
HAL Id: hal-02925945
https://hal.science/hal-02925945

Submitted on 31 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation-based physics reasoning for consistent scene
estimation in an HRI context

Yoan Sallami, Séverin Lemaignan, Aurélie Clodic, Rachid Alami

To cite this version:
Yoan Sallami, Séverin Lemaignan, Aurélie Clodic, Rachid Alami. Simulation-based physics rea-
soning for consistent scene estimation in an HRI context. 2019 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), Nov 2019, Macau, China. pp.7834-7841,
�10.1109/IROS40897.2019.8968106�. �hal-02925945�

https://hal.science/hal-02925945
https://hal.archives-ouvertes.fr


Simulation-based physics reasoning for consistent scene estimation in an
HRI context

Yoan Sallami1, Séverin Lemaignan2, Aurélie Clodic1, Rachid Alami1

Abstract— Reasoning about spatial and geometric relations
between objects in a tabletop human-robot interaction is a
challenge due to the perception not being always consistent:
objects placed on a table seem to be slightly in the air; they
overlap; they disappear due to occlusions. Yet, interpreting and
anchoring perceptual data in a physically consistent estima-
tion of the scene is a crucial ability for humans, and thus
robots in HRI context. In this paper we present a simulation-
based physics reasoner integrated in a lightweight situation-
assessment framework called Underworlds, that allows the
robot to stabilize objects and build at run-time a consistent
estimation of the scene, even for entirely hidden objects, while
inferring the actions performed by its human partner.

I. INTRODUCTION

This work is part of an initiative to incrementally build and
refine a software architecture for a cognitive and interactive
robot which achieves collaborative activities with human
partners [9].

In this context we present a situation-assessment com-
ponent which builds a consistent estimation of the scene
observed by the robot with the help of a physics engine.
During the interaction, the physics engine is used in real-time
to reason about objects occlusions, gravity, collisions and
other associated geometric features, such as the surfaces on
which objects are laid or the contents of boxes or containers.

Besides, the system needs to deal with perception issues
specifically arising when humans manipulate objects in the
robot’s vicinity. Indeed, actions on objects like Pick,Place
or Release can lead to perceived violations of spatial con-
straints (like an object left ’floating’ in the air because it
is not perceived anymore by the robot once inside of a
container) that are naturally resolved with the help of physics
reasoning. Along the same lines, our approach makes it
possible to compute allocentric (ie viewpoint-independent)
spatial relations like isOnTop or isIn that play an important
role in scene understanding..

As such, our contribution is an open-source, modular
situation-assessment component called physics reasoner1 as
a plugin for the lightweight situation-assessment framework
Underworlds2 [8]. It is fully integrated with ROS and only
requires URDF files to work. This component use an efficient
deterministic physics engine, Bullet RT Simulation [2] to

*This work was supported by the european H2020 project MuMMER
(grant 688147)

1Authors are with LAAS-CNRS, CNRS, Toulouse, France
firstname.surname@laas.fr

2Author is with Bristol Robotics Lab, University of the West of England,
Bristol, United Kingdom severin.lemaignan@brl.ac.uk

1https://github.com/underworlds-robot/uwds physics clients
2https://github.com/underworlds-robot/uwds

stabilize and infer poses for out-of-sight objects in human-
robot tabletop interaction settings.

In such a context, objects can be held by a human or
the robot or can be placed on a surface (a table, a box, the
floor) or on another object, or can be put in a container (also
perceived as an object). Let us assume that the robot is able to
identify and localize the objects using an RGBD perception
system. The physics-based reasoner presented here allows
not only to track and maintain a symbolic state of the
environment in a manner that is more robust to perception
inaccuracies, but also to estimate it even in case of object
occlusions, as commonly arising in dynamic environments.

In this this paper, we present a high level reasoning
pipeline which analyzes geometric violations and corrects the
objects’ poses, even when out of sight. It has been designed
as an extension of a pre-existing perception pipeline to pro-
vide corrected object poses, interpretation of the scene spatial
configuration, and recognition of human actions by analyzing
the transition of objects from physically plausible to not
physically plausible states. Examples of such capabilities
include: inferring that a hidden object has likely fallen onto
the floor (Fig. 6a); inferring that an object is being transferred
from one container to another (Fig. 6c). Based on the output
of the reasoner, we can also compute estimations of other
key information such as visibility or reachability [11] for
non-observable objects: the physics-based reasoner makes it
possible for the robot to continue to estimate the visibility
or reachability of an object by its human partner even if the
object is no more visible to the robot.

In the next section, we discuss the rationale for equipping
the robot with such reasoning ability and we briefly review
related work on similar simulation-based reasoners.

In section III we will present the design choices and the
complete architecture with an example of implementation.
In section IV we will present the implementation of the
algorithm. We then present a study demonstrating the effec-
tiveness of the system with results on challenging situations
(Section V). Section VI discusses the main findings of this
research and outlines future work directions.

II. RELATED WORK

Interpreting visual information relying on physical reason-
ing is a foundational cognitive ability that allows humans to
anchor perception information into a consistent model of the
world [16]. Recent research [17] explores the hypothesis that
humans have their own ‘physics engine’ which works in a



similar way as a video game engine by simulating Newtonian
principles in real-time. The authors emphasize the similarity
between the human brain and a real-time physics engine
which would use rules and heuristics.

In robotics, rigid body simulation is often sufficient to
cover a large number of use cases and several mature
and open-source physics engines (ODE, Bullet, PhysX) are
readily available. Simulation-based techniques for on-line
spatial inference are today viable options, and appear as a
natural choice to implement a simple yet effective physical
intuition in a HRI context.

Generating the symbolic facts and events in real time is
indeed a key requirement for a HRI system, as it serves
multiple purposes for a range of on-line tasks, like grounding
verbal expressions [7] or symbolic task planning [6].

In the literature, simulation-based physics reasoning is
mostly used for planning purposes. [13] integrates collision,
friction, center of gravity and forces to planning. In [14],
Mösenlechner and Beetz use physics simulation to sample
hypothetical states of the world based on a symbolic plan
in order to parametrize high level actions. In a related
domain, physics reasoning has also been used to predict the
effects of an action [5]. In [12], [3], the authors suggest
however that simulation-based physics reasoning is suited to
real use case, due to the non-deterministic behavior of its
predictions. As the authors of [3] explain, pure simulation-
based reasoning is often impractical, and knowledge-based
rules are needed in order to make the simulation usable.
We claim that even if it is not accurate, a simulation with
minimal symbolic reasoning is sufficiently correct to allow
for a consistent estimation of spatial high-level symbolic
facts and events needed to supervise a task. We show it is
also sufficient to prime the location of out-of-sight objects to
the robot, enabling more efficient search procedures when the
robot needs to find a specific object (e.g. ‘the robot knows
for sure that the object is on the floor’). In [4], physical
reasoning is used to enhance knowledge about manipulation
tasks, by acquiring simulated real world data in a game
engine, but not to enhance execution in the presence of
real humans. In contrast, our reasoner is able to manage
occlusions and complex object interactions while the human
is collaborating with a robot, also inferring the potential
geometric inconsistency caused by the human’s actions.

III. DESIGN AND ARCHITECTURE

In this section we first present briefly the specifics of
Underworlds, followed by the design choices we have made
regarding the physics engine. We then introduce our entire
reasoning pipeline.

A. Cascading situation-assessment

Underworlds is a novel framework which focuses on main-
taining and distributing multiple (and possibly alternative)
spatial (based on 3D bounding boxes and/or 3D meshes) and
symbolic models of the physical world (based on events). It
works as a distributed system where a set of loosely coupled
clients provide ad-hoc reasoning capabilities (See Fig. 1).

Fig. 1: Underworlds is a client/server architecture which aims
to maintain and distribute several world states. Since world
states share the same structure, it is possible to dynamically
reconfigure the reasoning pipeline and to adapt it to a new
task. Meshes are centrally stored by the server and accessible
on-demand, avoiding data bottlenecks.

This approach allows to dynamically combine situation-
assessment components depending on the task requirements;
and to implement quickly new reasoners, as presented in [8].
In many ways, Underworlds can be viewed as a set of world
states where geometric and symbolic models are tightly
coupled. In order to represent the geometry of the scene,
Underworlds uses a scene graph with each node referring to
its parent with a position, velocity and acceleration (plus their
respective covariance) and a timeline of temporal events,
to represent symbolic temporal information about the world
which can change over time.

In its current version, Underworlds is fully integrated
with ROS, has a Python and C++ client API, and benefits
from zero-copy pointer passing for C++ clients (to make
communication time to distribute the data negligible with
respect to the reasoning time in the clients). This allows
to cascade reasoners without worrying about intra-process
communication. This type of architecture can be viewed as an
extension of the traditional low-level perception pipeline of
an intelligent robot, allowing to design in the same modular
way high level reasoning by cascading modular components.

Since Underworlds maintains in parallel multiple models
of the world, we can have access at any time to raw
perception and to any stage of the reasoning pipeline either
to reason about multiple world states or for introspection
purposes.

B. Physics engine

We decided to follow [18] and we have chosen the Bullet
RT physics engine, because (1) game-oriented physics engine
are optimized towards large scale simulations (hundreds of



bodies), and (2) contrary to usual simulation in robotics,
speed and stability are preferable to accuracy in our context.
Besides, Bullet is already integrated into ROS (the TF library
uses Bullet datatypes, for instance), which facilitates future
reuse of this work. When it comes to real-time physics
simulation, Bullet RT Physics is itself decentralized. This
is an advantage in our case as different specialized client
reasoners can use it without having to rely on a central server
– every client can instantiate a physics server as needed, and
distribute its output to other clients, relying on Underworlds
to this effect.

Note that choosing the right simulation engine depends
on the exact type of reasoning and type of objects (ie rigid,
deformable, liquids) required by the environment. As such,
others physics engine can be used like PhysX, ODE or
MuJoCo. Since Underworlds provides an abstraction layer,
different simulation engines can be used in different clients
depending on the needs.

C. Input data

The input of our physics reasoner component is a ROS
URDF file and a 6D pose tracker for objects of interest. To
generalize to any perception algorithm, Underworlds uses
a special kind of clients called providers which bring the
scene data into the system (e.g. convert the 6D object pose
into a node of the scene graph, convert the object model to
a 3D bounding box or a 3D mesh, or bind an event from an
external reasoner into the timeline).

In this work, we rely on simple perception algorithms to
put the focus on the underlying concepts. As such, perception
is simplified by using either objects with AR tags or objects
whose unique color can be used to cluster and segment a
RGBD point cloud (in that later case, the detected objects
have a fixed orientation).

D. Reasoning pipeline

In Underworlds, the clients are defined by their roles. The
providers bring data into the system in the form of ’worlds’
(nodes in a scene graph and an attached timeline of events),
the filters are reasoners that alter/enhance existing worlds, the
monitors generate symbolic knowledge from the worlds and
the readers use the data to provide external functions like
introspection or to bind the output to an external system.
However, that classification is flexible and filters can also
generate symbolic knowledge from the scenes if it is relevant
to their reasoning (see Fig 1).

As previously mentioned, Underworlds can be seen as a
high level reasoning extension of the traditional low-level
perception pipeline. During the first stage, providers rely on
the existing perception pipeline to detect objects and extract
relevant spatial features, typically reading from ROS topics.
providers can also collate additional static descriptions of
the environment from a range of 3D file formats, including
URDF. We choose to have one provider per modality (allow-
ing for asynchoronous updates between modalities) which
outputs a simple world (containing only a few objects). The

world merger node asynchronously fuses these worlds into
a single merged world.

Finally the physics reasoner is triggered after each update
of the merged world, to correct object poses, infer out-of-
sight objects poses and humans’ actions. This results in a
final, stabilized, world called merged stable (Fig. 2).

IV. IMPLEMENTATION

In this section we present the details of the implementation
and the algorithms. First we introduce the predicates used in
the systel and how they are computed. Then, we describe the
algorithm used to compute the output scene (merged stable)
and to infer the actions that explain physical inconsistency
(Section IV-D).

A. Predicates

In order to build a physically plausible estimation of the
scene and infer actions3, this component computes at each
reasoning step two predicates for each object:

• isPerceived(object) true when the object was recently
seen by the robot.

• isPhysicallyP lausible(object) true when the object
is in a stable configuration with respect to the scene.

Based on these predicates, the system is able to infer the
following actions (to explain physical inconsistencies) :

• Pick(object) when an object is picked up
• Place(object) when an object is placed on a surface
• Release(object) when an object is not held anymore
Then it computes allocentric spatial relations, based on a

physically plausible estimation of the scene (Section IV-C):
• isIn(object, object) true when an object contains an-

other object
• isOnTop(object, object) true when an object lies on a

surface

B. Computation of stability

In order to know if an object is at a physically plausible
state, we assume that if the object is at a stable state in the
simulation, then the configuration is physically plausible.

To estimate whether an object is in a stable configuration,
we execute as fast as possible a number of simulation steps
in the future. The number of steps to execute is given by:

nsteps = Phorizon/Sstep (1)

Where Phorizon is the prediction horizon and Sstep the
duration that one step simulates. The computation time of
the simulation relies heavily on a trade-off between the
simulation step (which needs to be small to prevent missed
collisions) and the prediction time (which needs to be long
enough to e.g. give time to objects to fall).

In order to know if an object is in a physically plausible
state (the value of the predicate isPhysicallyP lausible), we

3The predicates used are necessary for this reasoner but not sufficient in
a HRI context. Other Underworlds clients presented in [8] are in charge
of computing isV isible or lookAt that are essential when reasoning with
humans



Fig. 2: The reasoning pipeline used in this experiment. Dur-
ing the first stage, the providers convert raw perception data
into Underworlds’s scene graph nodes; the nodes are merged
into one (complete) world model; this ’raw’ world model is
fed to the physics reasoner, which generates an enhanced
world model (e.g. spatial inconsistencies are corrected).

monitor the divergence in position between the position of
the object at the end of the simulated steps and the perceived

position (
−−−−−−→
dsim/perc) (Alg. 1 ). This approach is similar to the

one used by [12]. However, in our case, we evaluate it at each
step of the simulation because we need to avoid as much as
possible disturbances in the simulation scene caused by the
objects falling during the first steps of the process (before
being considered as not stable). To do so we override the
position and velocity of the objects considered as unstable
with perception data as soon as considered unstable.

Algorithm 1 isPhysicallyP lausible computation

for nsteps (see Eq. 1) do
step simulation for Sstep seconds
for all object in the input scene graph do

if
∥∥∥−−−−−−→dsim/perc(object)

∥∥∥ > Dmax
sim/perc then

isPhysicallyP lausible(object) = false
end if
if not isPhysicallyP lausible(object) then

override object simulation with perceived data
for all objectcontained in object contents do

move objectcontained
simulation of

−−−−−−→
dsim/perc(object)

end for
end if

end for
end for

C. Support and contents computation

Since the object bounding boxes are corrected by the
simulation engine (the meshes that overlap are popped up
and the floating objects are placed on their support) we can
compute the contents and placement support relations with
an efficient classic approach based on 3D world bounding
boxes tests as used in [15] (Fig. 3).

If an inconsistency is generated by the perception (one
mesh perceived inside another) the simulation engine will
correct it, thanks to the penetration and collision tests which
are performed by Bullet.

Fig. 3: The allocentric relations isOnTop and isIn are
computed based on simple and efficient bounding boxes test.

D. Output scene computation and action inference

To generate the output scene (Alg. 2), we apply the
following reasoning: if the object is in a physically plausible
configuration at the end of the simulation steps, we use



the resulting computed pose; otherwise use the perceived
pose. In that case, and if the object is left in a physically
implausible state, we seek to explain the inconsistency by
looking for a human action that would explain the state.

In addition, when an object’s position jumps out (i.e. its
simulated displacement

−−−−−−→
dperc/prev is greater than a threshold

Dmax
perc/prev), we also move contained objects as well, if any.
The inference of the human actions builds on the assump-

tion that physical inconsistencies are caused by a human ma-
nipulating objects. Specifically, when an object is perceived
as being in a non-plausible state, we apply the heuristics
described in Fig. 4.

Fig. 4: The state-machine used to infer human actions based
of the object state. The consistency is checked by monitoring
the distance between what is actually perceived and the
internal simulation of the robot (See Alg. 1).

E. Parameters
Table I lists the reasoner parameters used in our exper-

iment. In order to have a correct behavior, the prediction
horizon needs to be long enough to make the objects fall
while been short enough to speed up the reasoning process.
These values depend on the CPU/GPU combination used,
and, combined with the de facto non-deterministic behaviour
of Bullet’s collision detection, our results might not be
precisely reproducible.

V. EXPERIMENTATION AND RESULTS
In this section, we present the study setup (Section V-A)

and several challenging physical situations that our reasoner
can process. Note that the specific objects used in this study
are simple (plain, colorful boxes and cups). The reasoner
is however entirely decoupled from the perception (through
Underworlds), and as such, our findings would apply to any
objects, as long as the robot perception stack is able to
acquire and track their 3D meshes.

Algorithm 2 Output scene computation

for all object in the input scene graph do
if object last observation < Tmax

perceived then
isPerceived(object) = true

else
isPerceived(object) = false

end if
if isPerceived(object) = true then

Place object where perceived
for all objectcontained in object contents do

if
∥∥∥−−−−−−→dperc/prev(object)

∥∥∥ > Dmax
perc/prev then

move objectcontained by
−−−−−−→
dperc/prev(object)

end if
end for

end if
end for
Update isPhysicallyP lausible (Alg. 1)
for all objects in input scene graph do

if isPerceived(object) and not
isPhysicallyP lausible(object) then

Set object to perceived pose
else

Set object to simulated pose
end if

end for
Compute isOnTop and isIn on a physically plausible
world (See Section IV-C)

TABLE I: Reasoner parameters used in the experiment

Parameter Value Description
Tmax
perceived 0.7[s] Perceived max duration

Dmax
sim/perc

0.045[m] Simulation tolerance
Dmax

perc/prev
0.032[m] Perception tolerance

Phorizon 0.08[s] Prediction horizon
Sstep 0.00416[s] Simulation step

A. Experimental setup

For this study, we use a PR2 robot, with a Kinect2
placed on its head as the only camera input. The head is
static and directed towards the table, where the interaction
takes place. From the point of view of the robot, a part
of the scene is occluded by the boxes and the table (see
Fig. 5). We have used this configuration as it is a classical
setup for tabletop human-robot collaboration. The perception
algorithms run on a laptop computer to which the RGBD
sensor was directly plugged and the reasoning pipeline runs
on a desktop computer. Here the aim is to have the perception
pipeline and the reasoning pipeline running on their own
nodelet manager.

B. Objects model

For this experience, object models are based on hand-
crafted URDF files, that include collision/inertial information
and a CAD model like the one used to describe the robots.



(a) The red circle indicates where the Kinect2 RGBD sensor is
positioned, and the red rectangle indicates the camera view of the
sensor. The orange circle indicates where interaction takes place,
and the blue circle where the human is placed.

(b) From the point of view of the robot, a part of the scene is
occluded (colored in red in the picture).

Fig. 5: The experimental setup

They have only one main link, but could be more complex
with moving parts described as a set of joints and links. For
containers, the collision model is approximated by a set of
boxes (one per wall), as Bullet would otherwise approximate
the mesh to its convex hull, ’closing’ the container, and
preventing other objects to be effectively contained in it.
In future work, meshes can be estimated on-line, from the
sensor point cloud [10], and fed directly to Underworlds,
without having to rely on handcrafted CAD models.

C. Selected challenging situations
Fig. 6 presents different qualitative results for challenging

interactions. In these use cases, reasoning about physics
and gravity is crucial in order to correctly infer over time
positions and velocity of the objects. These situations have
been chosen because they could occur in a classic tabletop
human-robot interaction setting.

In such dynamic situations, the physics-based reasoner
demonstrates that it can not only correct the scene geometry
and maintain a symbolic state of the environment in a robust
manner but also estimate the object poses even if completely
hidden.

VI. SUMMARY AND FUTURE WORK

We have presented a preliminary work on a simulation-
based physics reasoner integrated in a situation-assessment

framework called Underworlds and illustrated how it can be
already used to provide a more physically plausible world
state in human-robot interaction context, as it is able to deal
with sensory data inaccuracies and potential inconsistencies
between different sensor sources by correcting objects poses.
It is also able to estimate the effects of the perceived object
motions on completely hidden objects while inferring the
actions performed by the human partner.

We discuss below some limitations of the system in its
current preliminary state as well as future work. First we
introduce how we could enhance the simulation engine with
stochastic reasoning and secondly we discuss the future steps
of the reasoning pipeline.

a) Uncertainty and simulation engine limits: Bullet
does not handle uncertainty and consequently we do not use
the covariances of the scene graph. However, since Under-
worlds handles uncertainty in its data-structure we could, in
the future, benefit from stochastic physics simulation like the
one presented in [1] to benefit from a more accurate friction
model. However, even with stochastic models, reasoning
about rolling objects which are chaotic and unpredictable in
their behavior, will still be an issue. Due to this constraint we
have chosen to have a high rolling friction in the simulation
which almost disables rolling behavior.

b) Enhancing tracking algorithms: The reasoning
pipeline presented above takes as input properly identified
and localised objects: we assume that the low-level per-
ception pipeline takes care of performing the appropriate
tracking and filtering stages, and the physics reasoner does
not concern itself with dealing with e.g. noisy perception, as
this would be the role of the trackers’ filters.

Combined tracking and filtering is typically performed
with a Kalman filter, that takes into account the motion
of the objects and noisy observations to predict a more
accurate object position and velocity. The filter has however
no information about the physics of the scene, and more
importantly, whenever the object is occluded, the filter cannot
update its motion model. As our pipeline can infer the pose of
out-of-sight objects, it would seem that a natural extension of
the existing low-level tracking algorithm could benefit from
a simulation ’feedback’ from the physics reasoner, to update
the motion models of all the objects, even the occluded
ones. Such a physics-aware Kalman filter would lead to
enhanced object tracking while smoothing the object motion
for the physical reasoner. This approach would rely on a
close interaction loop between the physics reasoning and the
low-level perception. We plan to investigate this idea in a
near future.

c) Exploiting human model for action detection:
In classical action detection tasks, the aim is not only
to know, for example, that an object has been picked,
but also who picked it, and to generate a triplet <
subject, action, object >. Classically, these two tasks are
handled together, by jointly classifying temporal human
motion with respect to objects. We believe that it is however
easier when we already known that an object is in an
inconsistent state, as the generated event (Pick in our case)



(a) In this example, the robot first perceives the blue box and the orange cup. The human moves the box that hides the cup, and pulls it
back until the cup falls. Even though the robot did not see the cup falling, the reasoner infers that it is on the floor.

(b) Here, the yellow ball is first seen above the box, then the human release it. The reasoner correctly infers the location of the ball.

(c) In this example, the yellow ball is known to be in the green box. The human empties the green box into the blue one. The reasoner
successfully infers that the ball is now inside the blue container, without ever seeing the ball.

(d) In this example, the reasoner successfully estimates the movement of the yellow ball, while inside the blue box.

(e) This last example illustrates one of the limitations of the system: the human intentionally hides the cup behind himself; the reasoner
fails to infer that it is still held, and instead computes that the cup must have fallen to the floor.

Fig. 6: Examples of challenging inferences. Only the RGBD sensor mounted on the PR2 head is used. The pink trajectories
represent the observed trajectories, with the corresponding bounding boxes in pink; the green trajectories are those computed
by the physics reasoner (and accordingly, the green bounding boxes).



can trigger a ’human identification’ task (identifying who
picked up the object, by matching the hands closest to
the object to their owner – or reporting an inconsistency
if no human is in the vicinity). To know if an object is
actually released, we could monitor the distance between
the hands and the object, if at least one hand is near we
keep the attachment, otherwise we release it and output the
object simulated pose. We will investigate this solution in
the near future. This would solve the limitations of the actual
algorithm when the object is occluded after being hold (See
Fig. 6e) by adding a new filter that manage the attachment
of objects to humans/robot hands.

ACKNOWLEDGMENT

This work is funded by the European Horizon 2020 project
MuMMER (grant 688147). Many thanks to Matthieu Herrb
and Jules Waldhart for their support during the implementa-
tion of the system and the setup of the study.

REFERENCES

[1] Anurag Ajay, Jiajun Wu, Nima Fazeli, Maria Bauza, Leslie P Kael-
bling, Joshua B Tenenbaum, and Alberto Rodriguez. Augmenting
physical simulators with stochastic neural networks: Case study of
planar pushing and bouncing. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3066–
3073. IEEE, 2018.

[2] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics
simulation for games, robotics and machine learning, 2016–2018.

[3] Ernest Davis and Gary Marcus. The scope and limits of simulation in
cognitive models. CoRR, abs/1506.04956, 2015.

[4] Andrei Haidu, Daniel Beßler, Asil Kaan Bozcuoğlu, and Michael
Beetz. Knowrobsim—game engine-enabled knowledge processing
towards cognition-enabled robot control. In 2018 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages
4491–4498. IEEE, 2018.

[5] Lars Kunze and Michael Beetz. Envisioning the qualitative effects
of robot manipulation actions using simulation-based projections.
Artificial Intelligence, 247:352–380, 2017.

[6] Raphaël Lallement, Lavindra De Silva, and Rachid Alami. HATP: An
HTN Planner for Robotics. In 2nd ICAPS Workshop on Planning and
Robotics, Portsmouth, United States, June 2014.

[7] Séverin Lemaignan, Raquel Ros, Emrah Akin Sisbot, Rachid Alami,
and Michael Beetz. Grounding the Interaction: Anchoring Situated
Discourse in Everyday Human-Robot Interaction. 2012 International
Journal of Social Robotics, 4(2):181–199, April 2012.

[8] Séverin Lemaignan, Yoan Sallami, Christopher Wallbridge, Aurélie
Clodic, Tony Belpaeme, and Rachid Alami. UNDERWORLDS:
Cascading Situation Assessment for Robots. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Madrid, Spain, October 2018.

[9] Séverin Lemaignan, Mathieu Warnier, E. Akin Sisbot, Aurélie Clodic,
and Rachid Alami. Artificial cognition for social human–robot
interaction: An implementation. Artificial Intelligence, 247:45–69,
2017.

[10] Zoltan-Csaba Marton, Dejan Pangercic, Nico Blodow, Jonathan
Kleinehellefort, and Michael Beetz. General 3d modelling of novel
objects from a single view. In 2010 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages 3700–3705.
IEEE, 2010.

[11] Grégoire Milliez, Matthieu Warnier, Aurélie Clodic, and Rachid
Alami. A framework for endowing an interactive robot with reasoning
capabilities about perspective-taking and belief management. In The
23rd IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN), pages 1103–1109. IEEE, 2014.

[12] Lorenz Mösenlechner and Michael Beetz. Fast temporal projection
using accurate physics-based geometric reasoning. In 2013 IEEE
International Conference on Robotics and Automation (ICRA), pages
1821–1827. IEEE, 2013.

[13] Lorenz Mösenlechner and Michael Beetz. Using physics- and sensor-
based simulation for high-fidelity temporal projection of realistic robot
behavior. In 19th International Conference on Automated Planning
and Scheduling (ICAPS’09), 2009.

[14] Lorenz Mösenlechner and Michael Beetz. Parameterizing actions to
have the appropriate effects. In 2011 IEEE International Conference
on Intelligent Robots and Systems (ICRA), pages 4141–4147, 2011.

[15] E Akin Sisbot, Raquel Ros, and Rachid Alami. Situation assessment
for human-robot interactive object manipulation. In 2011 IEEE Inter-
national Conference on Robot and Human Interactive Communication
(RO-MAN), pages 15–20. IEEE, 2011.

[16] Elizabeth S Spelke and Katherine D Kinzler. Core knowledge.
Developmental science, 10(1):89–96, 2007.

[17] Tomer Ullman, Elizabeth Spelke, Peter Battaglia, and Joshua B. Tenen-
baum. Mind games: Game engines as an architecture for intuitive
physics. Trends in Cognitive Sciences, 21, 06 2017.

[18] Erik Weitnauer, Robert Haschke, and Helge Ritter. Evaluating a
physics engine as an ingredient for physical reasoning. In Interna-
tional Conference on Simulation, Modeling, and Programming for
Autonomous Robots, pages 144–155. Springer, 2010.


