemb det
3)
The solution of Alice’s problem (3) coincides with the
Stackelberg equilibrium [37] of a sequential game with Alice
being the leader defined as:

Definition 1. the steganographic game, denoted G is a tuple
(M, Ay, Ac,u) where :
o N is a set of 2 players, indexed by p where p € {a,e}
(for Alice and Eve)
o Ay, Ac is a possibly infinite set of actions of Alice and
Eve.
o U= (Uq,Uc) Where up : Aqg x Ac — R is a real-valued
utility function for player p.

In the optimization problem (3), Eve’s action consists in
picking a detector in A.* and her payoff function is the
detector accuracy

ue(hemba f) = EXNPX [f(X) < T] + Eywp;hexnb) [f(Y)ET]

Alice’s action consists in picking an embedding function in
A, and her payoff function is g (hemb, f) = —te(hemb, f)-
In general, strategies of Alice and Eve and can be stochastic,
in which case, the Stackelberg equilibrium (3) coincides with
the more popular Nash equilibrium, as the game is zero-sum.

B. Assumed Eve’s detectors

The term Eve’s detectors is ambiguous, as it can refer to
the set of detectors .4, used by Alice during the optimization
of Equation (3), and the set of detectors used by real Eve
to detect Alice’s steganography. The mismatch between these

3 Authors agree that this measure is not very realistic and in practice one
would probably bound a false positive rate, it is nevertheless the widely
accepted standard.

“4Selecting detector mounts to choosing one function from a set of functions
from an image space to [0, 1]. Such function can be for example a CNN with
a particular architecture (e.g. SRNet) and with fixed weights. In theory, the
set of possible function is not restricted. This is shown later in experimental
section, where Eve can use any of XU-Net, or SR-Net, or linear classifers
using DCTR or GFR features.

two can be devastating and the whole history of steganography
is precisely about this mismatch. To clarify, the former will be
called assumed Eve’s detectors and denoted A, and the latter
real Eve’s detectors denoted fle.

In the optimization of Equation (3), the set of detectors A,
has to be reasonably complete, otherwise no security guaran-
tees can be given about the resulting embedding algorithm. In
this paper, A, contains all detectors having the architecture of
XU-Net [15] and/or SRNet [12]. The current limitation is the
feasibility of the ADV-EMB attack, which can attack only dif-
ferentiable detectors. However very general approaches [17],
[19] can be used to alleviate this limitation at the expense of
computational complexity. Another approach would be to train
differentiable surrogates, but any investigation in this direction
is currently outside of the scope of this paper.

C. Solving the simple steganographic game

Solving optimization problem in (3) is difficult, because the
expectation in the utility function does not have an analytical
formula (because distributions are unknown) and the inner
maximum and outer minimization are both over infinite sets.

To make the problem tractable, we propose an iterative
algorithm utilizing the fact that when Alice is searching a
suitable algorithm, the classifier in (3) does not have to be
workable in practice. Specifically in the case of this work,
the classifiers are (unreasonably) assumed to be selected for
each image separately (technically the choice of a detector
depends on the knowledge of cover image). This assumption
is not realistic and overly pessimistic> for Alice, since it
lower bounds the actual detectability achievable by Eve, but
it decreases the computational complexity.

At kI iteration, the proposed algorithm consists on the two
following macro-steps :

1) it creates a stego set ¥ by using an embedding function
Rk . maximally secure with respect to the set of detectors
FR=l = L0 fde oo f1Y, de. for a given image x

it uses function

h’e“mb = argmin max Ue(hemb, f) )

hembEA FEFFT!
2) it creates a new detector fé“et, which should be optimal
for stego images produced in previous step from h}e“mb :

k k
=m e(hg 1, 5
fdet fe% u ( emb f) ( )

and appends it to the pool, i.e. F* = FF=1 U {fk }.

Notice that the distortion function / embedding algorithm is
not fixed, but it is implicitly defined by the set of detectors
F* and a set of A, of Alice’s strategies. This means that for
each image Alice picks the most secure algorithm for a given
image with respect to detectors F* she believes Eve might
oW

The above algorithm is general, as Alice can use any set
of embedding functions, A,, even those evading a specific
detector as discussed in the previous section, and she can

31t is unlikely that Eve should be able to train a perfect classifier selector
that maps each image to the best classifier she possesses for this image.



assume any set of steganographic detectors A.. In practice,
one can guess that the bigger are both sets, the more secure
the resulting algorithm will be. The only caveat is that, due
to minimizing output of detectors in Equation (4), detectors
should have comparable outputs. This problem of calibration
is described in detail in Section IV-B.

The next two subsections discuss particular choices of
Alice’s and Eve’s strategies used in this paper and turning the
remaining generalities in the above procedure into practical
algorithmic steps.

D. Alice’s strategy

In this paper, the set of steganographic algorithms used
by Alice is a union of ADV-EMB attacks against all Eve’s
detectors fget € Ae with 8 € {0.1,0.2,0.3,...,0.9,1.0}
and J-Uniward. This set has theoretically an infinite size.
But if the optimality of ADV-EMB attack against a given
detector fge; is assumed,® it is sufficient during the Eth
iteration to consider attacks against a limited set of detectors
FF=L = {0 ... f*=11 as we cannot do better against this
set. Thus, the min max problem in the step 1 of each iteration
is over a finite set, and hence computationally feasible.

An important implementation detail here is that stego im-
ages created by attacking F*~1 = {f0 ... f*=11 and outputs
of all detectors on them can be cached and used in subsequent
iterations. This means that at every iteration, Alice needs
to (i) create (adversarial) stego images against the detector
fF=1 appended to F*~! in the previous iteration, and (ii)
calculate outputs of ¥~ for stego images created in iterations
1,2,3,...,k. This significantly decreases the computational
complexity.

Here, we emphasize on the differences w.r.t. strategies
proposed in [24] which we call last iteration and random
strategies:

o In last iteration strategy, Alice’s embedding algorithm is
ADV-EMB attacking only the last trained detector f*~1.
o In random strategy, Alice’s embedding algorithm is ADV-
EMB attacking a detector f € F* where each stego
image of the training set is sampled uniformly over the
previous iterations.
Again, note that Alice in this paper behaves more strategically
(and conservatively), as she uses the algorithm producing the
least detectable stego image by an unrealistic detector (in the
sense that we assume that Alice knows an information not
accessible in practice). The rationale here is the fact that for
the next iteration Eve might learn a better detector than the
last trained, by for example by training a new classifier from
the ensemble of already trained classifiers.

E. Operational embedding algorithm

An operational version of the algorithm that relies on ADV-
EMB is given by Algorithm 1 (in this case a single convnet
architecture is used to train classifiers and calibration can be
omitted). The first few steps of the algorithm are illustrated in

5The optimality of the attack against a detector fgo; here means that she

cannot devise better attack against fge¢ by attacking different detector f(’l ot

Figure 1. One can observe how classifiers in F* surrounds the
distribution of cover images and thereby restricting the choice
of embedding algorithms.

Data: Z° initial stego base, X = {x(1), .., X(n) }
cover base, set of detector 0 = { fO}, kyax
k <+ 1;
while k < k.« do
: . E_J k k

Obtain adversarial base Z% = {Z(1)7 ..,z(N)}
where z(,,) = ADV-EMB (x(,), fr—1);

Create stego base V¥ = {yé“l), ..,yé‘N)} to be least
detectable with respect to detectors in F*~1,

k .
yi = argmin max f(2);
(n) ze{z(()7l)7‘_,zéc7l)}f€fk—1
Train a new classifier f* to discriminate X" from
yk .
FE= PO {fh )
kE+—k+1;

end

Return stego base )*max
Algorithm 1: Operational algorithm executed by Alice to

generate a stego base.

F. Convergence of the algorithm

The following theorem proves the convergence of Algorithm
1 under mild conditions on F.

Theorem 1. Let F = {f :Z — R} be a set of functions and
let FY*,F2,...,F* ... be a sequence of subsets such that
Frc F2c...c F* c ... C F. Suppose all functions
f € F are bounded by some constant c, i.e. (3¢ € R)(Vf €
F)(¥x € )(f(x) < o).

Then the limit f(x) = limp_, o0 max e zr f(X) exists.

Proof. Define function f%_ (x) = max;czr f(x). Then for

every x € 7 the sequence fl, (x), f2.(X), . o, fE (%), ...
is non-decreasing and because of the boundedness assumption
VfeF, f(x)<c, the sequence is bounded by ¢ as well. The
monotone convergence theorem then states that the sequence

ax(X) converges to some value, which is denoted by f(x),
which proves pointwise convergence of fX_ to f. O

Note that the proof of the theorem holds for the important
point that the subsets F° are included in each other, so in
other words the protocol converges because we are taking into
account all previous classifiers among iterations when creating
a new attack.

The above theorem implies that, when k is large, the
maximization w.r.t. f € F*~1 is replaced by f (or a function
e-close to f). The algorithm defines detectability f(z) as a
limit

f(x) = lim max f(x).

Note that the security of the resulting steganographic al-
gorithm depends on two factors: (i) the set of all possible
detectors F; (ii) the attack quality on the classifier f € F.



(a) Iteration k£ = 0

(b) Iteration k =1

(c) Iteration k = 2 (d) Iteration k£ = 3

Fig. 1: Initialization and the three first iterations of the algorithm with only one stego image. For simplification of representation,
we assume that Euclidean distances (the dashed lines) between one adversarial image z and the boundary of the classifier f7
represents the soft output of the classifier f7(z). The gray lines with bigger dash represent positive distance (so when the image
is in the stego region), and smaller dash represent negative distances (when the image is in the cover region). For iteration k,

all values fj (zl) (for 0 <i<kand 0 <j < k—1) are computed, in order to select the stego yk from {ZO,

z"} according

to the min max strategy. Then f* (in grey shade) is trained to discriminate y* from cover images.

Thus improving any of them should improve the quality of
the scheme.

Theorem 1 assumes functions f € F to be bounded. This
condition can be trivially ensured for any function based
on machine learning classifiers, as they are already bounded
(e.g. Neural Networks), or they can be trivially bounded
by applying some scaling or passing their output through a
bounded and monotonous functions like sigmoid or tanh .

Furthermore, the usual functions involved in a neural net-
work are not only bounded but also Lipschitz continuous.
Indeed, dot product,7 convolution, max pooling, ReLU, sig-
moid or tanh are all Lipschitz continuous and the sum and
composition of such functions also are, i.e. neural networks
are Lipschitz continuous. This observation leads to a stronger
form of convergence.

If each f € JF is Lipschitz continuous with common
constant, then it is known that f is also Lipschitz continuous
with the same constant provided that f achieves a finite value
for some x. Since f is bounded, it is finite everywhere and
thus Lipschitz continuous.

In addition, since all functions f*

max and function f are
defined on a compact subset of k

RZXW and the sequence f%
is monotonically increasing then Dini’s theorem [38] applies
which gives uniform convergence.

Roughly speaking, uniform convergence indicates that the
series of functions on which the min-step of the algorithm
operates converges everywhere in the input space at least with
a rate that does not depend on x. Although this rate lower
bound is unknown, it can be argued that the algorithm could
be stopped when ||f* —— fE=1|| is no greater than a given
threshold. However, given the stochasticity of neural networks
training and the time spend on it, it appears safer to stop after
a predefined number of iterations as proposed in Algorithm 1.

IV. EXPERIMENTAL SETTINGS
This section details the choices of A, and A, used in the

experiments below, together with other important details such

7To make sure that each instance of an architecture has the same (maximal)
Lipschitz constant, it is sufficient to add a regularization term to the objective
function.

as calibration of classifier scores, database of images, etc.

A. Steganograhic detectors A,

Since state-of-the-art steganalytic detectors are based on
Convolutional Neural Networks (CNNs) [39], [40], [41] it
should not be surprising that they are used here as well. We
assume readers to be familiar with them, otherwise they are
referred to [42] for a general introduction and to [39], [40],
[41] for their uses in steganography.

For the purpose of this work, it is sufficient to view neural
networks as an efficient procedure selecting f from a large
class of functions F minimizing the empirical error:

Par(f: 2,Y) = = Y 1{f(x) > 7} +
‘X‘ xeX
1{f(x) <7}. (6)
P

An important property of CNNs for ADV-EMB attack is
their differentiability, which means that a gradlent 5 L with
respect to their inputs exists for almost every x and for every
ferF.

The set of classifiers F is also the set of Eve’s actions A,
and is equal to all convolutional neural networks with a given
set of architectures (here XU-Net [15] or SRNet [12]).

B. Calibrating classifier’s output

As has been mentioned above, the space of classifiers
A, can contain CNNs of different architectures and even
classifiers based on a very different paradigm. In these cases,
it is important to make their output comparable, as pointed in
[43], such that min max selection in the step 1 of each iteration
(Equation (4)) compares meaningful quantities. A situation
is illustrated in top row in Figure 2 showing histograms of
outputs of two classifiers on cover and stego images. Clearly,
the left tail of the empirical cumulative distribution on stego
images of Classifier B (denoted by f5 () for simplicity) is
more spread than that of Classifier A, which means that the



inner maximization in (4) would prefer Classifier A over the
Classifier B, although the latter is more precise.

We therefore propose to calibrate the output of a detector
f by its empirical distribution function F' : [0,1] — [0,1]
estimated on cover images as

1 N

i=1

where {x(;)}/L, are cover images. The calibrated detector,
denoted f, and is then defined as a composition

fx) = F(f(x)).

The effect of the calibration is shown in the bottom row in
Figure 2. We can see that after the calibration, Classifier B
would be selected by min max strategy as desired.

Classifier A without ECDF Classifier B without ECDF

)
Q)

F2(x)
2)

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Classifier A with ECDF Classifier B with ECDF

FA) 7P(x)
) )
00 02 04 06 08 1O 00 02 04 06 08 L0

Fig. 2: Effect of calibration allowing to make the output of two
classifiers comparable on the same data base for the min max
strategy.

C. Other implementation and experimental settings

a) Embedding: The embedding algorithm used to initial-
ize the algorithm and to calculate default costs for changing
elements is J-Uniward [4], UERD [18] (for JPEG steganogra-
phy) or HILL [5] (for spatial steganography). The experiments
use the JPEG version of the popular BossBase database [44]
of size 512 x 512 in grayscale format and compressed with
Quality Factor (QF) 75 or 95, or same sized images in PGM
format for spatial steganography. Unless stated otherwise, all
images are embedded using an embedding rate of 0.4 bits per
non-zero AC DCT coefficient (bpnzAC) at each iteration of
the algorithm.

b) Classification/Steganalysis: our implementations of
XU-Net and SRNet use TensorFlow [45] library®. In each
iteration of the algorithm, a new steganalyzer f* is trained
by classifying cover objects X and stego objects V¥ given at
the second step of the loop of Algorithm 1. Those classifiers
are trained using full-size images of 512 x 512 coefficients,

8The codes for the experiments will be made available after publication.

2 % 4000 Cover and Stego objects for training, 2 x 1000 for
validation set and using remaining 2 x 5000 to estimate error
rates. The training database is shuffled after each epoch. In
each batch, we apply data augmentation based on random
mirroring and rotation of the batch images by 90 degrees.
280 epochs are used for training using ADAM optimization
algorithm. The configuration achieving the best validation
accuracy is used as the result of training. For XU-Net, the
classifier is trained starting with randomly initialized weights
(zero mean Gaussian with standard deviation 0.01), initial
learning rate is set to 0.001 and decreased after each 5000
steps to 0.9 times the current value. Remaining parameters of
ADAM are kept to default setting. The size of mini-batch is 32
(16 cover-stego pairs). The configuration of SRNet is the one
proposed in the paper [12], except the training which lasts
for 280 epochs. The size of mini-batch is 16 (8 cover-stego
pairs). The learning rate is set to 0.001 proposed in the paper.
The experiments were run on an Nvidia GPU Quadro P6000
(24 GB of memory). Training XU-Net takes approximately 20
hours at each iteration k£, SRNet 30 hours, and the generation
of an adversarial data-base 5 hours multi-threaded on 36 cores.

c) Attack: The ADV-EMB attack adjusting costs of DCT
coefficients is implemented as described in Section II. Because
XU-Net / SRNet uses a spatial image without rounding as
input, to compute partial derivatives g—é with respect to the
it".DCT coefficient, IDCT is treated as an additional layer
placed before the first layer of XU-Net / SRNet. The partial
derivative is consequently handled by automatic differentiation
using the function tf.gradient () from the TensorFlow
library, and differentiating with respect to the image coded in
the JPEG domain.

Since there is a possibility that embedding using ADV-EMB
fails for some images, which means that even when we modify
all costs p;-", p; of all DCT coefficients, the corresponding
stego image is classified as stego. As suggested in [24], in
this case the costs are all set to their current values without
any modification, which corresponds to setting 3 = 0 in ADV-
EMB.

V. EXPERIMENTAL COMPARISON TO PRIOR ART

This section summarizes an extensive experimental study
of properties of the algorithm and comparison to the prior art.
First the convergence of the algorithm is studied when the set
of assumed and real Eve’s detectors Ae and A, are the same
and when they are different. Then the proposed algorithm is
compared to the prior art: the min max strategy is compared
to “last iteration” and “random iteration” of [24].

The steganalytic detectors used by real Eve inludes XU-
Net, SRNet, and linear classifiers [46] with DCTR [47] and
GFR [48] feature sets. This means that real Eve uses algo-
rithms which Alice has not assumed during derivation of her
embedding function, which proves that resulting embedding
is not overoptimized.The reported error is probability of error
under equal priors, Pe;y = minpy,, 3(Prea + Pryp), with
Prrpa and Prj;p standing for the false-alarm and missed
detection empirical probabilities.



Unless said otherwise, reported error rates always follows
Kerkhoff’s principle, which means that the detector is always
trained after Alice publishes her embedding algorithm.

A. Results

Error rate P, of XU-Net detector for eight iterations of
the algorithm when Alice assumes that Eve will use XU-Net
as detector is shown in the top row of Figure 3. Errors are
shown for different payloads and different quality factors. The
algorithm succeeds at significantly increasing the security in
all cases. For example it makes the stego-images with payload
0.4 bpnzAC in JPEGs with QF 95 undetectable by XU-Net.
For other cases, the undetectability was not reached within
eight iterations, but the improvement in security is still huge.
Notice that the error is not strictly monotonically improving,
which we attribute to (i) the training of detectors does not
reach global minimum and (ii) the ADV-EMB attack might not
succeed in avoiding all detectors — a phenomenon described
in more details below in sections VI-B and VIIL.

The most interesting case occurs when the detectors as-
sumed by Alice and those actually used by Eve differ as
if models used by Alice are not sufficiently rich, she might
anticipate a detectable embedding. Middle row in Figure 3
again shows error of XU-Net, SRNet, DCTR, GFR classifiers
after first eight iterations of the algorithm when Alice assumes
XU-Net (left) or SRNet (right) in her optimization. Notably,
the algorithm still improves the security even in case of
mismatch. We assume that this is due to the fact that both
XU-net and SRNet are sufficiently rich models.

The two bottom rows in Figure 3 compare the proposed
algorithm to “last” and “random” strategies proposed in [24].
We see that the proposed algorithm is markedly better than
both prior art solutions. This should not be surprising as
unlike them, it directly optimizes undetectability measured by
Kerckhoffs’ principle.

Figure 4 shows histograms of the iteration at which attacked
detector of each stego image of Alice’s stego-sets was created.
This distribution is very far from the “last” strategy, which
would contain a single peak at kK — 1 for iteration k. The
distribution is more like a “random” strategy, which should
be uniform on {0,1,2,...,k — 1} at iteration k. The reason,
why the proposed algorithm is more secure than the “random”
strategy is that stego images are not selected randomly, but
deterministically conditioned by a given cover according to
min max criterion.

The security (Pe,, of classifiers) of the algorithm when the
ADV-EMB attack is initialized with UERD costs and A, is
learned using the XU-Net architecture is shown in Figure 5.
The security is similar to that achieved when the ADV-EMB
is initialized with J-Uniward costs. It improves in the case of
mismatch between assumed and real detectors (left figure) and
it also improves over the prior art (right figure).

Finally, the security of spatial steganography with this
algorithm is evaluated on the experiment on figure 6. Here the
algorithm is initialized with HILL [5] costs and A, is learned
using the SRNet architecture. For an embedding rate of 0.5
bpp, the error rate jumps from 12.5% to 20.8% at iteration 8§,
which gives an increase of +8.3%.
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Fig. 3: (Top row) Evolution of the algorithm for an initial-
ization of costs with J-Uniward, A, = A. = {XU-Net}
and (top left) QF75, and for four different embedding
rates (0.1 to 0.4 bpnzAC); or (top right) 0.4 bpnzAC and
two different quality factor (QF 75 and 95). (Second row)
Two experiments with QF 75, 0.4 bpnzAC, J-Uniward,
A, = {XU-Net, SRNet, DCTR, GFR} but where (left) A, =
{XU-Net} and (right) A. = {SRNet} (Two bottom rows) Four
experiments for QF 75, J-Uniward, A, = A, = {XU-Net}
and three strategies min max, last iteration and random, for
each 0.1, 0.2, 0.3 and 0.4 bpnzAC embedding rates.
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Fig. 5: Evolution of P, for XU-Net, an embedding rate of
0.4 bpnzac, QF 75, for an initialization of costs with UERD.
(Left) Evolution of P, of the min max strategy and of two
blind steganalyzers based on GFR and DCTR features. (Right)
Evolution for the 3 strategies minmax, last iteration and
random.
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Fig. 6: Evolution of P, for spatial steganography, with an
initialization of costs with HILL, A, = A. = {SRNet} and
for two different embedding rates of 0.2 and 0.5 bpp.

Note that the theorem doesn’t prove that the P, is strictly
increasing from one iteration to the next for the minmax
strategy; but it holds that the protocol cannot enter an algo-
rithmic pathologic behavior by looping on the same sequence
of classifiers. In this case, the P, curves would exhibit strong

oscillations and limited trends whereas, in our experimental
results, oscillations are limited and a positive trend is always
observed for the min max protocol. In contrast, other protocols
(last iteration and random) do exhibit such behaviors (see
Fig 3).

VI. OPTIMIZING AGAINST MORE ARCHITECTURES

A. Performance analysis

QF 75, 0.4 bpnzAC, J-Uni
A, = {XU-Net, SRNet}

A, = {DCTR, GFR}
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Fig. 7: Evolution of P, for the experiment with double
adversary : where QF 75, 0.4 bpnzAC, J-Uniward, and where
there are two assumed steganalyzers : XU-Net and SRNet, and
with two more real steganalyzers based on DCTR and GFR
features.

- . A, (for QF 75, 0.4 bpnzac, J-Uniward)
Ac || -Oniward | i (SRNet) | {XU-Net, SRNet }
XUNet} [ 70% | + 136% | +7.1% T 135%
{SRNet} 6.3% +5.9% + 6.9% + 10.0%
{DCTR} || 165% | +9.1% | +4.1% + 11.8%
(GFR} || 105% | +146% | +14.8% +18.7%

TABLE I: The first column shows the baseline detectability of
J-Uniward : it gives the error rate of four types of detectors
(in rows). Then, the next three columns show the gain in error
rate Peyr(k = 8) — Porr(k = 0) for three experiments, QF
75 and embedding rate of 0.4 bpnzAC, J-Uniward, and with
min max strategy. First with A, = {XU-Net}, second with
A. = {SRNet} and third with A, = {XU-Net, SRNet} (so
with double adversaries). Bold: evolution of error rate when
there is a match between A, and Ae in the experiment. For
each column, non-bold results are for mismatches.

In the previous section, the set of classifiers 4. used by
Alice contained neural networks with the same architecture
differing only in weights. But as was many-time emphasized,
the set .4, should be as complete as possible, which means
convnets with different architectures. Below, A, contains all
neural networks with XU-Net and SRNet architectures. This
was achieved by extending the set F* in each iteration
by two networks, one with XU-Net and one with SRNet
architecture. Outputs of these detectors are always calibrated
as was described above in IV-B. Otherwise, the experimental
settings and the algorithm are unchanged.

The error of four steganalyzers (DCTR and GFR are not in
A.) for the first eight iterations when the algorithm optimized



embedding message with payload 0.4 bpnz in JPEG images
with QF 75 is shown in Figure 7. The behavior is similar
as observed above as the algorithm improves significantly
the undetectability. Table I summarizes the increase of the
undetectability (error rate) against J-Uniward as measured by
different classifiers (in rows) when 4. contains either XU-
Net, SRNet, or both (in three last columns). In line with
theoretical expectations, Algorithm 1 with A, containing both
architectures achieves highest undetectability (minus noise)
with respect to all four tested detectors. Specifically, the
detectability by SRNet presently considered the most powerful
detector jumps from 6.3% to 16.3%, which is almost a three
fold improvement in security. This also means that, at the time
of writing, the proposed algorithm delivers the most secure
steganographic algorithm.

B. Compositions of training sets

k=1 k=2 k=3 k=4

§1(10
g
2 504 |
=}
2 | I|I |I||
Qq T T T T

0 5 0 5
. k=5 k—ﬁ k=7 k—8
}i\ilOO 1T 1T
5 . =0 Ziy  mmm Zig
2 50
8* | TIJ_I_I_IJJL_I_LLLLI_‘L_LIJ_LIJ_[
< A
£ 0Lrannll

0 5

Index of the adversarlal data set Z’ for 1terat10n k where 0<i<k

Fig. 8: Composition of )* set with two steganalyzers, an
embedding rate of 0.4 bpnzac, QF 75. Green bar represent
the proportion of stego chosen among Z° (so with the costs
of J-Uniward). For ¢ > 0, blue (resp. red) bars represent the
proportion of stego chosen among Z%,; (resp. Z5p), i.e. the
adversarial stego contents attacking f;{l} (resp. fg;?l)

Figure 7 showing P, of all steganalyzers with respect
to iteration on the algorithm suggests that Alice should be
sending stego-images created by ADV-EMB attacking SRNet,
as these detectors produces lowest error. Figure 8 shows
distribution of algorithms used to create stego-images for each
iteration. Surprisingly, even though SRNet has lower error rate,
stego-images are consistently created by attacking XU-Net,
which is everything but intuitive.

We believe that this problem stems from the weakness
of ADV-EMB attack, which calculates gradients of detectors
outputs only once during embedding (see details in Section II.
This can lead to cases, when by trying to evade one classifier
(e.g. SRNet) it can make the image detectable by a different
classifier (e.g. XU-Net). This is measured in terms of trans-
ferability of attacks, defined as

« Tk, = P(ft, (zXU)<05yf N(z% ) < 0.5),

« Tsp=P( §(U1(ZSR ) < 0.5|fsp' (z&r) < 0.5),
which expresses the probability that stego-images created by
ADV-EMB against XU-Net will be undetectable by SRNet and
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Fig. 9: (Left) Evolution of the transferability 7%, T% over
iteration k& of adversarial data bases Z%,, Zk,. (Right)
Evolution of the frequency of failure for multiple embedding
rates

vice versa. Transferability shown in Figure 9 for each iteration
is generally very low, but that of ADV-EMB attacking XU-Net
is generally higher than that of attacking SRNet. This implies
that ADV-EMB has to be somehow adapted to attack a set of
classifiers instead of just one, but this work is clearly outside
of the scope of this paper.Figure 9 shows the probability of
failure of ADV-EMB attack, which generally increases as the
algorithm progresses, as the distribution of cover images (and
its support) is better captured as illustrated in Figure 1.

VIL

Ref. [43] introduced to steganography a concept of Curricu-
lum Learning (CL), which is a technique used to improve the
learning of a classifier for low payloads by training them on
easier problems. We have experimented this approach by ini-
tializing learning of a classifier at iteration k& with parameters
of the classifier trained at previous iteration k—1. Alternatively
and as used in all experiments above, the classifiers were
initialized completely at random.

Figure 10 shows error rate of both algorithms when A,
contains only XU-Net detectors. The experiment used JPEG
images with QF 75, 0.4 bpnzAC, and costs in ADV-EMB
were initialized by J-Uniward. The experimental results show
that the algorithm where curriculum learning is not used
achieved lower error rate than the one using it. We believe
that the detectors with curriculum learning might be stuck in
suboptimal local minimum.

NOTE ON THE INITIALIZATION OF CNNS

VIII. CONCLUSION AND PERSPECTIVES

This paper builds upon equivalence of Kerckhoffs’ principle
and Stackelberg equilibrium of a game, where Alice is the
leader, and which corresponds to the optimization problem
where Alice minimizes the accuracy of the best detector of
Eve — a min max optimization. Since direct optimization of
this criterion is computationally infeasible, we simplify the
optimization problem by giving Eve an unrealistic advantage
— she can choose her detector after she observes Alice’s
image. We advocate this simplification to be fair, as it is used
exclusively by Alice during optimization of her steganographic
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Fig. 10: Effect of the initialization of CNN on the P, of
the algorithm (with XU-Net, initialization of costs with J-
Uniward, QF75, min max strategy and an embedding rate of
0.4 bpnzAC). (Left) f* was seeded by f*~!, and (right) f*
is randomly seeded.

scheme and the evaluation of the security of resulting algo-
rithm is fair and done as is standard within the field.

Although the proposed algorithm is general, the realization
used in this paper relied on two recent innovations: con-
volutional neural networks implementing a general class of
steganographic detectors and adversarial embedding capable
of embedding a message while being undetectable by a given
detector. The extensive experimental results demonstrate the
superiority of the proposed algorithm with respect to prior
art in JPEG domain. Specifically, the most secure version
increases the undetectability of messages with payload 0.4
hidden in JPEGs of SRNet by 10% comparing to J-Uniward:
it jumps from 6.3% to 16.3%. This increase in the security
should not be surprising, since the presented algorithm just
automatically plays the game, which the community plays
implicitly since the birth of the field.

A weakness of this protocol is its dependency to the source
of images : for example, if we execute the protocol for a
constant size of images, we can’t generate stego images for
images with different size; we would have to re-run the entire
protocol.

This paper just scratched the possibilities and we expect
that stronger attacks than ADV-EMB, whose some limitations
were identified, will lead to more secure steganography. In
the same time, the proposed algorithm can be used to verify
the completeness of steganalyzers, as when coupled with
powerful attacks [19], [17], it can automatically identify their
weaknesses.
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