N
N

N

HAL

open science

Learning any memory-less discrete semantics for

dynamical systems represented by logic programs

Tony Ribeiro, Maxime Folschette, Morgan Magnin, Katsumi Inoue

» To cite this version:

Tony Ribeiro, Maxime Folschette, Morgan Magnin, Katsumi Inoue. Learning any memory-less dis-
crete semantics for dynamical systems represented by logic programs.
10.1007/s10994-021-06105-4 . hal-02925942v5

HAL Id: hal-02925942
https://hal.science/hal-02925942v5

Submitted on 13 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Machine Learning, 2021,

https://hal.science/hal-02925942v5
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Learning any memory-less discrete semantics for
dynamical systems represented by logic programs

Tony Ribeiro - Maxime Folschette -
Morgan Magnin - Katsumi Inoue

Received: date / Accepted: date

Abstract Learning from interpretation transition (LFIT) automatically con-
structs a model of the dynamics of a system from the observation of its state
transitions. So far the systems that LFIT handled were mainly restricted to
synchronous deterministic dynamics. However, other dynamics exist in the
field of logical modeling, in particular the asynchronous semantics which is
widely used to model biological systems. In this paper, we propose a model-
ing of discrete memory-less multi-valued dynamic systems as logic programs
in which a rule represents what can occur rather than what will occur. This
modeling allows us to represent non-determinism and to propose an exten-
sion of LFIT to learn regardless of the update schemes, allowing to capture a
large range of semantics. We also propose a second algorithm which is able to
learn a whole system dynamics, including its semantics, in the form of a single
propositional logic program with constraints. We show through theoretical re-
sults the correctness of our approaches. Practical evaluation is performed on
benchmarks from biological literature.

Tony Ribeiro

Independant Researcher

Université de Nantes, Centrale Nantes, CNRS, LS2N, F-44000 Nantes, France

National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
E-mail: tony.ribeiro@ls2n.fr,

Maxime Folschette
Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

Morgan Magnin
Centrale Nantes, Université de Nantes, CNRS, LS2N, F-44000 Nantes, France
National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Katsumi Inoue
National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

2 Tony Ribeiro et al.

Keywords inductive logic programming - dynamic systems - logical
modeling - dynamic semantics

1 Introduction

Learning the dynamics of systems with many interactive components becomes
more and more important in many applications such as physics, cellular au-
tomata, biochemical systems as well as engineering and artificial intelligence
systems. In artificial intelligence systems, knowledge like action rules is em-
ployed by agents and robots for planning and scheduling. In biology, learning
the dynamics of biological systems corresponds to the identification of influence
of genes, signals, proteins and molecules that can help biologists to understand
their interactions and biological evolution.

In modeling of dynamical systems, the notion of concurrency and non-
determinism is crucial. When modeling a biological regulatory network, it is
necessary to represent the respective evolution of each component of the sys-
tem. One of the most debated issues with regard to semantics targets the
choice of a proper update mode of every component, that is, synchronous [25],
asynchronous [55] or more complex ones. The differences and common features
of different semantics w.r.t. properties of interest (attractors, oscillators, etc.)
have thus resulted in an area of research per itself [19,38,6]. But the biolo-
gists often have no idea whether a model of their system of interest should
intrinsically be synchronous, asynchronous, generalized, or another semantics.
It thus appears crucial to find ways to model systems from raw data without
burdening the modelers with an a priori choice of the proper semantics.

Prediction

Abstraction Learning Model <-m

Time Series Data State Tr Algorithm 2| of the Dynamics

Decision
Making

~
\ Query

LFIT Answering

Fig. 1: Assuming a discretization of time series data of a system as state
transitions, we propose a method to automatically model the system dynamics.

For a decade, learning dynamics of systems has raised a growing interest
in the field of inductive logic programming (ILP) [36,9]. ILP is a form of
logic-based machine learning where the goal is to induce a hypothesis (a logic
program) that generalises given training examples and background knowledge.
Whereas most machine learning approaches learn functions, ILP frameworks
learn relations.

In the specific context of learning dynamical systems, previous works pro-
posed an ILP framework entitled learning from interpretation transition (LFIT)
[20] to automatically construct a model of the dynamics of a system from the

Title Suppressed Due to Excessive Length 3

observation of its state transitions. Figure 1 shows this learning process. Given
some raw data, like time-series data of gene expression, a discretization of
those data in the form of state transitions is assumed. From those state tran-
sitions, according to the semantics of the system dynamics, several inference
algorithms modeling the system as a logic program have been proposed. The
semantics of a system’s dynamics can indeed differ with regard to the syn-
chronism of its variables, the determinism of its evolution and the influence
of its history. The LFIT framework [20,48,46] proposed several modeling and
learning algorithms to tackle those different semantics.

In [19,21], state transitions systems are represented with logic programs,
in which the state of the world is represented by a Herbrand interpretation
and the dynamics that rule the environment changes are represented by a logic
program P. The rules in P specify the next state of the world as a Herbrand
interpretation through the immediate consequence operator (also called the
Tp operator) [57,2] which mostly corresponds to the synchronous semantics
we present in Section 3. In this paper, we extend upon this formalism to
model multi-valued variables and any memory-less discrete dynamic semantics
including synchronous, asynchronous and general semantics.

[20] proposed the LFIT framework to learn logic programs from traces of
interpretation transitions. The learning setting of this framework is as fol-
lows. We are given a set of pairs of Herbrand interpretations (I, J) as positive
examples such that J = Tp(I), and the goal is to induce a normal logic pro-
gram (NLP) P that realizes the given transition relations. As far as we know,
this concept of learning from interpretation transition (LFIT) has never been
considered in the ILP literature before [20].

To date, the following systems have been tackled: memory-less determin-
istic systems [20], systems with memory [49], probabilistic systems [33] and
their multi-valued extensions [50,32]. [51] proposes a method that allows to
deal with continuous time series data, the abstraction itself being learned by
the algorithm. As a summary, the systems that LFIT handled so far were
restricted to synchronous deterministic dynamics.

In this paper, we extend this framework to learn systems dynamics inde-
pendently of its update semantics. For this purpose, we propose a modeling of
discrete memory-less multi-valued systems as logic programs in which each rule
represents that a variable possibly takes some value at the next state, extend-
ing the formalism introduced in [20,48]. Research in multi-valued logic pro-
gramming has proceeded along three different directions [26]: bilattice-based
logics [16,18], quantitative rule sets [56] and annotated logics [5,4]. Our rep-
resentation is based on annotated logics. Here, to each variable corresponds a
domain of discrete values. In a rule, a literal is an atom annotated with one
of these values. It allows us to represent annotated atoms simply as classical
atoms and thus to remain at a propositional level. This modeling allows us to
characterize optimal programs independently of the update semantics, allow-
ing to model the dynamics of a wide range of discrete systems. To learn such
semantic-free optimal programs, we propose GULA: the General Usage LFIT
Algorithm. We show from theoretical results that this algorithm can learn un-

4 Tony Ribeiro et al.

der a wide range of update semantics including synchronous (deterministic or
not), asynchronous and generalized semantics.

[46] proposed a first version of GULA that we substantially extend in
this manuscript. In [46], there was no distinction between feature and tar-
get variables, i.e., variables at time step ¢t and ¢ + 1. From this consideration,
interesting properties arise and allow to characterize the kind of semantics
compatible with the learning process of the algorithm (Theorem 1). It also al-
lows to represent constraints and to propose a new algorithm (Synchronizer,
Section 5). We show through theoretical results that this second algorithm can
learn a program able to reproduce any given set of discrete state transitions
and thus the behavior of any discrete memory-less dynamical semantics.

Empirical evaluation provided in [46] was limited to scalability in complete
observability cases. With the goal to process real data, we introduce a heuristic
method allowing to use GULA to learn from partial observations and predict
from unobserved data. It allows us to apply the method on more realistic cases
by evaluating both scalability, prediction accuracy and explanation of predic-
tion on partial data. Evaluation is performed over the three aforementioned
semantics for Boolean network benchmarks from biological literature [28,11].
These experiments emphasize the practical usage of the approach: our imple-
mentation reveals to be tractable on systems up to a dozen components, which
is sufficient enough to capture a large variety of complex dynamic behaviors
in practice.

The organization of the paper is as follows. Section 2 provides a formal-
ization of discrete memory-less dynamics system as multi-valued logic pro-
gram. Section 3 formalizes dynamical semantics under logic programs. Section
4 presents the first algorithm, GULA, which learns optimal programs regard-
less of the semantics. Section 5 provides extension of the formalization and
a second algorithm, the Synchronizer, to represent and learn the semantics
behavior itself. In Section 6, we propose a heuristic method allowing to use
GULA to learn from partial observations and predict from unobserved data.
Section 7 provides experimental evaluations regarding scalability, prediction
accuracy and explanation of predictions. Section 8 discusses related work and
Section 9 concludes the paper. All proofs of theorems and propositions are
given in Appendix.

2 Logical Modeling of Dynamical Systems

In this section, the concepts necessary to understand the learning algorithms
we propose are formalized. In Section 2.1, the basic notions of multi-valued
logic (MVL) are presented. Then, Section 2.2 presents a modeling of dynamics
systems using this formalism. In the following, we denote by N := {0, 1,2, ...}
the set of natural numbers, and for all k,n € N, [k;n] :={i e N| k <i <n}
is the set of natural numbers between k£ and n included. For any set S, the
cardinality of S is denoted |S| and the power set of S is denoted p(S5).

Title Suppressed Due to Excessive Length 5

2.1 Multi-valued Logic Program

Let V = {vi,---,v,} be a finite set of n € N variables, Val the set in which
variables take their values and dom : V — p(Val) a function associating a
domain to each variable. The atoms of MVL are of the form v’* where v € V
and val € dom(v). The set of such atoms is denoted by AY. = {vvo €
V x Val | val € dom(v)} for a given set of variables V and a given domain
function dom. In the following, we work on specific V and dom that we omit
to mention when the context makes no ambiguity, thus simply writing A for
Alom-
Ezxample 1 For a system of 3 variables, the typical set of variables is V =
{a,b,c}. In general, Val = N so that domains are sets of natural integers, for
instance: dom(a) = {0,1}, dom(b) = {0,1,2} and dom(c) = {0,1,2,3}. Thus,
the set of all atoms is: A = {a®, a', %, b1, 0%, %, ct, 2,).

A MVL rule R is defined by:

R = wviolo o yvalt oL p yoalm (1)

val

where Vi € [0;m],v]"* € A are atoms in MVL so that every variable is
mentioned at most once in the right-hand part: Vj, k € [1;m],j # k = v; #
vi. If m = 0, the rule is denoted: vi®° <« T. Intuitively, the rule R has
the following meaning: the variable vy can take the value walg in the next
dynamical step if for each i € [1;m], variable v; has value val; in the current
dynamical step.

The atom on the left-hand side of the arrow is called the head of R and
is denoted head(R) := vi*°. The notation var(head(R)) := vy denotes the
variable that occurs in head(R). The conjunction on the right-hand side of
the arrow is called the body of R, written body(R) and can be assimilated to

the set {V?fall7 -+, vvalm}. we thus use set operations such as € and N on it,
and we denote it @ if it is empty. The notation var(body(R)) := {vi, -+ , v}

denotes the set of variables that occurs in body(R). More generally, for all sets
of atoms X C A, we denote var(X) := {v € V | Jval € dom(v),v*¥ € X}
the set of variables appearing in the atoms of X. A multi-valued logic program
(MVLP) is a set of MVL rules.

Definition 1 introduces a domination relation between rules that defines
a partial anti-symmetric ordering. Intuitively, rules with more general bodies
dominate other rules. In our approach, we prefer a more general rule over a
more specific one.

Definition 1 (Rule Domination) Let R;, Ry be two MVL rules. The rule
Ry dominates Ro, written Ry > Rs if head(R;) = head(R2) and body(R;) C
body(R2).

FEzample 2 Let Ry := a' < b', Ry := a' < b' A ". R; dominates R, since
head(R;) = head(Ry) = a' and body(R;) C body(R>). Intuitively, R; is more

6 Tony Ribeiro et al.

general than Ry on ¢. Rs does not dominate Ry because body(R2) € body(Ry).
Let R3 := a' + a' AB, Ry (resp. Ry) does not dominate R3 (and vice versa),
since body(R;) € body(Rj3): the rules have a different condition over b. Let
R, :=a' + a', for the same reasons, R; (resp. Rs) does not dominate Ry4. Let
Rs :=a® < 0, Ry (resp. Ra, R3, Ry) does not dominate R5 (and vice versa)
since their head atoms are different (a' # a®).

The most general body for a rule is the empty set (also denoted T). A rule
with an empty body dominates all rules with the same head atom. Further-
more, the only way two rules dominate each over is that they are the same
rule, as stated by Lemma 1.

Lemma 1 (Double Domination Is Equality) Let Ry, R2 be two MVL
rules. If R1 > Ry and Ry > Ry then R; = Rs.

2.2 Dynamic Multi-valued Logic Program

We are interested in modeling non-deterministic (in a broad sense, which in-
cludes deterministic) discrete memory-less dynamical systems. In such a sys-
tem, the next state is decided according to dynamics that depend on the
current state of the system. From a modeling perspective, the variables of the
system at time step ¢ can be seen as target variables and the same variables at
time step t —1 as features variables. Furthermore, additional variables that are
external to the system, like stimuli or observation variables for example, can
appear only as feature or target variables. Such a system can be represented
by a MVLP with some restrictions. First, the set of variables V is divided into
two disjoint subsets: T (for targets) encoding system variables at time step ¢
plus optional external variables like observation variables, and F (for features)
encoding system variables at t — 1 and optional external variables like stimuli.
It is thus possible that |F| # |T|. Second, rules only have a conclusion at ¢
and conditions at ¢ — 1, i.e., only an atom of a variable of 7 can be a head
and only atoms of variables in F can appear in a body. In the following, we
also re-use the same notations as for the MVL of Section 2.1 such as head(R),
body(R) and var(head(R)).

Definition 2 (Dynamic MVLP) Let 7 C V and F C V such that F =
V\T. A DMVLP P is a MVLP such that VR € P,var(head(R)) € T and
Vvl € body(R),v € F.

In the following, when there is no ambiguity, we suppose that F, 7,V and
A are already defined and we omit to define them again.

Example 3 Figure 2 gives an example of regulation network with three ele-
ments a, b and c¢. The information of this network is not complete; notably,
the relative “force” of the components a and b on the component ¢ is not ex-
plicit. Multiple dynamics are then possible on this network, among which four
possibilities are given below by Program 1 to 4, defined on T := {ay, b, ¢t },

Title Suppressed Due to Excessive Length 7

®)

oL

Fig. 2: Example of interaction graph of a regulation network representing an
incoherent feed-forward loop [23] where a positively influences b and ¢, while
b (and thus, indirectly, a) negatively influences c.

F = Aa—1,b—1,¢4—1} and Vv € T U F,dom(v) := {0,1}. Program 1 is a
direct translation of the relations of the regulation network. It only contains
rules producing atoms with value 1 which is equivalent to a set of Boolean
functions. In Program 2, a always takes value 1 while in Program 3 it always
takes value 0, a having no incoming influence in the regulation network this
can represent some kind of default behavior. In Program 3, the two red rules
introduce potential non-determinism in the dynamics since both conditions
can hold at the same time. In Program 4, the rule apply the conditions of the
regulation network but it also allows each variable to keep the value 1 at ¢ if
it has it at ¢t — 1 and no inhibition occurs. We insist on the fact that the index
notation ¢ or t — 1 is part of the variable name, not its value. This allows to
distinguish variables from T (¢) or F (¢t — 1).

Program 1 Program 2 Program 3 Program 4
b} < a}_, at <0 ad <0 at < a}_,
et atl_1 A bg_l bg — ag_l b? — ag_l bti — btll_1
by < a;_4 by < a;_4 by < a;_4
c‘t) — a§L1 c‘t) — a§L1 c} — 0}71 A bgf1
0 1 0 1 1 1 0
c; < by c; by cp —ay_q Nby_y

ctat AW o al

The dynamical system we want to learn the rules of is represented by
a succession of states as formally given by Definition 3. We also define the
“compatibility” of a rule with a state in Definition 4 and with a transition in
Definition 5.

Definition 3 (Discrete state) A discrete state son T (resp. F) of a DMVLP
is a function from T (resp. F) to N, i.e., it associates an integer value to each
variable in 7 (resp. F). It can be equivalently represented by the set of atoms
{v*) | v € T (resp. F)} and thus we can use classical set operations on it.
We write S7 (resp. S7) to denote the set of all discrete states of T (resp. F),
and a couple of states (s,s") € S* x ST is called a transition.

When there is no possible ambiguity, we sometimes (Figure 3, Figure 5, ...)
denote a state only by the values of variables, without naming the variables. In
this case, the variables are given in alphabetical order (a, b, c...). For instance,

{a®,b'} is denoted , {a',b°} is denoted and {a®,b!, c?, d®} is denoted

[0103]

8 Tony Ribeiro et al.

Ezxample 4 Consider a dynamical system having two internal variables a and
b, an external stimilus st and an observation variable ch used to trace some
important events. The two sets of possible discrete states of a program defined
on the two sets of variables T = {a¢, by, ch} and F = {a;_1,bi—1, st}, and the
set of atoms A = {a?,a},b?,b}, b7, ch® cht,ad i, al_1,b)_|,bi_ 1, b7 1, st0 st}
are:

ST ={ and 87 = {
{a(t]—lv bg—la Sto}’ {a?—lv b(t)—lv Stl}a {CL?, b?v Cho}’ {a(t]a b?a Ch1}7
{ag—h b%—lv Sto}a {a(t)—l’ b%—lv Stl}a {a?7 b%? Cho}a {a’(t)a bt}v Chl}v
{a(t)fh bgfh Sto}v {a?,l, bffh Stl}, {a?7 b?7 Cho}v {a(t)7 bt27 Ch1}7
{a%717 bz(f)fl’ Sto}a {a%717 bgfl’ 5t1}7 {a'%v b(t)v Cho}a {a%7 bga Chl}v
{a%—lv b%—l’ Sto}a {a%—lv b%—l’ Stl}’ {CL%, b%? Cho}a {a%v b%a Ch1}7
{atl—hbf—l’StO}v{a%—lvb%—lvstl} } {ai}vbgvcho}a{a%’b%’Chl} }

Here, a;—1 and a; (resp. b;—1 and b;) are theoretically different variables
from a MVL perspective. But they actually encode the same variable at dif-
ferent time step and thus a (resp. b) is present in both F and 7 in its corre-
sponding timed form. On the other hand, variables st and ch are respectively
a stimuli and an observation variable and thus only appear in F,S” or 7,87 .
Depending on the number of stimuli and observation variables, states of S7
can have a different size than states in S7 (see Figure 4).

Definition 4 (Rule-state matching) Let s € S7. The MVL rule R matches
s, written R s, if body(R) C s.

We note that this definition of matching only concerns feature variables.
Target variables are never meant to be matched.

Example 5 Let F = {a;—1,bi—1, st}, T = {as, by, ch} and dom(as—1) = dom(st)
= dom(a;) = dom(ch) = {0,1},dom(bs—1) = dom(bs) = {0,1,2}. The rule
ch® « aj_; Ab}_; Ast! only matches the state {a;_;, b1, st'}. The rule ch® «+
ad_, Ast* matches {a?_1,b0) |, st'}, {ad_|,bi_;,st'} and {a)_;,b7 ,,st'}. The
rule b7 « aj_; matches {a}_;,b_,,st'}, {af_1,09_1,st'}, {aj_1,b}_4, st}
{a}_1,b} 1, st'}, {a}_|,b? |, st°}, {a}_{,b? |, st'}. The rule a' < () matches
all states of S7.

The final program we want to learn should both:

— match the observations in a complete (all transitions are learned) and cor-
rect (no spurious transition) way;

— represent only minimal necessary interactions (according to Occam’s razor:
no overly-complex bodies of rules)

The following definitions formalize these desired properties. In Definition 5
we characterize the fact that a rule of a program is useful to describe the
dynamics of one variable in a transition; this notion is then extended to a
program and a set of transitions, under the condition that there exists such
a rule for each variable and each transition. A conflict (Definition 6) arises
when a rule describes a change that is not featured in the considered set of
transitions. Finally, Definition 8 and Definition 7 give the characteristics of

Title Suppressed Due to Excessive Length 9

a complete (the whole dynamics is covered) and consistent (without conflict)
program.

Definition 5 (Rule and program realization) Let R be a MVL rule and

(5,8') € ST x ST. The rule R realizes the transition (s,s’), written s B o if
RMsAhead(R) € 5.

A DMVLP P realizes (s,s') € ST x ST, written s P, s, ifvweT,3R e
P,var(head(R)) = v A s Ly o/ Tt realizes a set of transitions T C SF x ST,
written < T,ifV(s,s") eT,s L

Ezample 6 The rule ¢ < a;_; A bj_; realizes the transition ¢t = ({a}_;,b;_,
&1}, {al, b}, ct}) since it matches the first state of ¢ and its conclusion is in
the second state. However, the rule ¢} « a}_; AbY_; does not realize ¢ since
it does not match the feature state of ¢.

Example 7 The transition t = ({a}_,bf_1,¢Y 1}, {a?,b},ct}) is realized by
Program 3 of Example 3, by using the rules ay < 0, b; < a}_; and ¢} «+
a}_,. However, Program 2 of the same Example does not realize t since the
only rule that could produce c}, that is, ¢} < a}_; A b)_;, does not match
{a}_1,b}_1,c? }; moreover, no rule can produce a?. Programs 1 and 4 of the

same Example cannot produce a? either and thus do not realize t.

In the following, for all sets of tramsitions T C S7 x S7, we denote:
first(T) := {s € 8 | 3(s1,82) € T,s1 = s} the set of all initial states of
these transitions. We note that first(7) =0 < T =0.

Definition 6 (Conflict and Consistency) A MVL rule R conflicts with
a set of transitions T C 87 x 87 when 3s € first(T), (RM s A V(s,s') €
T,head(R) ¢ s'). R is said to be consistent with T when R does not conflict
with T'.

A rule is consistent if for all initial states of the transitions of T' (first(T))
matched by the rule, there exists a transitions of T for which it verifies the
conclusion.

Definition 7 (Consistent program) A DMVLP P is consistent with a set
of transitions T if P does not contain any rule R conflicting with T

Ezample 8 Let s1 = {a;_1,bY 1, 1},82={a}_ 1,0 1,ct_1},83 ={al ;,0) |,
cgfl} and t1 = (517 {a?v bt17 Ct1}>7
12 = (517 {a%7 b%) C?}))
t3 = (s2, {a?, btlv C‘(t)})a
t4 = (s2, {ag’ b?v C%}%
t5 = (s3,{af, b}, 0}).
Let T = {t1,2,t3,t4,t5}.
Program 1 of Example 3 is consistent with 7. The rule b} < a;_; matches
s1 and both sl and b} are observed in #2. The rule also matches s2 which is

10 Tony Ribeiro et al.

observed with b} in 3. The rule ¢f < a;_; AbY_; matches s1 (resp. s2), which
is observed with ¢} in t1 (resp. t3).

Program 2 is not consistent with 7" since a; <) is not consistent with 7"
it matches s1, s2 and s3 but the transitions of 7' that include s2 (¢3, t4) do not
contain a}. Program 3 is not consistent with T since a? <+ () matches s1, s2,
s3 but the only transition that contains s3 (t5) does not contain af. Program
4 is not consistent with T" since a; < a}_; matches s2 but the transitions of
T that include s2 (3, t4) do not contain aj.

Definition 8 (Complete program) A DMVLP P is complete if Vs €
ST,¥v € T,3R € P,RM s Avar(head(R)) = v.

A complete DMVLP realizes at least one transition for each possible initial
state.

Ezample 9 Program 1 of Example 3 is not complete since it does not have
any rule over target variable a;, in fact it does not realize any transitions.
Program 2 of same example is complete:

— The rule a} +) will realize a; from any feature state;

— For b; it has a first (resp. second) rule that matches all feature state where
ad_, (resp. aj_,) appears and the domain of a;_1 being {0, 1} all cases and
thus all feature states are covered by this two rules;

— For ¢, all combinations of values of a and b are covered by the three last
rules, Yval € dom(ci—1),

— {a? 1,09 1, ¢t} is matched by ¢ <+ a?_;

— {a?_1,b}_1, ¢t} is matched by ¢ < bf_; (and ¢ « b}_);

— {a}_1,0)_1, ¢t} is matched by 2 < af_; ABY_;;

— {a}_;,b}_;,cv%} is matched by c? < b} ;.
Program 3 is also complete, and it even realizes multiple values for ¢; when
both a}_; and b}_; are in a feature state: {a}_;,b}_;,cY_;} is matched by both
¢ < b}_; and ¢} < a}_;. Program 4 is not complete: no transition is realized
when a?_; is in a feature state since the only rule of a; is a} < a}_;.

Definition 9 groups all the properties that we want the learned program
to have: suitability and optimality, and Proposition 1 states that the optimal
program of a set of transitions is unique.

Definition 9 (Suitable and optimal program) Let T C S* x S7. A
DMVLP P is suitable for T when:

— P is consistent with T,

— P realizes T,

— P is complete,

for any possible MVL rule R consistent with T, there exists R’ € P such
that R > R.

If in addition, for all R € P, all the MVL rules R’ belonging to DMVLP
suitable for T are such that R’ > R implies R > R’ then P is called optimal.

Title Suppressed Due to Excessive Length 11

Note that Definition 9 ensures local minimality regarding the ordering >
(see Definition 1). In terms of biological models, it is more interesting to focus
on local minimality, thus simple but numerous rules, modeling local influences
from which the complexity of the whole system arises, than global minimality
that would produce system-level rules hiding the local correlations and influ-
ences. Definition 9 also guarantees that we obtain all the minimal rules which
guarantees to provide biological collaborators with the whole set of possible
explanations of biological phenomena involved in the system of interest.

Proposition 1 (Uniqueness of Optimal Program) Let T C S x S7.
The DMVLP optimal for T is unique and denoted Po(T).

Example 10

LetTZ{ {at 15 t 1act 1} {atﬂbwct

()
({at 1 f 1th 1} {a’tvbfvcf)
({at l?bt 1th 1} {at’btvct)
({at 1 t 1th 1} {atvbtlvct})
({at 17bt 1th 1 {atvbtvct)
({at 1»bt 170t 1} {atvb%7ct})
({at 17bt 170t—1}a{atvbt17 })
(bi)

{at 1 Yt— lvct71}7{a%’bt7 }’ } :

Program 1 and 4 of Example 3 are not complete (see Example 9) and
thus not suitable for 7. Program 3 is complete but not consistent with T
(see Example 8). Program 2 is complete, consistent and realizes T' but is not
suitable for T: indeed, ¢; < a}_; is consistent with T and there is no rule in
Program 2 that dominates it.

Let us consider:

P:={ a} <0
bg — ag_l
b% — a%_l
& a? |
cg — btl_l

1 1
Cp < Qp_q

1 1 0

c —a;_{ Nbj_, } .

P is complete, consistent, realizes T and all rules consistent with T" are dom-
inated by a rule of P. Thus, P is suitable for 7. But P is not optimal since
ct < at_; ANV)_, is dominated by ¢} <+ ai_;. By removing ¢} < a}_; AbY_;
from P, we obtain the optimal program of T'.

12 Tony Ribeiro et al.

Algorithm 1 Brute Force Enumeration

— INPUT: a set of atoms A, two sets of variables F and 7 and a set of
transitions 7 C S7 x ST.

— Generate all possible rules over A, F,T.
— Pi={vvel [yl |yl e ANV e FY v e AAveT)

— Keep only the rules consistent with T'.
— P:={ReP|V(ss')eT,body(R) Cs = 3I(s,s") € T,head(R) €

S//}

— Remove rules dominated by another rule

~P:={ReP|PR ecP,R##RANR >R}

OUTPUT: P (P is Po(T)).

According to Definition 9, we can obtain the optimal program by a trivial
brute force enumeration algorithm: generate all rules consistent with T
then remove the dominated ones as shown in Algorithm 1.

The purpose of Section 4 is to propose a non-trivial approach that is more
efficient in practice to obtain the optimal program. This approach also respects
the optimality properties of Definition 9 and thus ensures independence from
the dynamical semantics, that are detailed in next Section.

3 Dynamical semantics

The aim of this section is to formalize the general notion of dynamical seman-
tics as an update policy based on a program, and to give characterizations of
several widespread existing semantics used on discrete models.

In the previous section, we supposed the existence of two distinct sets
of variables F and 7T that represent conditions (features) and conclusions
(targets) of rules. Conclusion atoms allow to create one or several new state(s)
made of target variables, from conditions on the current state which is made
of feature atoms.

In Definition 10, we formalize the notion of dynamical semantics which is
a function that, to a program, associates a set of transitions where each state
has at least one outgoing transition. Such a set of transitions can also be seen
as a function that maps any state to a non-empty set of states, regarded as
possible dynamical branchings. We give examples of semantics afterwards.

Definition 10 (Dynamical Semantics) A dynamical semantics (on A) is a
function that associates, to each DMVLP P, a set of transitions T C S7 x ST
so that: first(T) = S7. Equivalently, a dynamical semantics can be seen as a
function of (DMVLP — (87 — o(S7)\ {0})) where DMVLP is the set of
DMVLPs.

A dynamical semantics has an infinity of possibility to produce transitions
from a DMVLP. Indeed, like DS;(P) of Example 11, a semantics can to-
tally ignore the DMVLP rules. It can also use the rule in an adversary way

Title Suppressed Due to Excessive Length 13

like DS;nperse that keeps only the transitions that are not permitted by the
program. Such semantics can produce transitions that are not consistent with
the input program, i.e., the rules which conclusions were not selected for the
transition will be in conflict with the set of transitions from this feature state.
The kind of semantics we are interested in are the ones that properly use the
rule of the DMVLP and ensure the properties of consistency introduced in
Definition 7.

In Example 11, the dynamical semantics DSsyn, DSasyn and DSge, are
example of such semantics. They are trivial forms of the synchronous, asyn-
chronous and general semantics that are widely used in bioinformatics. In-
deed, DSy, is trivial because it generates transitions towards an arbitrary
state when the program P is not complete (if no rule matches for some target
variable, the program produces an incomplete state), while DS, syn and DSges,
are trivial because they require feature and target variables to correspond and
have a specific form (labelled with ¢ — 1 and ¢) with no additional stimuli or
observation variables. We formalize those three semantics properly under our
modeling in next Section with no restriction on the feature and target variables
forms.

Example 11 For this example, suppose that feature and target variable are
“symmetrical” (called regular variables later): T = {as, bty ..., 2:} and F =
{at—1,bt—1, ..., ze—1}, with: Vg, 21 € T x F,dom(x;) = dom(z;—1). Let
convert be a function of (S — S7) such that for any DMVLP P,Vs €
S7, convert(s) = {vi® | vi® € s}, and so € ST an arbitrary target state
that is used to ensure that each of the following semantics produces at least
one target state. Let DSy, DSa, DSsyn, DSasyn, DSgen and DSipverse be
dynamical semantics defined as follows, where P is a DMVLP and s € S7:

— (DS1(P))(s) = {s0}

)
— (DSsyn(P))(s) = {s' € 8T | s’ C {head(R) | R € P,body(R) C s}} U {so}
— (DSusyn(P))(s) = {s' € ST | s C convert(s) U {head(R) | R € P,
body(R) C s} A{vi® € 8" | v2h € s} € {|T].|T| - 1}}
— (DSyen(P))(s) = {s' € 8T | s’ C convert(s)U{head(R) | R € P,body(R) C

s}
= (DSinverse(P))(s) = (ST \ (DSsyn(P))(5)) U {s0}

DS, always outputs transitions towards sg and totally ignores the rules of
the given program and thus can produce transitions that are not consistent
with the input program. DS5 uses the rules of the DMVLP but in an improper
way, as it always considers the conclusions of rules as long as they have exactly
3 conditions, whether they match the feature state or not. D.Sj,perse uses
proper rules conclusions, but in order to contradict the program: it produces
transitions so that the program is not consistent, plus a transition to sg to
ensure at least a transition.

DS,y use the rules in the expected way, i.e., it checks if they match the
considered feature state and applies their conclusion; it is a trivial form of

14 Tony Ribeiro et al.

synchronous semantics as properly introduced later in Definition 15. DSy4yn
also uses the rules as expected: it uses the feature state to restrict the possible
target states to at most one modification compared to the feature state; this is
a trivial form of asynchronous semantics, as properly introduced later in Def-
inition 16. DSyen also uses the rules as expected: it mixes the current feature
state with rules conclusions to produce a partially new target state; it is a
trivial form of general semantics, as properly introduced later in Definition 17.

We now aim at characterizing a set of semantics of interest for the current
work, as given in Theorem 1. Beforehand, Definition 11 allows to denote as
Conclusions(s, P) the set of heads of rules, in a program P, matching a state
s, and Definition 12 introduces a notation B|x to consider only atoms in a
set B C A that have their variable in a set X C V. These two notations will
be used in the next theorem and afterwards. In the following, we especially
use the notation of Definition 12 with A (denoted A|x) and on Conclusions
(denoted Conclusions|x (s, P)).

Definition 11 (Program Conclusions) Let s in S7 and P a MVLP. We
denote: Conclusions(s, P) := {head(R) € A | R € P, RMs} the set of conclusion
atoms in state s for the program P.

Definition 12 (Restriction of a Set of Atoms) Let B C A be a set of
atoms, and X C V be a set of variables. We denote: B|x = {v'* € B|v € X}
the set of atoms of B that have their variables in X. If B is instead a function
that outputs a set of atoms, we note B|x (params) instead of (B(params))|x,
where params is the sequence of parameters of B.

With Definition 13, we define semantics which for any DMVLP produce
the same behavior using the corresponding optimal program, that is, any se-
mantics DS such that for any DMVLP P, DS(P) = DS(Po(DS(P))). This
kind of semantics is of particular interest since they are “stable” through learn-
ing, that is, learning the optimal program from the dynamics of a system that
relies on such a semantics allows to exactly reproduce the observed behavior.

Definition 13 (Pseudo-idempotent Semantics) Let DS be a dynamical
semantics. DS is said pseudo-idempotent if, for all P a DMVLP:

DS(Po(DS(P))) = DS(P) .

Theorem 1 gives another characterisation of a semantics that also ensures
that it is pseudo-idempotent, and that especially applies to the semantics we
are interested in this paper and formally defined later: synchronous, asyn-
chronous and general.

Such a semantics must produce new states based on the initial state s and
the heads of matching rules of the given program Conclusions(s, P), as stated
by point (2).

Intuitively, the semantics must be defined according to an arbitrary func-
tion pick that picks target states among S7 considering observed feature atoms

Title Suppressed Due to Excessive Length 15

and potential target atoms (what was and what could be). When given the
atoms of the target states it outputs, this function must output the same set of
target states as stated by point (1), i.e., it must produce the same states given
the program conclusion or given its decision over the program conclusion.

Moreover, Po(DS(P)) being consistent with DS(P), given a state s € S,
Conclusions(s, Po(DS(P))) = ¢, i.e., all the target atoms observed in a

s'eDS(P)(s)

target state of DS(P)(s) must be the head of some rule that matches s in
the optimal program. In other words, it must be given to the semantics to
choose from when the program Pp(DS(P)) is used with semantics DS. Thus
the semantics should produce the same states, when being given the atoms of
all those next states as possibilities, as stated by point (1).

Those two conditions are sufficient to ensure that DS is pseudo-idempotent
and thus carries “stability” through learning.

Theorem 1 (Characterisation of Pseudo-idempotent Semantics of
Interest) Let DS be a dynamical semantics.

If, for all P a DMVLP, there exists pick € (ST x p(Alr) — o(ST)\ {0}) so
that:

(1) VD C A, pick(s,|Js") = pick(s, D), and
s’ €pick(s,D)
(2) Vs € 8, (DS(P))(s) = pick(s, Conclusions(s, P)),

then DS is pseudo-idempotent.

Ezxample 12 Let DS be a dynamical semantics, s € S7 be a feature state such
that s = {ay_,,b}_;,st°}, P be a DMVLP such that Conclusions(P,s) =
{a},b},ch® ch?}. In Figure 3, from s and Conclusions(P,s), DS produces
three different target states, i.e., (DS(P))(s) = pick(s, Conclusions(s, P)) =
{{a,b},ch?},{a?, b, ch?}, {a},b?,ch?}}. Let D = Conclusions(P, s), here, the
set of occurring atoms in the states produced by pick(s,D) is D' = |J =

s’ epick(s,D)
{a?,a},b? b} ch?}. In this example, the function pick uses all target atoms of
D except ch® and introduces two additional atoms a?, b?, it also only produces
3 of the 4 possible target states composed of those atoms: this semantics does
not allows a; and b} to appear together in transition from s. If we call the func-
tion pick by replacing the program conclusions by the semantics conclusions
we observe the same resulting states, i.e., pick(s, D') = pick(s, D). Given the
target atoms selected by the semantics, it reproduces the same set of target
states in this example; if the semantics has this behavior for any feature state
s and any program P, it is pseudo-idempotent.

Up to this point, no link has been made between corresponding feature
(in F) and target (in 7)) variables or atoms. In other words, the formal link
between the two atoms vV and v{? with the same value has not been made
yet. This link, called projection, is established in Definition 14, under the only

assumption that dom(v;) = dom(v;_1). It has two purposes:

16 Tony Ribeiro et al.

S D
[010] + | {a}, b}, ch®, ch?}| b5 ~ |[012] [002] [102]

Semantics

Feat tat t of at
cature state Set of atoms Set of target states

Union

S D’

[010]+ [{af a}.0). b}, ch?} |

Fig. 3: Example of a pseudo-idempotent semantics DS.

— When provided with a set of transitions, for instance by using a dynamical
semantics, one can describe dynamical paths, that is, successions of next
states, by using each next state to generate the equivalent initial state for
the next transition;

— Some dynamical semantics (such as the asynchronous one, see Defini-
tion 16) make use of the current state to build the next state, and as
such need a way to convert target variables into feature variables.

However, such a projection cannot be defined on the whole sets of target
(T) and feature (F) variables, but only on two subsets # C F and T C T.
Note that we require the projection to be a bijection, thus: |F| = |T|. These
subsets 7 and F contain variables that we call afterwards regular variables:
they correspond to variables that have an equivalent in both the initial states
(at t — 1) and the next states (at t). Variables in F \ F can be considered
as stimuli variables: they can only be observed in the previous state but we
do not try to explain their next value in the current state; this is typically
the case of external stimuli (sun, stress, nutriment...) that are unpredictable
when observing only the studied system. Variables in 7\ 7 can be considered
as observation variables: they are only observed in the present state as the
result of the combination of other (regular and stimuli) variables; they can be
of use to assess the occurrence of a specific configuration in the previous state
but cannot be used to generate the next step. For the rest of this section,
we suppose that F and 7 are given and that there exists such projection
functions, as given by Definition 14. Figure 4 gives a representation of these
sets of variables.

It is noteworthy that projections on states are not bijective, because of
stimuli variables that have no equivalent in target variables, and observation
variables that have no equivalent in feature variables (see Figure 4). Therefore,
the focus is often made on regular variables (in F and 7). Especially, for any
pair of states (s,s') € S7 x 87, having sp+_,#(s’) C s, which is equivalent to
spz_,7(s) C s, means that the regular variables in s and their projection in

s (or conversely) hold the same value, modulo the projection.

Title Suppressed Due to Excessive Length 17

F\ F (Stimuli) F (Regular variables)
s1 - Sm (v1)e—1 e (Vi)i—1] F (Feature variables)
}] } Projections
(Target variables) T { (vi)e (Vn)e c (o

T (Regular variables) 7\ 7 (Observation variables)

Fig. 4: Representation of a state transition of a dynamical system over n
variables, m stimuli and k observation variables, i.e., |F| = n+m,|T| =n+k.

Definition 14 (Prﬁojectionsi) A projection on variables is a bijective func-
tion vp_7: T — Fsothat T C T, F C F, and: ¥v € T,dom(vp7_=(v)) =
dom(v). The projection on atoms (based on vpz_ %) is the bijective function:

a7 AlF = Alz
vl o (vprL (V)"

The inverse function of vp=_ = is denoted vpz_,= and the inverse function of

ap7_,7 is denoted apz_ 7.
The projections on states (based on ap+_,+ and apz_,7) are the functions:

Sp7_F - ST — 8?

s = {apr_7z(v'") e A v e s AvET)
SPF_7 - S]: — S?

s {apr_=(v'*") e A|v esnve T} .

Ezample 13 In Example 12, there are three feature variables (a;—1, bs—1, st)
and three target variables (ay, bt, ch). If we consider that the regular variables
are T = {a,b:} and F = {a;—1,b—1}, we can define the following (bijective)
Ay — Ap—1

by by Following Definition 14, we

projection on variables: vp7_ = :

have, for instance:

- ap?—ﬂ-'(a%) a’% 17

- ap7—>7'(1) =
- spT*}]:({a't7bt7Ch0}) 1_ {a’t 1 t 1} and
- SP?HT({% 1 b1, st'}) = {ag, 09}

3.1 Synchronous, Asynchronous and General Semantics

In the following, we present a formal definition and a characterization of
three particular semantics that are widespread in the field of complex dy-
namical systems: synchronous, asynchronous and general. Note that some

18 Tony Ribeiro et al.

points in these definitions are arbitrary and could be discussed depending
on the modeling paradigm. For instance, the policy about rules R so that
Js € 87, RN s Napz_,z(head(R)) € s, which model stability in the dynamics,
could be to include them (such as in the synchronous and general semantics)
or exclude them (such as in the asynchronous semantics) from the possible dy-
namics. The modeling method presented so far in this paper is independent to
the considered semantics as long as it respects Definition 10 and the capacity
of the optimal program to reproduce the observed behavior is ensured as long
as the semantics respects Theorem 1.

Synchronous Asynchronous General
// f(a) := not b // f(a) := not b // f(a) := not b
0 1 0 1 0 1
ay < by_q ay < b;_4 ay < b;_4
1 (0] 1 (0] 1 (0]
ay < by_1 ay < by_4 ay < by_4
// £f(b) := not a // f(b) := not a // f(b) := not a
0 1 (0] 1 (0] 1
by +a;_4 by < a;_4 by < a;_4
1 0 1 0 1 0
by +—a;_4 by < a;_4 by < a;_4
// Default rules // Default rules
af « a9, af «af_,
aj < at_; aj < af_4
(0] (0] (0] (0]
by < by_q by < by_q
1 1 1 1
by < by by < by

Fig. 5: A Boolean network with two variables inhibiting each other (top). The
corresponding synchronous, asynchronous and general dynamics are given as
state-transition diagrams (middle). In these state-transition diagrams, each
box with a label “zy” represents both the feature state {af_,,b{_;} and the
target state {a¥, b}, and each arrow represents a possible transitions between
states. The corresponding optimal DMVLP (bottom) contain comments (in
grey) that explain sub-parts of the programs.

Definition 15 introduces the synchronous semantics, consisting in updating
all variables at once in each step in order to compute the next state. The value
of each variable in the next state is taken amongst a “pool” of atoms containing
all conclusions of rules that match the current state (using Conclusions) and
atoms produced by a “default function” d that is explained below. However,
this is taken in a loose sense: as stated above, atoms that make a variable
change its value are not prioritized over atoms that don’t. Furthermore, if
several atoms on the same variable are provided in the pool (as conclusions

Title Suppressed Due to Excessive Length 19

of different rules or provided by the default function), then several transitions
are possible, depending on which one is chosen. Thus, for a self-transition
(s,8') € 87 x ST with sp7_%(s') C s to occur, there needs to be, for each
atom vV € s’ so that v € T, either a rule that matches s and whose head is
v¥% or that the default function gives the value v*®. Note however that such
a loop is not necessarily a point attractor (that is, a state for which the only
possible transition is the self-transition); it is only the case if all atoms in the
pool are also in sp=_=(s).

As explained above, for a given state s and a given set of variables W, the
function d provides a set of “default atoms” added to the pool of atoms used
to build the next state, along with rules conclusions. This function d, however,
is not explicitly given; the only constraints are that:

— d produces atoms at least for a provided set of variables W, specifically, the
set of variables having no conclusion in a given state, which is necessary in
the case of an incomplete program,

— d(s,0) is a subset of d(s, W) for all W, as it intuitively represents a set of
default atoms that are always available.

Note that d(s,)) = () always respects these constraints and is thus always a
possible value. In the case of a complete program, that is, a program providing
conclusions for every variables in every state, d is always called with W = ()
and the other cases can thus be ignored. Another typical use for d is the case
of a system with Boolean variables (i.e., such that Vv € V,dom(v) = {0, 1})
where a program P is built by importing only the positive rules of the system,
that is, only rules with atoms v} as heads. This may happen when importing
a model from another formalism featuring only Boolean formulas, such as
Boolean networks. In this case, d can be used to provide a default atom w?
for all variables w that do not appear in Conclusions(s, P), thus reproducing
the dynamics of the original system.

Definition 15 (Synchronous semantics) Let d € (87 x p(T) — p(A|7)),
so that Vs € ST VW C T, W C var(d(s,W)) Ad(s,0) C d(s,W). The syn-
chronous semantics Tsyy, is defined by:

Toyn : P —={(s,8") € S x ST | s’ C Conclusions(s, P)U
d(s,T \ var(Conclusions(s, P)))}

Ezxample 14 Tt is possible to reproduce classical Boolean network dynamics
using the synchronous semantics (7sy,) with a well-chosen default function.
Indeed, Boolean models are classically defined as a set of Boolean function
providing conditions in which each variable becomes active, thus implying
that all the other cases make them inactive. A straightforward translation
of a Boolean model into a program is thus to encode the active state of a
variable with state 1 and the inactive state with 0. If the Boolean functions
are represented as disjunctive normal forms, the clauses can be considered as
a set of Boolean atoms of the form v or —v. Each clause ¢ of the DNF of a
variable v can directly be converted into a rule R such that, head(R) = v} and

20 Tony Ribeiro et al.

Vo,_y € F, viL| € body(R) <= v/ € cand v}’ € body(R) < (—v') € c.
Finally, the following default function allows to force the variables back to 0
when the original Boolean function should not be true:

d: 87 x o(T) = p(AlT)
(5,2) = {0 | vy € Z}

In Definition 16, we formalize the asynchronous semantics that imposes
that no more than one regular variable can change its value in each transition.
The observation variables are not counted since they have no equivalent in fea-
ture variables to be compared to. As for the previous synchronous semantics,
we use here a “pool” of atoms, made of rules conclusions and default atoms,
that may be used to build the next states. The default function d used here
is inspired from the previous synchronous semantics, with an additional con-
straint: its result always contains the atoms of the initial state. Constrains are
also added on the next state to limit to at most one regular variable change.
Moreover, contrary to the synchronous semantics, the asynchronous seman-
tics prioritizes the changes. Thus, for a self-transition (s,s’) € S x 87 with
sp7_7(s") C s to occur, it is required that all atoms of regular variables in the
pool are in sp%=_,—(s): Conclusions|=(s, P)Ud|=(s, T \var(Conclusions(s, P))) =
spz_,7(s), which here implies: [sp>=_+(s) \ s’| = 0. This only happens when
(s, ') is a point attractor, in the sense that all regular variables cannot change
their value.

It is different from Example 11 where the asynchronous semantics is more
permissive and allows self-loops in every state. The asynchronous semantics of
Definition 16, although more complex, is more widespread in the bioinformat-
ics community [6,15,27,54]; the only difference are terminal states modeled
instead as (terminal) self-transitions because all states must have a successor
following our definition of semantics (see Definition 10).

Definition 16 (Asynchronous semantics) Let d € (S¥ xp(T) — p(A|7))
so that Vs € 87 VW C T, W C var(d(s, W)) Aspz_7(s) C d(s,0) C d(s, W)
The asynchronous semantics Tosyn is defined by:

9

Tasyn : P {(s,8') € ST x ST | s’ C Conclusions(s, P) U
d(s,T \ var(Conclusions(s, P))) A
(Ispz_7(s) \ s'| = 1V Conclusions|=(s, P) U
dl7(s, T \ var(Conclusions(s, P))) = spx_=+(s))}
where the notations A|7, Conclusions| and d|= come from Definition 12.

A typical mapping for d is: d : (s, W) + spz_,7(s) U O, where O is a set
of atoms on observation variables with arbitrary values, thus conserving the
previous values for regular variables and ignoring the second argument.

In Definition 17, we formalize the general semantics as a more permissive
version of the synchronous one: any subset of the variables can change their

Title Suppressed Due to Excessive Length 21

value in a transition. This semantics uses the same “pool” of atoms than the
synchronous semantics containing conclusions of P and default atoms pro-
vided by d, and no constraint. However, as for the asynchronous semantics,
the atoms of the initial state must always be featured as default atoms. Thus,
a self-transition (s,s’) € 8 x ST with spz_,=(s) C s’ occurs for each state
s because, intuitively, the empty set of variables can always be selected for
update. However, as for the synchronous semantics, such a self-transition is
a point attractor only if all atoms of regular variables in the “pool” are in
spx_,7(s). Finally, we note that the general semantics contains the dynam-
ics of both the synchronous and the asynchronous semantics, but also other
dynamics not featured in these two other semantics.

Definition 17 (General semantics) Let d € (S x p(T) — p(A|1)), so
that Vs € S7,YW C T, W C var(d(s,W)) A spz_7(s) C d(s,0) C d(s,W).
The general semantics Tyep, is defined by:

Toen : P {(s,5) € ST x ST | s/ C Conclusions(s, P)U
d(s, T \ var(Conclusions(s, P)))}.

Figure 5 gives an example of the transitions corresponding to these three
semantics on a simple Boolean network of two variables inhibiting each other.
The corresponding optimal DMVLP is given below each transition graph. In
this example, the three programs share the rules corresponding to the inhibi-
tions: ay < b}_; and a} < bY_; model the inhibition of a by b, while b9 < a}_,
and b} < a?_; model the inhibition of b by a. However, generally speaking,
there may not always exist such shared rules, for instance if the interactions
they represent are somehow ignored by the semantics behavior.

Furthermore, in this example, we observe additional rules (w.r.t. the syn-
chronous case) that appear in both the asynchronous and general semantics
cases. Those rules capture the default behavior of both semantics, that is, the
projection of the feature state as possible target atoms. Again, such rules may
not appear generally speaking, because the dynamics of the system might com-
bine with the dynamics semantics, thus possibly merging multiple rules into
more general ones (for example, conservation rules becoming rules with an
empty body).

Example 15 As for the synchronous semantics, it is possible to reproduce clas-
sical Boolean network dynamics using the asynchronous (7,syn) and general
semantics (Tgen) with the same encoding of rules, and a similar default func-
tion where the projection of the current state is added:

d: 87 x p(T) = p(Alr)
(5,Z) = {0} | v € Z} Uspz_7(s)

Finally, with Theorem 2, we state that the definitions and method devel-
oped in the previous section are independent of the chosen semantics as long
as it respect Theorem 1.

22 Tony Ribeiro et al.

Theorem 2 (Semantics-Free Correctness) Let P be « DMVLP.

- Eyn(P) = ﬁyn(PO(ﬁyn(P))%
- %syn(P) = Esyn(PO(Esyn(P)))7
= Tgen(P) = Tgen(Po(Tgen(P)))-

The next section focuses on methods and algorithm to learn the optimal
program.

4 GULA

In Algorithm 1 we presented a trivial algorithm to obtain the optimal program.
In this section we present a more efficient algorithm based on inductive logic
programming.

Until now, the LF1T algorithm [20,48,50] only tackled the learning of
synchronous deterministic programs. Using the formalism introduced in the
previous sections, it can now be revised to learn systems from transitions
produced from any semantics respecting Theorem 1 like the three semantics
defined above. Furthermore, both deterministic and non-deterministic systems
can now be learned.

4.1 Learning operations

This section focuses on the manipulation of programs for the learning pro-
cess. Definition 18 and Definition 19 formalize the main atomic operations
performed on a rule or a program by the learning algorithm, whose objective
is to make minimal modifications to a given DMVLP in order to be consistent
with a new set of transitions.

Definition 18 (Rule least specialization) Let R be a MVL rule and s €
S7 such that RMs. The least specialization of R by s according to F and A
is:

Lepe(R, 5, A, F) := {head(R) + body(R) U {v"*} |
veFAVL e ANV & s AvVval' € N, v ¢ body(R)}.

The least specialization Lgpe (R, s, A, F) produces a set of rule which matches
all states that R matches except s. Thus Lgpe(R, s, A, F) realizes all tran-
sitions that R realizes except the ones starting from s. Note that VR €
P,RMsA|body(R)| = |F| = Lgspe(R,s, A, F) =0, ie., arule R matching
s cannot be modified to make it not match s if its body already contains all
feature variables, because nothing can be added in its body.

Ezample 16 Let F := {a;—1,bs—1, ¢;—1} and dom(as—1) := {0,1},dom(bs—1) :=
{0,1,2},dom(cs—1) :={0,1,2,3}. We give below three examples of least spe-
cialization on different initial rules and states. These situations could very well

Title Suppressed Due to Excessive Length 23

happen in the learning of a same set of transitions, at different steps of the
process. The added conditions are highlighted in bold.

Lepe(al « 0, Lepe (b « bi_q, Lepe(c) < af_ 1 AcZ_q,
{af_1bi b AR = {af bl B AF) ={ {ad_y bl g i b AF) =
af «ai_q,) «—af_ 3 Abj_q, @ —al_; ABY_yACE g,

a «+pd_,, b9 —bi_ ACd 4, & —af yAbE A}
a?ebffl, b?eb%ilAcgfl,

a%(—c?fl, b bl Acd 3

For aj < (), the rule having an empty body, all possible variable val-
ues (given by dom) not appearing in the given state are candidate for a new
condition. For b? <« b} , there is a condition on b in the body, therefore
only conditions on a and ¢ can be added. For ¢} + aj_; A ¢}_;, only con-
ditions on b can be added. Finally we can consider a case like Lspe(at1 —
ad AbL_y ANty {ad_1,bi_1,c? 1}, A, F) = () where a condition already ex-
ists for each variable and thus no minimal specialization of the body can be
produced, thus resulting in an empty set of rules.

Definition 19 (Program least revision) Let P be a DMVLP, s € S7 and
T C 87 xS7 such that first(T) = {s}. Let Rp := {R € P | R conflicts with T'}.
The least revision of P by T according to A and F is Ly (P, T, A, F) =
(P\ Rp) Ul Lgpe(R, s, A, F).

ReRp

Note that according to Definition 19, first(T") = {s} implies that all tran-
sitions for 7" have s as initial state.

Ezample 17 Let F := {a;—1,b;—1,¢;—1} and dom(a;—1) := {0,1},dom(b;—1) :=
{0,1,2},dom(ct—1) := {0,1,2,3}. Let T be as set of transitions and P a
DMVLP as follows.

T:={ P:={ Lyev (P, T, A, F) :={
({ag_1,bi_1,cf 1} {ag, by, cf), af < 0, af 0,
({af 1,65 10 ¢f 1}, {af, b7, D), ap 0, ap <0,
(a9 1,0}y ¢y} {ad bl el b, by —bg_y, by = ai g Aby_g,
({af-1, b} 1,1}, {af, b}, 7)), @ by ebig Al g,
cp < ap_3 Abg_gAcg_y, b < bi_y Act_q,
cf i g, b —bi_y Aef_q,
et a4, by « 0,
c%(—a%fl, c?(—atlfl/\cffl,
cf <—b%71, c? <—b?71Ac%71,
i} of & bF g Aci_y,
et «—af_,,
¢? «—at_q,
c% — b%il,

cy cf_l }

Here, we have first(T) = {{a?_;,b}_1,¢7_,}} and thus the least revision
of Definition 19 can be applied on P. Moreover, Rp = {bY «+ bf_;,c¥
al_ Abj_iAci_q, ¢ < ¢, }; these rules are highlighted in bold in P. The least
revision of P by T over A and F, Loy (P, T, A, F), is obtained by removing the
rules of Rp from P and adding their least specialization, added conditions are
in bold in Lye, (P, T, A, F) and are detailed in Example 16, except for a? < ()

24 Tony Ribeiro et al.

which does not need to be revised because it is consistent with T since a! is

observed in some target states.

Theorem 3 states properties on the least revision, in order to prove it
suitable to be used in the learning algorithm.

Theorem 3 (Properties of Least Revision) Let R be a MVL rule and
s € 87 such that RMs. Let Sg:={s' € ST | RN '} and Sspe := {s' € ST |
R’ € Lype(R,s, A, F), R’ Ms'}.

Let P be a DMVLP and T,T" C S7 x ST such that |first(T)] = 1 A
first(T) N first(T7) = 0. The following results hold:

Sspe = SR \ {5}7
L.v(P, T, A, F) is consistent with T,

Liev(PTAF)
—_—
Lyey (P, T,A,F
Lp = SoPTAT, 4
P is complete => Lyoy(P, T, A, F) is complete.

P
T =

7

Guds o o

The next properties are directly used in the learning algorithm. Proposi-
tion 2 gives an explicit definition of the optimal program for an empty set of
transitions, which is the starting point of the algorithm. Proposition 3 gives a
method to obtain the optimal program from any suitable program by simply
removing the dominated rules; this means that the DAMVLP optimal for a set
of transitions can be obtained from any DMVLP suitable for the same set of
transitions by removing all the dominated rules. Finally, in association with
these two results, Theorem 4 gives a method to iteratively compute Pp(T) for
any T C 87 x ST, starting from Pp(0).

Proposition 2 (Optimal Program of Empty Set) Po(0) = {v¥ < (|
veTAvY e Alr}.

Proposition 3 (From Suitable to Optimal) Let T C S* x ST. If P is a
DMVLP suitable for T, then Po(T) ={R€ P|VR' €e PR >R — R =
R}.

Theorem 4 (Least Revision and Suitability) Let s € 87 and T, T’ C
ST ST such that |first(T")| = 1A first(T)Nfirst(T") = 0. Lyey(Po(T),T', A, F)
is a DMVLP suitable for TUT'.

4.2 Algorithm

In this section we present GULA: the General Usage LFIT Algorithm, a revi-
sion of the LF1T algorithm [20,48] to capture a set of multi-valued dynamics
that especially encompass the classical synchronous, asynchronous and gen-
eral semantics dynamics. For this learning algorithm to operate, there is no
restriction on the semantics. GULA learns the optimal program that, under

Title Suppressed Due to Excessive Length 25

the same semantics, is able to exactly reproduce a complete set of observa-
tions, if the semantics respect Theorem 1. Section 5 will be devoted to also
learning the behaviors of the semantics itself, if it is unknown.

GULA learns a logic program from the observations of its state transitions.
Given as input a set of transitions T C 87 xS, GULA iteratively constructs
a DMVLP that models the dynamics of the observed system by applying
the method formalized in the previous section as shown in Algorithm 2. The
algorithm can be used for both learning possibility or impossibility depending
of its parameter learning_mode. When learning possibility (learning_mode =
“possibility”), the algorithm will learn the optimal logic program Po(T) and
this is what will be discussed in this section. The second mode is used in a
heuristical approach to obtain predictive model from partial observation and
will be discussed in later sections.

Algorithm 2 GULA

— INPUT: a set of atoms A’, a set of tramsitions T C S¥ x

ST', two sets of variables F and T/, a string learning-mode €
{“possibility”, “impossibility” }.
— For each atom vV € A’ of each variable v € T":
— if learning_mode = “possibility”:
e Extract all states from which transition to v'* does not exist:
Negyvar := {s € first(T) | #s' € ST, (s,8') € T Av'@ € s’}
— if learning_mode = “impossibility”:
e Extract all states from which transition to v'* do exist:
Negyvar := {s € first(T) | 3s' € ST, (s,8') € T Av'@ € 5’}
— Initialize Pyvar := {v¥ < (0}.
— For each state s € Neg,vai:
e Extract and remove the rules of P,..: that match s:
Myvar :={R € P | body(R) C s} and Pyvat := Pyoar \ Myvar.
o LS:=10
e For each rule R € M, vai:
- Compute its least specialization P’ = Lgye(R, s, A", F').
- Remove all the rules in P’ dominated by a rule in Pva:.
- Remove all the rules in P’ dominated by a rule in LS.
- Remove all the rules in LS dominated by a rule in P’.
- LS:=LSUP.
e Add all remaining rules of LS to P,vai: Pyvar := Pgoar ULS.
— P:=PUP,u
— OUTPUT: P (P is Po(T) if learning-mode = “possibility”).

From the set of transitions T', GULA learns the conditions under which
each v'® € A’ C A,v € T C T may appear in the next state. The algorithm
starts by computing the set of all negative examples of the appearance of vV
in next state: all states such that v never takes the value val in the next state of
a transition of T'. Those negative examples are then used during the following
learning phase to iteratively learn the set of rules Po(T'). The learning phase

26 Tony Ribeiro et al.

Observations a=0 Observations a=1

Positive Negative Positive Negative
examples || examples examples || examples

H
-
o

;;
;;
2
!
-
o

0

11 1

IOEE
E‘!
2 = o
o - =
= = 1

I I I I
= = = =

= = o
= 15 =

= = o
= o 2

Fig. 6: Preprocessing of the general semantics state transitions of Figure 5
(right) into positive/negative example of the occurence of each value of variable
a in next state. In blue (resp. red) are positives (resp. negatives) examples of
the occurence of a (left) and a; (right) in next state.

starts by initializing a set of rules Pyva: to {R € Po(()) | head(R) = v*@} =
{v'® « (}. Pyoar is iteratively revised against each negative example neg in
Neg,var. All rules R, of P,.a: that match neg have to be revised. In order
for P,vai to remain optimal, the revision of each R,, must not match neg but
still matches every other state that R, matches. To ensure that, the least
specialization (see Definition 18) is used to revise each conflicting rule R,,.
For each variable of 7’ so that body(R,,) has no condition over it, a condition
over another value than the one observed in state neg can be added. None
of those revision match neg and all states matched by R, are still matched
by at least one of its revisions. Each revised rule can be dominated by a
rule in P,va: or another revised rules and thus dominance must be checked
from both. The non-dominated revised rules are then added to Pgywar. Once
P,va has been revised against all negatives example of Neg,vai, Pyoar = {R €
Po(T) | head(R) = v¥*}. Finally, Pva is added to P and the loop restarts
with another atom. Once all values of each variable have been treated, the
algorithm outputs P which is then equal to Po(T). More discussion of the
implementation and detailed pseudocode are given in appendix. The source
code of the algorithm is available at https://github.com/Tony-sama/pylfit
under GPL-3.0 License.

Ezample 18 Execution of GULA(A, T, F,T) on the synchronous state tran-
sitions of Figure 5 (left):

- F={at-1,bi1},

- T - {Clt, bt},

- A= {ag—lv b?—la atl—lv b%—la a(t)v b(tJa a%a b%}

- T :1 { ({?’2(6)—17 bg—ol}b{a%v b%})’ ({a?—la b%—l}v {a(t)a b%})v ({a%—lv b?—l}v {a%’ b?})7
({ai_1, b1}, {a7, 0¢}) }

Table 1 provides each Negyva: (first column) and shows the iterative evolu-

tion of P,va (last column) over each neg € Neg,var during the execution of

GULA(A,T,F,T). Rules in red in P,oa of previous step match the cur-

rent negative example neg and must be revised, while rules in blue in the

https://github.com/Tony-sama/pylfit

Title Suppressed Due to Excessive Length 27

last column dominate rules in blue produced by the least specialization (third
column).

Table 1: Iterative evolution of P,..: over each element of Neg,v.: for each
v'a € A|r during the execution of GULA (A, T, F,T) over the transitions of
Figure 5 (left).

L4 Nega? = {{ag_lvbg_l}v{a%_pbg_l}}vPag = {a(t,) — @}

neg € Negag M Least specializations Pa(t)
(af_1,67_) {af < 0} {af < af j,a] < b 1} | {af < af |,af < bl |}
(ai_1, 00) [{a¥ < o] 1} l{a? A altl—l /\lb%—r} ; {af < b, 1}

° Nega% ={{a¥_,,0]_}, {at_l,bt_l}},Pa% = {a; < 0}
neg € Nega% M Least specializations Pa%
(a?—lvb%—l) {latl 51@} {ai T a%—llva% — 07 1} | {af < “{1,71"1% b}
(ag_1,bp—1) | {as at—1}0 l{at A C(‘)f,—l /Bb?—ﬂ’ . {af < b7}

® Negb? = {{a‘t717bt—1}7{at—17bt71}}7Pb? = {by < 0}
neg € Negb(t) M Least specializations Pb?
(ag_l,bé_l) %bg <_0w} {69 <0— ag_ll,bg <—Obg_1} {6 « ag_l, b%’ — 0}
(ag_1,b_1) {b¢ < bt—l}l o{bt A alt—l /\lbtfl} . {6} «a;_1}

® Negb% = {{at—hbt—l}v{at—17bt—1}}7Pb% = {b; < 0}
neg € Negbtl M Least specializations Pb%
(a%717b%1]71) {1th (—1(0} {b% <1— ag70176% <—1b%71} {btl — a(?il,b}i — 1)}71}
(ay_1,b;_1) {by b1} {bf «ag_1 Aby_q} {bf «—a;_y

Ezample 19 Execution of GULA (A, T, F,T) on the asynchronous state tran-
sitions of Figure 5 (middle):

- F= {atflvbtfl}v

- T: {at,bt},

- A= {agflﬁbgflaaiflvbifhagb?’a%’b%}

- T= { ({a?—lvbg—l}’ {agvb%})v ({ag—lab?—l}7 {a%’b?})’ ({ag—lvb%—l}v {a?,b%}),
({a%—lvb?—lh{a%?bg})v ({a%—lvb%—lh{a??bg}) ({a%—l’btl—l}’{atlvbtl}) }

Table 2 provides each Negyva: (first column) and shows the iterative evolu-
tion of P,va (last column) over each neg € Neg,var during the execution of
GULA(A,T,F,T). Rules in red in the last column (Pyva) match the cur-
rent negative example neg and must be revised, while rules in blue in the last
column dominate rules in blue produced by the least specialization (third col-
umn, next line). For the general semantics transitions of Figure 5 (right), the
additional transitions that are observed compared to the asynchronous case
do not alter any Neg, a1, thus the learning process is the same as in Table 2
resulting in the same output program.

28 Tony Ribeiro et al.

Table 2: Example of the execution of GULA (A, T, F,T) over the transitions
of Figure 5 (right) and, equivalently, the transitions of Figure 5 (right). For
each v'® € A|r is given the iterative evolution over each element of Negyva:
(15t col.) of the set of matching rules M C P,var (2"? col.), their least special-
izations (3" col.) and Pyva: final state.

oNegao—{{at AR Po—{u «— 0}
neg € Nega? M Least spemahzatlons P, 0
(ap_1,67_1) | {af < 0} | {af < af_y,af < b]_;} 1{“t —aj_ 17“9“1’%_1}
* Nega = ({0 1,00)], Pat = (0] 0
neg € Nega% M Least specializations P, !
(af_y,b0i_ 1) [{af <0} [{af < aj_y.af < b) 1} [{af < aj_ 17at1 < b1}
. Negb(t) ={{a¥_,,0]_{}}, Pb? = {b) « 0}
neg € Negb? M Least specializations Pb?
(af_1,b;1) [{b7 <0} | {8} t“%_pb? <Oy} [{0 —af i 00 b 4}
. Negb% ={{a;_1,07_1}}, Pb% = {b, < 0}
neg € Negb% M Least specializations Pb%
(a1, 00 1) | {0 <0} [{6 < af 1,6 < b 1} | {bf <o 1,00 < bi 1}

Theorem 5 gives the properties of the algorithm: GULA terminates and
GULA is sounds, complete and optimal w.r.t. its input, i.e., all and only non-
dominated consistent rules appear in its output program which is the optimal
program of its input. Finally, Theorem 6 characterizes the algorithm time and
memory complexities.

Theorem 5 (GULA Termination, Soundness, Completeness, Opti-
mality) Let T C S* x S7.

(1) Any call to GULA on finite sets terminates,

(2) GULA(A,T,F,T)= Po(T),

(3) VA’ C Al7, GULA(Ar UA T, F,T) = {R € Po(T) | head(R) € A'}.

Lemma 2 (Gula can learn from any pseudo-idempotent semantics)
Let DS be a pseudo-idempotent semantics, then

DS(GULA(A, DS(P), F,T)) = DS(Po(DS(P))) = DS(P).

Lemma 2 is trivially proven from Theorem 5 since for any dynamical semantics
DS and any DMVLP P, GULA(A,DS(P),F,T) = Po(DS(P)).

Lemma 3 (Gula can learn from synchronous, asynchronous and gen-
eral semantics)

- 7jsyn(G}‘U-LJA(-A 7;y7z())) - 7;yn((.syn())) - 7;yn(P)
- 7?Lsyn (GULA(A Esyn()]:a T) = 771€y71(PO(771€y71(P))) = Esyﬂ(P)
- Tgen(GULA(Aa Tgen(), F,T)) = gen(ol gen() = Een(P)

Lemma 3 is trivially proven from Theorem 2. Thus the algorithm can be
used to learn from transitions produced from both synchronous, asynchronous
and general semantics.

Title Suppressed Due to Excessive Length 29

Theorem 6 (GULA Complexity) Let T C S7 xS7 be a set of transitions,
Let n := max(|F|,|T|) and d := max({|dom(v)|) € N|v € FUT}. The worst-
case time complexity of GULA when learning from T belongs to O(|T|?+|T | x
(2n*d?"*2 + 2n3d"*Y)) and its worst-case memory use belongs to O(d*™ +
2nd™ ! + ndnt?).

The worst case complexity of GULA is higher than the brute force enu-
meration of Algorithm 1. The complexity of brute force enumeration is
bound by the operation of removing the dominated rules (O(nd?"*?)), that
also appear in GULA. This operation is done once in the brute force enu-
meration with all consistent rules and multiple time (for each negative ex-
ample) in GULA, also GULA can generate several time the same rule. But,
in practice, GULA is expected to manage much less rules than the whole set
of possibility at each step since it removes dominated rules of previous step,
thus globally dealing with less rules than all possibility and ending being more
efficient in practice. Its scalability is evaluated in Section 7 with brute force
enumeration as baseline.

To use GULA for outputting predictions, we have to assume a semantics
for the model. In the next section, we will exhibit an approach to avoid such
a preliminary assumption and learn a whole system dynamics, including its
semantics, in the form of a single propositional logic program.

5 Learning From Any Dynamical Semantics using Constraints

Any non-deterministic (and thus deterministic) discrete memory-less dynam-
ical system can be represented by a MVLP with some restrictions and a
dedicated dynamical semantics. For this, programs must contain two types of
rules: possibility rules which have conditions on variables at ¢ — 1 and conclu-
sion on one variable at t, same as for DMVLP; and constraint rules which
have conditions on both ¢t and ¢ — 1 but no conclusion. In the following, we
also re-use the same notations as for the MVL of Section 2.1 such as head(R),
body(R) and var(head(R)).

5.1 Constraints DMVLP

Definition 20 (Constrained DMVLP) Let P’ be a DMVLP on ALY F
and T two sets of variables, and ¢ a special variable with dom(e) = {0,1} so
that e ¢ TUF. A CDMVLP P is a MVLP such that P = P’ U{R € MVL |
head(R) = ¢! A W' € body(R),v € FUT}. A MVL rule R such that
head(R) = ¢! and Vv*® € body(R),v € FUT is called a MVL constraint.

Moreover, in the following we denote V = F U T U {e}. This V is different
than the one of P’ (which is FU T, without the special variable ¢). From now,

a constraint C is denoted: <= body(C).

30 Tony Ribeiro et al.

Example 20 & ad Aa_, is a constraint that can prevent a to take the value

0 in two successive states. <— b} Ad? A c¢?_, is a constraint that can prevent
to have both b' and d? in the next state if ¢? appears in the initial state.

& ay AbBY is a constraint with only conditions in T, it prevents a and b to

take value 0 at same time. <= ad_ AbY_| is a constraint with only conditions
in F, it prevents any transitions from a state where a and b have value 0, thus
creating final states.

Definition 21 (Constraint-transition matching) Let (s,s’) € 7 x S7.
The constraint C matches (s, s"), written C' M (s, s'), iff body(C) C sU s'.

Using the notion of rule and constraint matching we can use a CDMVLP to
compute the next possible states. Definition 22 provides such a method based
on synchronous semantic and constraints. Given a state, the set of possible
next states is the Cartesian product of the conclusion of all matching rules
and default atoms. Constraints rules are then used to discard states that would
generate non-valid transitions.

Definition 22 (Synchronous constrained Semantics) The synchronous
constrained semantics Tgyn—. is defined by:

Teyn—c : P {(s,5") € 87 x 8T | s’ C Conclusions(s, P) A
3C € Phead(C) =<' ACM(s,8)}

Figure 7 shows the dynamics of the Boolean network of Figure 5 under
three semantics which dynamics cannot be reproduced using synchronous,
asynchronous or general semantics on a program learned using GULA. In the
first example (left), either all Boolean functions are applied simultaneously or
nothing occurs (self-transition using projection). In the second example (cen-
ter), the Boolean functions are applied synchronously but their is also always
a possibility for any variable to take value 0 in the next state. In the third
example (right), either the Boolean functions are applied synchronously, or
each variable value is reversed (0 into 1 and 1 into 0). The original transitions
of each dynamics are in black and the additional non-valid transitions in red.
Using the original black transitions as input, GULA learns programs which,
under the synchronous semantics (Definition 15), would realize the original
black transitions plus the non-valid red ones. The idea is to learn constraints
that would prevent those non-valid transitions to occur so that the observed
dynamics is exactly reproduced using the synchronous constrained semantics
of Definition 22. The CDMVLP shown below each dynamics realize all original
black transitions thanks to there rules and none of the red transitions thanks
to their constraints.

Definition 23 (Conflict and Consistency of constraints) The constraint
C conflicts with a set of transitions T C S x ST when 3(s,s’) € T, CM (s, s).
C is said to be consistent with T when C does not conflict with T'.

Title Suppressed Due to Excessive Length 31

// a:= not b // a:=not b // a:= not b
0 1 0 1 0 1
ap < by ap < by_q ap < by_q
1 (0] 1 0 1 0
ay < by_4 ay < by_4 ay < b;_4
// b := not a // b := not a // b := not a
0 1 0 1 0 1
by < a;_4 by < a;_4 by < a;_4
1 0 1 0 1 0
by <—a;_4 by < aj_4 by <+ a;_4
// Stability rules // Stability rules // Inverse value
9] 0 1 1 0 1
ay + a;_q ay < aj;_q ay < aj;_q
1 1 1 1 1 0
ay <+ a;_q by < by ay < a;_q
b9 b9, ») b9 bl
H H // Degradation 1 0
by < by_4 a? - a%71 by < by_q
s . b0 o pl . .

// Constraints t S 01 // Constraints
L .0 31 40 L 1 1 1
—ag,byiby g // Constraints agsbyagg
L 1,;0 0 1 1,1 1 L 0,;0 0
—ag, by, a5 «—ag,by,a;_ 4 —ag, by, a5
L 41 40 31 L1 51 51 L o1,1 .1
—ag, by, by < ap,by,b;_4 —ag, by, by
L 0,1 1 L 0 30 30
agsbiap_g ag. by bpg

Fig. 7: States transitions diagrams corresponding to three semantics that do
not respect Theorem 1 (in black) applied on the Boolean network of Figure 5.
Using the synchronous semantics on the optimal program of the black transi-
tions will produce in addition the red ones. Below each diagram, a CDMVLP
that can reproduce the same behavior using synchronous constrained seman-
tics.

Therefore, a constraint is consistent if it does not match any transitions of

T.

Definition 24 (Complete set of constraints) A set of constraints SC' is
complete with a set of transitions T if V(s,s') € S* x S7,(s,8') ¢ T —
C e SC,CN (s, s).

Definition 25 groups all the properties that we want the learned set of
constraints to have: suitability and optimality, and Proposition 4 states that
the optimal set of constraints of a set of transitions is unique.

Definition 25 (Suitable and optimal constraints) Let T C S x §7. A
set of MVL constraints SC' is suitable for T" when:

— SC' is consistent with T,

— SC is complete with T,

— for all constraints C' not conflicting with T', there exists C’ € P such that
c'>C.

If in addition, for all C € SC, all the constraint rules C’ belonging to a set of

constraints suitable for T' are such that C’ > C implies C > C’, then SC is

called optimal.

32 Tony Ribeiro et al.

Proposition 4 Let T C S7 x ST. The optimal set of constraints for T is
unique and denoted Co(T).

The subset of constraints of Cp(T") that prevent transitions permitted by
Po(T) but not observed in T from happening, or, in other terms, constraints
that match transitions in Tsyn—c(Po(T))) \ T, is denoted C{,(T') and given
in Definition 26. All constraints of Co(T) that are not in this set can never
match a transition produced by Po(T) with Tsyn—. and can thus be consid-
ered useless. Finally, Theorem 7 shows that any set of transitions 7' can be
reproduced, using synchronous constrained semantics of Definition 22 on the
CDMVLP Py (T) U ChH(T).

Definition 26 (Useful Constraints) Let 7 C S* x S7.
O (T) := {C € Co(T) | I(s,s') € ST x ST,C N (s,8) A s 2T g1,

Theorem 7 (Optimal DMVLP and Constraints Correctness Under
Synchronous Constrained Semantics) Let T C S x S7, it holds that

5.2 Algorithm

In previous sections we presented a modified version of GULA: the General
Usage LFIT Algorithm from [46], which takes as arguments a different set of
variables for conditions and conclusions of rules. This modification allows to
use this modified algorithm to learn constraints and thus CDMVLP.
Algorithm 3 show the Synchronizer algorithm, which given a set of transi-
tions T' C 87 xS7 will output Po(T)UC), (T) using GULA and the properties
introduced in the previous section. With the new version of GULA it is possi-
ble to encode meaning in the transitions we give as input to the algorithm. The
constraints we want to learn are technically rules whose head is €' with condi-
tions on both F and 7. It is sufficient to make the union of the two states of a
transition and feed it to GULA to make it learn such rules. Constraints should
match when an impossible transition is generated by the rules of the optimal
program of T. GULA learns from negative examples and negative examples
of impossible transitions are just the possible transitions, thus the transitions
observed in T'. Using the set of transitions 7" := {(sUs’, {€"}) | (s,s") € T} we
can use GULA to learn such constraints with GULA(AU{e'}, T', FUT, {e}).
Note that ¢, from the algorithmic viewpoint, is just a dummy variable used
to make every transition of 7' a negative example of ¢! which will be the
only head of the rule we will learn here. The program produced will contain
a set of rules that match none of the initial states of 7" and thus none of
the transitions of T" but matches all other possible transitions according to
GULA properties. Their head being ¢!, those rules are actually constraints
over T'. Since all and only such minimal rules are output by this second call to
GULA, it correspond to Co(T), which prevent every transitions that are not
in T to be produced using the constraint synchronous semantics. Finally, the

Title Suppressed Due to Excessive Length 33

Observations Constraints

Negative examples

n oo11

o00e

Fig. 8: Preprocessing of the state transitions of Figure 7 (left) into negative
examples of the application of constraints.

0101

1100

1111

non-essential constraints can be discarded following Definition 26 and finally
Po(T) U C),(T) is output. The source code of the algorithm is available at
https://github.com/Tony-sama/pylfit under GPL-3.0 License.

Algorithm 3 Synchronizer

— INPUT: a set of atoms A, a set of transitions 7' C S7 x 87, two sets of
variables F and 7.
// 1) Learn what is possible locally in a transition using GULA
— P:=GULA(A,T,F,T)
// 2) Encode negative examples of constraints, i.e., observed transitions
— Let € be a special variable not in the system: e & F U T
— T"={(sUs' {°}) | (s,8') € T}
// 3) Learn what is impossible state-wise in form of constraint using GULA
— P = GULA(A|_7:U7—U{61}, T, FUT, {E})
// 4) Keep only applicable constraints
— P":=
— For each C € P’
// 4.1) Extract compatible rules

— Chargets == {v € T | Jval € dom(v), v’ € body(C)}

— W € Ciargetss Crutes(v) := {R € P | var(head(R)) = v A head(R) €
body(C) A Vw € F,Vval,val’ € dom(w), (w** € body(R) A wral' e
body(C)) = val = val'}

// 4.2) Search for a combination of rules with no conflicting conditions

— For each combi € Xvecmrqets(crules (v)

o If Vv € F, |{v'® € body(R) | val € dom(v) A R € combi}| < 1
- P":=P'u{C}

- break
— OUTPUT: Py(T)JUC),(T):=PUP".

Theorem 8 (Synchronizer Correctness) Given any set of transitions T,
Synchronizer (A, T, F, T) outputs Po(T) U C,(T).

From Theorem 7 and Theorem 8, given a set of transitions T C 87 x S7,
it holds that Tsyn—c(Synchronizer(A,T,F,T)) = T, i.e., the algorithm can

https://github.com/Tony-sama/pylfit

34 Tony Ribeiro et al.

be used to learn a CDMVLP that reproduce exactly the input transitions
whatever the semantics that produced them.

The complexity of the Synchronizer is basically a regular call to GULA
plus a special one to learn constraints and the search for a compatible set of
rules in the optimal program which could be blocked by the constraint. Since
constraint can have both features and target variables in their body, the com-
plexity of learning constraints with GULA is like considering | F|+|7 | features
but only one target value e'. The detailed complexity of the Synchronizer is
given in Theorem 9.

Theorem 9 (Synchronizer Complexity) Let T C 87 x ST be a set of
transitions, let n := max(|F|,|T]) and d := max({|dom(v)| e N|ve FUT})
and m = |F| +|T]|.

The worst-case time complezity of Synchronizer when learning from T
belongs to O((d?™ +2nd™" 1 +nd"T2)+ (|T)? +|T| x (2m*d*™+2 +-2m3d™+1)) +
(d™")) and its worst-case memory use belongs to O((d** + 2nd"+ + nd"*?) +
(d®™ 4 2md™ ™t + md™2) + (nd")).

The Synchronizer algorithm does not need any assumption about the
semantics of the underlying model but require the full set of observations.
However, when dealing with real data, we may only get access to partial ob-
servations. That is why we propose in next section a heuristic method to use
GULA in such practical cases.

6 Predictions From Partial Observations with Weighted DMVLPs

In this section, we present a heuristic method allowing to use GULA to learn
from partial observations and predict from unobserved feature states. Pre-
vious sections were focusing on theoretical aspects of our method. The two
algorithms presented in Sections 4 and 5 are sound regarding the observations
they have been provided as input. Rules of an optimal program provide mini-
mal explanations and can reproduce what is possible over observed transitions.
If observation are incomplete, the optimal program will realize a transition to
every possible target state from unobserved feature state, i.e. all target atoms
are always possible for unobserved feature state. In practice, when observations
are partial, to get predictions and explanations from our model on unobserved
feature states, we also need to model impossibilities.

Definition 27 (Rule of Impossibility) A rule of impossibility of T C ST x
ST is a MVL rule R such that ¥(s,s’) € T,RMs = head(R) ¢ s

A rule of impossibility is a rule that does not realise any transition of 7": the
conclusion of a rule of impossibility is never observed in any transition from a
feature state of first(T") it matches, i.e., its body is a condition so that its head
is not possible. Thus, such a rule either conflicts with T' (see Definition 7) for
every feature states it matches or matches no feature state of T' (in first(T")).

Title Suppressed Due to Excessive Length 35

Note that all conflicting rules are not necessarily rules of impossibility. Indeed,
a conflicting rule can still realize some transitions of 7.

Definition 28 (Optimal Program of Impossibility) Let T C S x S7.
A DMVLP P is impossibility-suitable for T when:

— all rules in P are rules of impossibility of T', and
— for all rules of impossibility R of T', there exists R’ € P such that R’ > R.

If in addition, for all R € P, all the MVL rules R’ belonging to DMVLP
impossibility-suitable for T are such that R’ > R implies R > R’ then P is
called impossibility-optimal and denoted Po(T).

Proposition 5 (Uniqueness of Impossibility-Optimal Program) Let
T C 87 xST. The DMVLP impossibility-optimal for T is unique and denoted
Po(T).

Rules of possibility and impossibility can be weighted according to the
observations to form a Weighted DMVLP as given in Definition 29.

Definition 29 (Weighted DMVLP) A weighted program is a set of weighted
rules: {(w,R) | w € NA RisaDMVLP rule}. A weighted DMVLP, or
WDMVLP, is a pair of weighted programs (P, P’) on the same set of atoms
A, and the same feature and target variables F and 7.

Ezample 21 Let WP = (P, P') be a WDMVLP, as follows.

P={ P =
(3,@? — b%—l) (307 CL? A C%—l)
(15a a% — bg—l) (53 a% A Cg—l)

Let s := {aY_,,b{_;,ct_1}. The rule of possibility a) < b}_; matches s, and
the rule of impossibility a? < ¢;_; also matches s. The weight of the rule of
impossibility (30) being greater than that of the rule of possibility (3), we can
consider that af is not likely to appear in a transition from s according to
WP.

Using GULA, we can learn both rules of possibility (by using parame-
ter learning-mode = " possibility”) and rules of impossibility (with parame-
ter learning_-mode = "impossibility”) from T C S7 x ST. In Algorithm 4,
GULA is used to learn two distinct DMVLPs: a program of possibility and
a program of impossibility. The rules of both programs are then weighted by
the number of observed feature states (that is, in 7T') they match to form a
weighted DMVLP. This WDMVLP can be used to make predictions from
unobserved feature states (s € S7,s ¢ first(T)) by confronting the learned
rules of possibility and impossibility according to their weights.

Given a feature state s € 87 we can predict and explain the likelihood of
each target atom by confronting the rules of possibility and impossibility that
match s. The likelihoods are computed as given in Definition 30.

36 Tony Ribeiro et al.

Algorithm 4 Learning WDMVLP with GULA

— INPUT: a set of atoms A’, a set of transitions T C ST x ST', two sets
of variables 7’ and T’

— P:=GULA(A,T,F',T', “possible”)

— P :=GULA(A',T,F', T, “impossible”)

- WP:={({seS|(s,s) e TARMNs}|,R) € Nx P}

- WP ={({s€S|(s,s)eTARMs}|,R) e Nx P'}

OUTPUT: (WP,WP’).

Definition 30 (WDMVLP Prediction and Explanation)

(1) Let P be a weighted program, s € S* and v’ € A with v € 7. We define
the best rules of v*® matching s in P as:

best_rules(P, s,v'™) := (wmax, M)

Wmax := max({w € N | (w, R) € P} U{0})

where: {M = {R | (Wmax, R) € P Ahead(R) = v'% RMs} *

(2) Let WP = (P, P') be a WDMVLP, s € 87 and v*® € A with v € T.
We define the best rules of possibility and best rules of impossibility of vV
matching s in WP as:

best_rules_of _possibility(W P, s, v'®) := best_rules(P, s, v®®)

val) val))

best_rules_of impossibility(W P, s, v := best_rules(P’, s, v

val

(3) We define the prediction of likelihood of the occurrence of v¥% in a tran-

sition from s according to WP as:

1 w—w
dict(W P, s,v"") := = x (1
predict(WF, s,v") 2~ (* max({l,w+w’})>
where: best_rules_of _possibility(W P, s,v'®) = (w, M)
"\ best_rules_of impossibility(W P, s, v’%) = (w', M")

(4) We define the explanation of the prediction of the occurrence of v'* in a
transition from s according to WP as:

predict_and_explain(W P, s, v') :=
(V”al,predict(WP, 5,v'4), (w, R), (w', R'))

(w, R) := arbitrary(best_rules_of possibility(W P, s,v’))
where: { (w’, R') := arbitrary(best_rules_of _impossibility(W P, s,v'™)))
arbitrary((w”,M)) = (w”, R")
so that R is taken arbitrarily in M if M # (), or R” := @ if M = {).

Title Suppressed Due to Excessive Length 37

Intuitively, predict(W P, s,v'®) gives a normalized score between 0 and 1
of the likelihood to observe v¥® after state s, where 0.5 means that we are
left inconclusive. In predict_and_explain(W P, s,v'%), one of the best rules of
possibility and rules of impossibility with their respective weights are given as
explanation to the prediction or a weight of 0 and no rule when no rules of
possibility (resp. impossibility) match s. The weights of the selected rules are
used to compute the likelihood and the rules themselves are the explanation
of the predictions.

Table 3 shows an example of such predictions and explanations from a
WDMVLP WP from the feature state s = {a? 4, o9_;, ¥, d9_1, ef_4,
.ft0—17 g?—l’ h%—l? 7;tl—lﬁ jtl—l} where ' = {at—17 s vjt—1}7T = {at’ s 7jt} and
Vv € FUT,dom(v) = {0,1}. Each row of the table provides the WDMVLP
prediction of the occurrence of a target atom v'® and the corresponding expla-
nation: predict_and_explain(W P, s,v'™). For example, i} is very likely to be
observed in a transition from s since its likelihood is almost 1 (0.90). This like-
lihood comes from the best possibility rule of the WDMVLP: i} < d?_; Aj} 4,
whose weight is 35, and its best impossibility rule: i} « af_; Ab}_; AgP_ AR_q,
which only has a weight of 4. This WDMVLP has been learned using Algo-
rithm 4, thus the weights correspond to the number of feature states that those
rules match. Here, we can say that ij is very likely to occur since 90% of the
observed feature states that contain both d?_; and j} ; (like s) have i} in a
transition, according to the possibility rule R. We have the reverse case for
a} in this example, the best impossibility rule is much stronger than the best
possibility rule leading to the likelihood of 0.05, thus a; is very unlikely to
be observed in a transition from s. In this example, the likelihood probability
of the two atoms of each target variable (for example a° and a') sums to 1.0
because the observed transitions are deterministic, but in the general case they
are not related; for instance: both a® and a' could be very likely.

Regarding the choice of the rules for prediction, here we simply take the
rules with the biggest weight from each weighted program. The intuition be-
hind this is that rules with bigger weights are more likely to be consistent
with unobserved transitions, thus the biggest weighted rule(s) is (are) the
most likely to be part of the real optimal program. Note that other heuristics
are possible. One could for instance combine all matching rules, for example
by computing the sum or average of their weights; however, combining rules
can be more noise sensitive: a lot of small-weighted incorrect rules (on unob-
served states) might counter a single high-weighted rule that would happen to
be optimal under all observations. This is why we chose to use a single-rule
heuristics, which also happens to give a unique pair of rules as explanation
(why a target atom might be possible and why it might not). The capacity of
this heuristic method to predict and explain from unobserved feature states is
evaluated in Section 7.

38

Tony Ribeiro et al.

Target atom

Likelihood

Possibility explanation

Impossibility explanation

(vvaly (predict(W P, s, v'!)) ((w, R)) (w',R"))
ay 0.95 (54, af < a¥_1) (3, af « cJ_{ AdY_| A
i ngl1)
1 1
a} 0.05 (3, af + 9, AdY_, (54, a} «+ a9)
Y
b9 0.93 (58, b9 « d?_1) (4, 89 « a%_; ABY_| A
gg—1 A hi_y)
1 1 0 0 1 0
by 0.07 (4, bf « a%_; A9, (58, by « dY_1)
. 9¢_1 QhLb)
f 0.88 (28, ¢ « d%_ | AR}_)) 4, & « ad_; A A
dg_1 Agi_1)
c; 0.12 (4, ¢ « ad | ADBY_, (28, cf < dY_y Ah}_y)
di_1 Agf 1)
0 0 -1
d9 0.85 (50, d9 «+ it 1) (9, d? « b)_ A2 A
0]
9t71)
1 1 1 .
d} 0.15 (9, df <+ b9_; A2, (50, df + if_;)
9?71)
9 0.88 (51, ef « f{_1) (7,)+ by Agf g A
-1
1)
el 0.12 (7, et « b9_1 AgY (51, ef « f2_1)
. it1)
1 0.42 a1, f2 < af_; AbY_, (15, f « d_ Agd A
1) Jt-1)
i 0.58 (15, f} « d)_y Agf_y AL, f} = ad g AbYy A
.1 0
Jt—1) fe—1)
0
9 0.36 9, g9 « by Agfy (16, gf + aj_y Adf_y A
nl_)) Jt_1)
t—1 t—1
1 1
gt 0.64 (16, gf + a2 AdY_, (9, gf + 9_1 Agd A
-1 1
Jt—1 hi_1)
n? 0.40 (8, BY « bY_; A cd_ (12, hY « af_ 1 A gd_ | A
. dg_y /;7:%—1) o hi_1)
hl 0.60 (12, h} « a9 ;1 A gd 4 (8, hi + bY_ A A
hi_1) dg_y Nij_q)
.0 . . .
9 0.10 (4, ¥ « a9, ABY_; (35,40 < d9_; AGED)
991 Ahi_y)
it 0.90 (35, iy « d9_ 1 AGE_q) (4, if + a1 ABY_ | A
91 ARi_1)
.0 . .
Ji 0.63 (12, j? +— 6%71 A ft(Ll (7, j? — a?71 A 0?71 A
93—1) d?—l /\jtl—l)
-1 -1 .
Ji 0.37 (7, j; < a(t)71 A 0?71 (12,]tl < 6}71 A f?71 A

0 1
di 1 ANJjg_1)

0
gt71)

Table 3: Example of prediction of a WDMVLP WP from a non-observed
feature state s using Definition 30.

7 Evaluation

In this section, both the scalability, accuracy and explanations of GULA are
evaluated using Boolean network benchmarks from the biological literature.
The scalability of Synchronizer is also evaluated (details are given in ap-

Title Suppressed Due to Excessive Length 39

pendix). All experiments' were conducted on one core of an Intel Core i3
(6157U, 2.4 GHz) with 4 Gb of RAM.

In our experiments we use Boolean networks? from Boolenet [11] and Py-
boolnet [28]. Benchmarks are performed on a wide range of networks. Some of
them are small toy examples, while the biggest ones come from biological case
study papers like the Boolean model for the control of the mammalian cell
cycle [15] or fission yeast [10]. Boolean networks are converted to DMVLP
where Vv € V,dom(v) = {0,1}. In [11,28] file formats, for each variable,
Boolean functions are given in disjunctive normal form (DNF), a disjunction
of conjunction clauses that can be considered as a set of Boolean atoms of the
form v or —v. Each clause ¢ of the DNF of a variable v is directly converted
into a rule R such that, head(R) = vi and viL; € body(R) < Vv € ¢
and v’ ; € body(R) <= -V’ € c. For each such DMVLP the set T of
all transitions are generated for the three considered semantics (see Section
3). For each generation, to simulate the cases where Boolean functions are
false, each semantics uses a default function that gives v°,Vv € 7 when no
rule R,v(head(R)) = v matches a state. Table 4 provides the number of vari-
ables of each benchmark used in our experiments together with the number of
transitions under synchronous, asynchronous and general semantics.

7.1 GULA Scalability

Figure 9 shows the run time (log scale) of GULA (Algorithm 2) and brute
force enumeration (Algorithm 1) when learning a WDMVLP from Boolean
networks (grouped by number of variables) transitions of Table 4. Since we
learn WDMYVLP the run time corresponds to the sum of two calls to GULA
(resp. brute force enumeration) (possibility and impossibility mode) and
the computation of each rule weight (see Algorithm 4). For the impossibility
mode of the brute force enumeration (Algorithm 1), we keep impossibility
rules in place of consistent rules: it suffices to replace P := {R € P | ¥(s,s’) €
T,body(R) C s = 3(s,s”) € T,head(R) € s"} by P:={R € P |V(s,s) €
T,body(R) C s == H(s,s") € T,head(R) € s"}. For each benchmark,
learning is performed on 10 random subsets of 1%, 5%, 10%, 25%, 50%, 75%,
100% of the whole set of transitions with a time out of 1,000 seconds.

For all benchmarks, we clearly see that GULA is more efficient than the
trivial brute force enumeration, the difference exponentially increasing
with the number of variables: about 10 times faster with 6 variables and 100
times faster with 9 variables. The brute force enumeration reaches the time
out for 10 variables benchmarks and beyond.

1 Available at: https://github.com/Tony-sama/pylfit. Using command “python3
evaluations/m1j2020/m132020_all.py” from the repository’s tests folder, results will be
in the tests/tmp folder. All experiements were run with the release version 0.2.2 https:
//github.com/Tony-sama/pylfit/releases/tag/v0.2.2.

2 Original Boolenet Boolean network files: https://people.kth.se/~dubrova/boolenet.
html. Original PyBoolNet Boolean network files: https://github.com/hklarner/
PyBoolNet/tree/master/PyBoolNet/Repository.

https://github.com/Tony-sama/pylfit
https://github.com/Tony-sama/pylfit/releases/tag/v0.2.2
https://github.com/Tony-sama/pylfit/releases/tag/v0.2.2
https://people.kth.se/~dubrova/boolenet.html
https://people.kth.se/~dubrova/boolenet.html
https://github.com/hklarner/PyBoolNet/tree/master/PyBoolNet/Repository
https://github.com/hklarner/PyBoolNet/tree/master/PyBoolNet/Repository

40 Tony Ribeiro et al.

Benchmark name |Variables Transitions
synchronous|asynchronous| general
n3slcla 3 8 14 29
n3slclb 3 8 14 31
raf 3 8 13 29
nbs3 5 32 73 213
n6slc2 6 64 230 1,039
n7s3 7 128 451 2,243
randomnet_n7k3 7 128 394 1,580
xiao-wntbHa 7 128 324 972
arellano_rootstem 9 512 1,940 11,472
davidich_yeast 10 1,024 4,364 38,720
faure_cellcycle 10 1,024 4,273 30,971
fission_yeast 10 1,024 4,157 33,727
budding_yeast 12 4,096 19,975 260,557
nl2ch 12 4,096 30,006 1,122,079
tournier_apoptosis 12 4,096 22,530 358,694
dinwoodie_stomatal |13 8,192 53,249 1,521,099
multivalued 13 8,192 49,156 1,049,760
saadatpour_guardcell |13 8,192 53,249 1,521,099

Table 4: Number of variables and total number of transitions under the three
semantics of the Boolean networks from Boolenet [11] and PyBoolNet[28] used
as benchmark in this experimental section.

For a given number of variables, we observe that for each benchmark the
run time increases with the number of transitions until some ratio (for example
50% for 7 variables) at which point more transition can actually speed up the
process. More transitions reduce the probability for a rule to be consistent,
thus both methods have less rules to check for domination. This tendency is
observed on the three semantics. It is important to note that the systems are
deterministic with the synchronous semantics and thus the number of transi-
tions in the synchronous case is much lower than for the two other semantics
and one may expect better run time. But the quantity of transitions has little
impact in fact and most of the run time goes into rule domination check (see
Theorem 6). Actually, more input transitions can even imply less learning time
for GULA.. Having more diverse initial states can also allow the sorting of the
negatives example to reduce the quantity of specialization made at each step,
a freshly revised rule being revised again will not have much non-dominated
candidates to generate. For example, for the benchmarks with 13 variables,
for some variable values, given 25% of the transitions, the number of stored
rules reached several thousands. On the other hand, when given 100% of the
transitions, it rarely exceeds hundreds stored rules. Same logic can apply to
the faster run time of general semantics with “low” subset of transitions: the
total number of transitions being higher, more diversity appears in its subset
thus higher chance for the sorting to have effect on reducing the need for least
specialization. The rules are simpler for the two other semantics since rules of
the form v < v are always consistent and quickly obtained. Such simple

Title Suppressed Due to Excessive Length 41

g - B - @ =) 0 =
= o = -]
lllllllll . 25% - 100.000 -
so%
- 75% -~ e .
=0 s 7 S
£
10000 - 10000
H e L] goe— i - F -
g s -
§ . -
§ 1o
: . i -
g o %u < = 7
S o0 o, 10 cC]
H _— H o = i
- 2 8 o
. i GULA: input transit — &
0010 & & = 1% 0010 &
§ = 3 g
g = i —a &
3 =
" . - = 5o S
= = =
=

LT D

g 1000

Fig. 9: Run time in seconds (log scale) of two calls to GULA (in blue) and
brute force enumeration (in red) when learning a WDMVLP from a ran-
dom set of 1%, 5%, 10%, 25%, 50%, 75%, 100% of the transitions of a Boolean
network from Boolenet and PyBoolNet with size varying from 3 to 13 vari-
ables. Time out is set at 1,000 seconds and 10 runs where performed for each
setting.

rules have great dominance power, reducing the quantity of stored rules and
thus checked for domination at each step.

GULA succeeds in learning a WDMVLP from the benchmarks with up
to 10 variables for all semantics before the time-out of 1,000 seconds for all
considered sub-sets of transitions. Benchmarks from 12 variables need a sub-
stantial amount of input transitions to prevent the explosion of consistent rules
and thus reaching the time out. For both semantics, the 12 variables bench-
marks reached the time out several times when given less than 100% of the
transitions. Even if this may seem small compared to the intrinsic complexity
of biological systems, ten components are sufficient to capture the dynamic
behavior of critical, yet significant, mechanisms like the cell cycle [17].

Compared to our previous algorithm LF1T [48], GULA is slower in the
synchronous deterministic Boolean case (even when learning only Po(T)).
This was expected since it is not specifically dedicated to learning such net-
works: GULA learns both values (0 and 1) of each variable and pre-processes
the transitions before learning rules to handle non-determinism. On the other
hand, LF1T is optimized to only learn rules that make a variable take the
value 1 in the next state and assume only one transition from each initial state.

42 Tony Ribeiro et al.

furthermore, LF1T only handles Boolean values and deterministic transitions
while GULA can deal with multi-valued variable and any pseudo-idempotent
(Theorem 1) semantics transitions.

The current implementation of the algorithm is rather naive and better
performances are expected from future optimizations. In particular, the al-
gorithm can be parallelized into as many threads as the number of different
rule heads (one thread per target variable value). We are also developing®
an approximated version of GULA that outputs a subset of Po(T) (resp.
Po(T)) sufficient to explain T' [47]. The complexity of this new algorithm is
polynomial, greatly improving the scalability of our approach but to the sac-
rifice of completeness. However, this algorithm is still under development and
is beyond the scope of this paper.

Learning constraints is obviously more costly than learning regular rules
since both feature and target variables can appear in the body, i.e., the num-
ber of features becomes |F| + |T|. Thus by running the Synchronizer on the
Boolean network benchmark it implies a call to GULA with double the num-
ber of variables to learn constraints. Under the same experimental settings, the
Synchronizer reached the time-out of 1,000 seconds on the benchmarks of 7
variables. The contribution regarding CDMVLP being focused on theoretical
results, we provided the detailed evaluation of the Synchronizer in appendix
to save space.

7.2 GULA Predictive Power

When addressing biological systems, a major challenge arises: even if the
amount of produced data is increasing through the development of high-
throughput RNA sequencing, it is still low with regard to all the theoretical
contexts.

In this experiment, we thus evaluate the quality of the models learned by
GULA in their ability to correctly predict possible values for each variable
from unseen feature states, i.e., the capacity of the learned model to generalize
to unobserved cases. Practically speaking, this ensures the resulting models can
provide relevant information about biological experiments that were (or could)
not be performed.

For each Boolean network benchmark, we first generate the set of all pos-
sible feature states. Those states are then randomly split into two sets: at
least 20% will be test feature states and the remaining 80% will be potential
training feature states. According to the Boolean formula of the network and a
given semantics, all transitions from test feature states are generated to make
the test set. All transitions are also computed from the training feature states,
but only x% of the transitions are randomly chosen to form the training set
with « € {1,5,10, 20,30, ...,100}. Figure 10 illustrates the construct of both
training and test sets for a Boolean network of 3 variables.

3 The polynomial approximation of GULA, currently named PRIDE is also available
at: https://github.com/Tony-sama/pylfit

https://github.com/Tony-sama/pylfit

Title Suppressed Due to Excessive Length

43

Generate All FeaturesStates| |

Shuffle Training Test

and Split Feature States Feature States
Generate All Shuffle and Generate All Test

Training Transitions keep x% Transitions

011 011

011

010 111

Training Set
T

111 010

111

j

100

010

001

001 001

111 100

011 011

110 001

Test Set
™

111

101

101

010

111

Fig. 10: Experiments settings: data generation, train/test split.

The training set is used as input to learn a WDMVLP using GULA. The
learned WDMVLP W P is then used to predict from each feature state s of the
test set, the possibility of occurrence of each target atoms v'* according to
Proposition 30, i.e., predict(W P, s,v"*). The forecast probabilities are com-
pared to the observed values of the test set. Let T" be the set of all transitions,
T’ the training set of transitions and 7" the test set of transitions. For all
v € A|7 and s € first(T"), we define:

1, if 3(s,s") € T, vvel € s’
0, otherwise ’

actual (v, s, T") = {

To evaluate the accuracy of prediction from the learned WDMVLP, WP,
over the test set T” we consider a ratio of precision given by the complement
to one of the mean absolute error between its prediction and the actual value:

>

s€first(T") vvale Al

1 — |actual (v, s, T") — predict(W P, s, vV®)|
LAl 7| x [first(T")]

accuracy(WP,T") =

Formally, if T is the whole set of transitions of the Boolean network, this
experiment consists in learning the WDMVLP (Po(T"), Po(T")) from the
training set 77 C T and checking both the consistency and realization of the
test set 77 C T', with first(77)Nfirst(T") = (). Here, we chose |T'| ~ 2 x 0.8 x|T|
and [T"| ~ 0.2 x|T'|, where z € {0.01,0.05,0.1,0.2,0.3, ..., 1.0}. Intuitively, the
WDMVLP learned in these experiments can be seen as an approximation of
(Po(T), Po(T)) on partial observations: the learned rules can be different.
These experiments aim to evaluate the discrepancies in their behaviors, i.e.,

44 Tony Ribeiro et al.

we only measure the consequences of the use of the rules, not the quality of
the rules themselves (which is the subject of the next experiment).

Ezample 22 Let T" be the test set of Figure 10 and WP be the WDMVLP
of Example 21. Let s := (a}_;,bf_1,ci_;) (111).

— Expected prediction from s according to T":
{(v* actual(vo®, s, "))} = {(af, 1), (af, 0), (b7, 1), (b3, 1), (¢, 1), (e, 1)}

— Predictions from s according to W P:
{(v*a predict(W P, s,v*®))} = {(a?,0.9), (a}, 0.2), (b7, 0.8), (b}, 0.6), (c?, 1.0),
(c,0.0)}

_ : . [1-0.9]4]0—0.2|+|1—0.8]+[1—0.6]+]1—1.0|+]|1—0.0]
Accuracy (unique state): 1 - AL =0.58

On state s, the model prediction mean absolute error w.r.t. 7" is 0.42, thus
giving an accuracy of 0.58, meaning that in average, 58% of the predictions
are correct.

Figures 11a, 11b and 11c show the accuracy of the predicted possible val-
ues w.r.t. the ratio of training data going from 1% to 100% with the three
considered semantics.

Here, we also consider four trivial baselines that are random predictions
and always predicting 0, 0.5 or 1.0, i.e., Vs € ST, vvv € A|r:

baseline_random(s, v’™) = rand(0.0,1.0)
baseline_always_0.0(s, v’¥) = 0.0

— baseline_always_0.5(s, v'%) = 0.5
baseline_always_1.0(s,v’¥) = 1.0

Accuracy score for the random baseline is expected to be around 0.5 for every
semantics since the problem is equivalent to a binary classification, i.e., each
atom can appear or not. Accuracy score of the three fixed baselines is exactly
0.5 in synchronous case since transitions are deterministic here: only one atom
vva is possible (either v or v!) for each target variable v for each feature
state of the test set, i.e., always one of the two must be predicted to 0.0 and
the other one to 1.0. For asynchronous and general semantics the transitions
are non-deterministic, thus always predicting 0.0 or 1.0 for each target atoms
will lead to different accuracy score. Both semantics using previous value as
default, it is more likely for each atom to appear in a target state, thus always
predicting 1.0 is expected to perform better than 0.5 and always predicting
0.0 is expected to perform worst. That explain why, in Figures 11b and 1lc
we can observe an accuracy score of 0.6 to 0.8 for always predicting 1.0 and
0.2 to 0.4 for always predicting 0.0.

With synchronous semantics transitions, when given only 5% of the possi-
ble transitions, GULA starts to clearly outperform the baseline on the test
set for all benchmarks size. It reaches more than 80% accuracy when given
at least 40% of the transitions for benchmarks with 6 variables and only 5%
of input transitions is enough to obtain same performance with 9 variables.
These results show that the models learned by GULA effectively generalise

Title Suppressed Due to Excessive Length 45

Fig. 11: Accuracy of the WDMVLP learned by GULA and trivial base-
lines when predicting possible target atoms from unseen states with different
amounts of training data of transitions from Boolean network benchmarks
with synchronous, asynchronous and general semantics.

(a) Synchronous semantics.

synchronous 5 variables. synchronous 6 variables

e ;@TT@E*L -=="

=

Los gos é ;
Zoa i Soa
02 02
Method Method
= gula Em gula
- baselne fandom - baseline_random
= baselne oiways.0.0 = baselne_aiways 0.0
00 = baseline_always_0.5 0.0 BB baseline_always 0.5
- baselne_aiways_1.0 - baselne_aiways 1.0
W % % m% e o % % awe Sk 6w T2 80% 16w a% s lew 2wk 2% 0% 4Bk sex 6% % s0%
Percent of training data Percent of training data
synchronous 7 variables synchronous 9 variables
10 10

Ippp————
—

ggj?i? -

: gﬁ ‘s

Los Los
204 Zoa
02 0z
Method Method
. gula Em gula
- baceine random . baceine random
= basln.aays 00 =5 naseine amays00
00 = baseline_always_0.5 0.0 BB baseline_always 0.5
Woom m e e am m% e s e e 6o W an s aee 2w mm o dow ax sew e ao%
percentof traiing dota Pacent ofrining data
(b) Asynchronous semantics.
asyetvonous 5 varales ssynchronous 6 varables
10 10

” ﬁ AT T***Ti#ﬁﬁiiiﬁ
"579§@??+i?3 i gsELfLLrLPPLP
; HHH““

Accuracy score
°

Accuracy score
°

o N N
Method Method
= gua = oua
B baseiine_random B baseine_random
B baseline_always_0.0 = baseline_always 0.0
0.0 m baseline_always_0.5 0.0 BB baseline_always 0.5
B baseline_always_1.0 . baseline_aiways 1.0
W 2% 4% 8% 16% 20% 32% 40% 48% 6% 6% 72% 80% 1% 2% 4% 8% 16% 24% 2% 40% 48% S6% 64% T2% 80%
Percent of training data Percent of training data
asynchronous 7 variables asynchronous 9 variables
10 10
—
== =
=
—
08 08 —_
-
i - ; — - - * - L * - * - -
Los Loo mmmm
g é%ééi**?é‘;é'g.-i--I--Q--I--e-i-i-.--i-a-.-;-
204 Zoa

IR R NI

02
Method Method
= guia = gua
B baseline_random W baseline_random
B baseline_always 0.0 = baseline_always_0.0
00 B baseline always 05 00 = baseline_always 0.5
W baseline_always_1.0 B baseline_always 1.0
% 2% 4% 8% 16% 20% 32% 40% 48% S6% 64% 72% 80% 1% 2% 4% 8% 16% 20% 32% 40% 48% 56% 64% 72% 80%

Percent of training data Percent of training data

46 Tony Ribeiro et al.

(c) General semantics.

general 5 variables general 6 variables

10 10

+=I=—ZE%T=}'T=F'

. ééﬁﬁﬁﬁ-@ﬁ%*wf+i@]iii-ri¥ii'if

é
S N R N i- ﬁ f- gwﬁt N T T EE S B TR B B

EEEN

ore

W % ek e e wx A% Son Gm o % aox 1% 2% 4% 8% 16% 24% 32% 40% 48% 56% 64% 72% 80%
nt of training data Percent of training data

ger ables general 9 variables

%ﬂ%?@?@:ﬂ: L ————————

08 —

@%%ﬁhii BE R R

2os

{- R e R T B e T R i R I TR T

Lo4 Zoa

I T I O R N

Method

=
-
=
=

W % el e wx A% Sk em o % aox 1% 2% 4% 8% 16% 24% 32% 40% 48% 56%
nt of training data Percent of training data

some meaningful behavior from training data over test data in a deterministic
context.

For the non-deterministic case of asynchronous and general semantics the
performance of GULA are similar but the differences with the baselines that
always predict 1.0 is smaller. As stated before, since both semantics use previ-
ous value as default, it is more likely for each atom to appear in a target state,
thus predicting that all atoms are always possible is less risky. Furthermore,
the transition being non-deterministic, the way we select the training set (see
Figure 10) may lead to have missing transitions from some feature state in
the training set, generating false negative example for GULA equivalent to
noisy data. Still, GULA start to outperforms the baseline that always pre-
dict 1.0 (and all others) for the two semantics when given more than 50% of
the possible transitions as input. The performances of GULA also increase
when considering more variables, with 9 variables benchmarks 20% of transi-
tion is enough to obtain 80% accuracy over unseen test data for asynchronous
case and about 2% for general case. Performances are globally similar for the
three semantics, showing that our method can handle a bit of noise caused by
missing observations.

If one is only interested by prediction accuracy, it is certainly easier to
achieve better results using statistical machine learning methods like neural
networks or random forest since prediction here is basically a binary clas-

Title Suppressed Due to Excessive Length 47

sification for each target variables values. In the cases where explainability
is of interest, the rules used for the predictions and their weights may be
quite simple human readable candidates for explanations (i.e., exhibit dy-
namic relations between biological interacting components). For a given fea-
ture state, a WDMVLP provides (using Definition 30) for each target atom
the likelihood of its occurrence in a transition but also the two rules (pos-
sibility /impossibility) that explain this prediction as shown in Table 3. We
consider the evaluation of explanation in the following experiment.

7.3 GULA Explanation Quality

In this experiment, we evaluate the quality of the models learned by GULA in
their ability to correctly explain their predictions. Benchmarks and train/test
sets generation is the same as in previous experiment (see Figure 10). The
learned model must predict correctly the possibility for each target atom as
previously, and also provide a rule that can explain the prediction. When a
target atom is possible (resp. impossible), we expect a rule of the optimal
program (resp. optimal program of impossibility) to be given as explanation.
By computing the Hamming distance between the rules used in the model
learned from incomplete observations (Po(T"), Po(T")), and the optimal rules
from the full observations (Po(T), Po(T)), we can have an idea of how close we
are from the theoretically optimal explanations. For that, for each experiment,
we compute the optimal program and the optimal program of impossibility
from the set of all transitions (T) before splitting it into train/test sets.

A WDMVLP is then learned using GULA from the training set (7")
as in previous experiment. The learned WDMVLP is then used to predict
from each feature state of the test set (7"), the possibility of occurrence of
each target atom according to Proposition 30 as well as a rule to explain this
prediction. The forecast probabilities and explanations are compared to the
observed values of the test set and the rules of the optimal programs. For all
vve € A7 and s € first(T"), we define:

val i\ [(1,{R € Po(T) | head(R) = v'** A RMs}), if 3(s,s’) € T, vV e '
actual(v) S5 T) - {(0, {R € Po(T) | head(R) = v'* A RM s}), otherwise .
To compare the forecast rules and the ideal rules, we consider the Hamming
distance over their bodies:

distance(R, R') = |(body(R) U body(R')) \ (body(R) Nbody(R'))| .

We expect both correct forecast of possibility and explanation, in the sense that
an incorrect prediction yields the highest error (1.0) while a good prediction
yields an error depending on the quality of the explanation (0.0 when an ideal
rule is used). This is summed up in the following error function:

1.0 if forecast-rule = &

error((forecast_proba, forecast_rule), 1.0 if forecast-proba = 0.5
(actual_proba, actual_rules)) = 1.0 if forecast_proba > 0.5 A actual_proba =0
1.0 if forecast_proba < 0.5 A actual_proba =1

min({distance(forecast_rule, R)|RE€actual_rules})

otherwise
71

48 Tony Ribeiro et al.

This allows to compute an explanation score, combining both accuracy and
explanation quality from the learned WDMVLP, W P, over the test set T":

explanation_score(WP, T") =

Z Z 1 — |error(predict_and_explain(W P, s, v'®), actual (v'*, s, T"))|

sefirst(T') vvalc Al ‘A‘T| X ‘ﬁl‘st(T”)‘

Ezample 23 Let F = {at—1,bi—1,¢—1}, T = {as, by, ¢}, a complete set of
transitions 7' C 87 x ST, a train set of transitions 77 C T and a test set of
transitions 7" C T with 7' NT" = () such that:

1 1 1 1 1 1 0 0 0 0

— Po(T) ={a; < a;_1,a; < by_y Nci_q,ap <= by_y ANcp_q1,a3 <= ¢_q,...}
_ gy 0 1 0 1 0 0 1

— Po(T) ={a; < a)_,af < b7 _q,a; < 1,0 < c;_q,...}

— Let us suppose that from the test feature state s := {a}_;,bf _;,ct_}, the
target atom a; is observed in some transitions from s in 7" thus we expect
a probability of 1.0 and a rule from Po(7') that matches s and produce a;
(any of the blue rules) as explanation:

— actual(a}, s, T") = (a;,1.0,{a} < a;_;,a; < bi_; ANct_1})
— Let WP be a WDMVLP learned from T” and we suppose that:
— predict_and_explain(W P, s,a}) = (a},1.0,a} <+ b}_;)

— The predicted possibility is correct, thus the explanation score will depend
on the explanation.

— The explanation a} «+ b}_; has a Hamming distance of 2 with a} < a;_;
(the conditions on a;—; and b;_; are wrong, the condition on ¢;—; is cor-
rect), thus the error will be ‘% =2

— The Hamming distance is only of 1 with rule a} < b}_; A c¢;_; (the condi-
tions on a;—; and b;_; are correct, the condition on ¢;_; is wrong), thus
the error will be ‘—}.l = %

— The final score for target af is 1 — min({3,4}) ~ 0.66

The prediction is correct for target a} from s, but the explanation a} <«

at_, is not perfect. Still, 66% of its conditions correspond to an optimal rule
(at < b}_y Act_;) that can explain this prediction.

— Now let us suppose that from the test feature state s := {a? |, 0} ;,¢? |},

the target atom a; is never observed in any transition from s in 7". Thus,

we expect a predicted probability of 0.0 and, as an explanation, a rule from
Po(T) that matches s and has a; as conclusion (any of the red rules):
— actual(a}, s, T") = (a;,0.0,{a} + a?_,,a; + ¢} ,})

— Let WP be a WDMVLP and suppose that:

— predict_and_explain(W P, s,a}) = (a},0.0,a} + 0)

— The explanation a} <+ () has an Hamming distance of 1 when compared

with aj < a?_; (the condition on a;_; is wrong, the conditions on b;_

and ¢;_1 are correct), thus the error will be |Tlf\ = %

Title Suppressed Due to Excessive Length 49

— We obtain the same Hamming distance of 1 when compared with a; <

0
-
— The final score for target af from s is 1 — min({3, 3}) ~ 0.66.

The prediction is correct for target a} from s, but the explanation a; < ()

is not perfect. Still, 66% of its conditions correspond to an optimal rules of
impossibility (a} < a_; and a} < ¢{_,) that can explain this prediction.

It is important to note that the metric we consider here only evaluates
the quality of the explanation in the predictions, not of the entire program.
Also this metrics can only be used when the actual real program is known and
thus cannot be used to evaluate a model when only observations are avail-
able. Table 5 shows an example of scoring of the predictions of a WD MVLP
(both accuracy and explanation score) from the feature state s = {a?_, o?_,,
Cg—l? d?—l’ 6%—17 fto—h g?—l’ h%—la i%—h .jtl—l} where F' = {at—lv s 7jt—1}’T =
{at,...,ji} and Vv € F U T,dom(v) = {0,1}. This example was generated
using the Boolean network “faure_cellcycle” synchronous transitions (see Ta-
ble 4) where we replaced variable names by letters from a to j and omitted
time subscript to make the table more compact and easy to read. From the
set of all transitions T are computed Po(T') and Po(T). T is also partitioned
into a training set 7" (about 10% of T') and a test set 7" (about 20% of
T) such that 7 NT"” = (). Here, in the test set, there is only one possible
transition from s: (s,s'),s" = {a® b%, ¢, d° €0, f1, g%, h0 it 51} (determinis-
tic transition). Thus, for atoms that appear in s’, the model is expected to
predict a probability of 1.0 (> 0.5) and 0.0 (< 0.5) for the others. Further-
more, when correctly predicting the occurrence it should also provide one of
the corresponding optimal rules (possibility rule if predicted possible, rule of
impossibility otherwise). For instance, for a°, the model predicted a likelihood
of 0.95, and since the atom was effectively observed in s’, a likelihood of 1.0
is expected, thus its accuracy is 0.95. For a!, since it is not in s’, we expect a
likelihood of 0.0; because the predicted likelihood is 0.05, its accuracy is also
0.95. Regarding the explanation score, the accuracy is checked before comput-
ing the rule distance with the expected optimal rules. For a, the likelihood
prediction is above 0.5, thus the model considers a® possible and since it is
indeed observed in s’, the explanation score depends of the prediction possi-
bility rule R; since R € Po(T), the explanation is considered perfect and the
score is 1.0. For a”, we have another perfect case of explanation but for the
impossibility scenario: the atom a® is not in s’, it is predicted unlikely, and the
impossibility rule of the prediction R’ is in Po(T'). When considering instead
h? and h', we have a wrong likelihood prediction, thus the explanation score
is directly 0.0. Regarding c°, the likelihood prediction is correct, and the pro-
vided possibility rule R := c? < d° A h! has (at most) 8 conditions out of 10
that are in common with a rule of Po(T') (that is, rule co + h' Ai'): indeed,
both rules have h' as condition, but R misses i' and contains a spurious d°,
while the 7 remaining feature variables do not appear in both rules, leading to
an explanation score of 8/10 = 0.8. We observe the same for the impossibility
rules of ¢!, although the score could have been different than for . In this

50 Tony Ribeiro et al.

example, we see that optimal rules of the same target atoms matching the
same feature state can be very different (for instance, the two actual Po(T)
rules of ¢! that have no feature atom in common) that is why we consider the
minimal Hamming distance in our scoring.

As a final comment, we can observe that for a given target variable, the
rules for one value (for instance, a®) in Po(T) have exactly the same body
than the rules for the other value (for instance, a') in Po(T). This is due to
the Boolean deterministic nature of the example tackled here, but it could not
be the case in general (multi-valued or non-deterministic case).

Figures 12a, 12b and 12c show the results of the evolution of the explana-
tion score when learning a WDMVLP using GULA from approximately 1%
to 80% of the transitions of a Boolean network. We also use 4 trivial methods
as baselines, each having a perfect value prediction, thus their score is only in-
fluenced by their explanation. The baselines explanations are trivial and take
the form of a random rule, no rules, the most specific rule, the most general
rule, i.e., Vs € firstT”, V' € A|7, per fect_prediction = actual (v'®, s, T"):

— baseline_random_rules(s, v'*) = (per fect_prediction, v’ «+ body C s)

— baseline_no_rules(s,v’¥) = (per fect_prediction, &)
baseline_most_general_rules(s,v’¥) = (per fect_prediction, v’ « ())
— baseline_most_speci fic_rules(s,v = (per fect_prediction, v’ + s)

val)

The random baseline is expected to score around 0.5, while the no rule baseline
will always have a score of 0.0. The most specific rule baseline will have all
conditions of each expected rule, but also unnecessary ones. The most general
rules will miss all specific conditions but avoid all unnecessary ones. Since
optimal rules rarely use more than half of the total number of variable as
conditions (at least for these Benchmarks), the most general rule is expected
to have a better score in average compared to most specific. That’s why we
observe random rule score around 0.4 to 0.5, most specific score around 0.1 to
0.4 and most general score around 0.6 to 0.8 for all semantics considered.

With synchronous semantics transitions, when given only 50% of the possi-
ble transitions, GULA start to clearly outperform the baselines on the test set
for all benchmarks size. It reaches more than 80% accuracy when given at least
25% of the transitions for benchmarks with 6 variables and only 10% of input
transitions is enough to obtain same performance with 9 variables. These re-
sults show that GULA, in a deterministic context, effectively learns rules that
are close to the optimal ones even with a partial set of observations, showing
its capacity in practice to generalize to unseen data. Such results will help to
validate, using the data, models that were previously built and designed by the
sole expert knowledge of the biological experts. Meanwhile we cannot rely only
on deterministic semantics, as well-known models from the literature (e.g., the
switch between the lytic and lysogenic cycles of the lambda phage [54], which
is composed of four components in interaction) require non-determinism to be
captured efficiently.

For the non-deterministic case of asynchronous and general semantics the
performance of GULA are similar but more observation are needed to obtain

Title Suppressed Due to Excessive Length 51
A
g o S g
£ §F < g 8 5§ £
§ 5§ e 7 . £¢ 53 E
* ~ O ~ @
T 5 I S/ 55 5 I
s § Fe g g8 y%é 73 $F B
@ 3] s}
g < dF g < <0 Ly s g
a® 1.0 0.95 0.95 |[a® « a?] i (54, a® + a?) (3, a® « 1.0
O AdOAFONGY)
a' | 0.0 0.05 0.95 || la' « a0 (3, a' « (54, a' + a?) 1.0
O AdOAFONGY)
50 1.0 0.93 0.93 | [° « d9] i (58, b0 «+ dY) (4, b0 « 1.0
0 0 0 1
a” AbY Ag”¥ ART)
bt 0.0 0.07 0.93 || bt « d°) (4, b' « (58, b1 «+ dY) 1.0
a® A0 A g0 ARY)
0 1.0 0.88 0.88 |[c® « nt Adl,] (28, (4, ¥ « 0.8
P — O A fO) O — d® ARt a® A0 AdO A g0)
ct 0.0 0.12 0.88 || et « ht Adt, | (4, ¢ (28, 0.8
ct P A f9) a® A2 AdO A gP) ¢t « d® ARY)
d° 1.0 0.85 0.85 |[d0 « il] i (50, d9 « il) (9, 1.0
d® «— 0N fFONgD)
al 0.0 0.15 0.85 || [d' « ') (9, (50, db « i) 1.0
dt — bOAFONGY)
e 1.0 0.88 0.88 |[e? « fO] i (51, e® « f9) (7, 1.0
eV —bOngOAil)
el 0.0 0.12 0.88 || el « 59 (Z, 0 o (51, e! « f0) 1.0
e’ < b Ag N
% | 0.0 042 0.58 | O « (11, (15, 1.0
O AdOAgOo, FO — aOAOAf0) £O «— dOAgOAsh)
d® A g% A 5]
ft 1.0 0.58 0.58 | [f! « i (15, (11, 1.0
col/\dO/\gO, FL— d°AgP Aty 1« aOABOAF0)
[«
d® A g% Al
g° 0.0 0.36 0.64 || [g° « (9, (16, 1.0
aO/\dU/\jl] g% — bOAgOARY) g0 — a®AdOA)
gt 1.0 0.64 0.64 |[g' « i (16, (9, 1.0
a® A dO A GY gt «— a®AdOAG1) gt — O AgOARY)
RO | 1.0 0.40 0.40 | [A° « i (8, h9 « (12, 0.0
O A0 AdO Ail] O AP Ad® Ail) RO «— aOAgOnnt)
r' | 0.0 0.60 0.40 || ht (12, (8, bt « 0.0
BOAOAAOAiY] | RY «— a®AgOART) B0 A O A dO Al
0 0.0 0.10 0.90 |[] [0« O Andl, |4, i« (35, 1.0
i% « d® A 41 a® A0 A GO ARY) 0« d0 Al
it 1.0 0.90 0.90 |[i! « O Ad°, (35, (4, i' « 1.0
it «— d® A1 il «— d° A G a® A0 A g0 ARY)
7% | 0.0 0.63 0.37 || [0 « (12, (7, 5% « 0.0
a®APAdOAG] |50 «— e AfONG?) a® AP AdO A1)
Gt 1.0 0.37 0.37 | [j! « (7, 5% « (12, 0.0
a®AcO AdO Ajt) a® A O AdOAGY) G et AfOng?)

Table 5: Example of prediction of a WDMVLP from a non-observed feature
state using Definition 30 and accuracy/explanation scoring.

same performances. Like for previous experiments, in those cases we can have
missing transitions for some of the observed feature states, leading to false
negative examples extraction in GULA. This is more likely to happen with
asynchronous semantics, since only one transition will show the change of a
specific variable value from a given state while the general semantics will have
several subset of change combined in a transitions. It also makes transitions
less valuable in quantity of information in the asynchronous case, i.e., only one
variable changes its value, starting from the second transition from the same

52 Tony Ribeiro et al.

state, all transitions only provide one positive example for the only variable
that is changing its value. Still, GULA starts to outperform the most general
rule baseline (and all others) for the two semantics when given more than 50%
of the possible transitions as input. This shows again that our method can
handle a bit of noise caused by missing observations also at the explanation
level. The performances of GULA are similar when considering more vari-
ables here, the gain observed in value precision compensating the additional
possibility for explanation error introduced by new variables.

It is important to recall that the baselines used here have perfect value
prediction while our method also need to predict proper value to have it’s
explanation evaluated. As stated before, it is certainly easier to achieve better
prediction results using statistical machine learning methods. Furthermore,
when good prediction model can be built from training data, it can replace
our learned model to forecast the value but could be used to improve the
output of GULA. Indeed, one can use such models to directly generate pos-
itive/negative examples of each atom from observed and unseen states that
can be given as input to GULA in place of the raw observations. It can help
to deal with noisy data and improve the diversity of initial state that can
speed up and improve the quality of the rules of GULA and thus also its
approximated version [47]. Actually, as long as feature and target variables
are discrete (or can be properly discretized), GULA (or its approximated
version for big systems) could be used to generate rules that could explain
in a more human readable way the behavior of other less explainable models.
Such a combination of predictive statistical model and WDMVLP learning
study is out of the scope of this paper but will be an interesting application
part of our future works. This would not only allow to output relevant predic-
tions w.r.t. dynamical trajectories of biological systems but also help to get a
precise understanding of the underlying key interactions between components.
Such an approach can also be considered for a broader range of applications.
In [41], the authors investigate the promises conveys to provide declarative
explanations in classical machine learning by neural networks in the context
of automatic recruitment algorithms.

7.4 Readability of the model

So far we formalized methods and proposed algorithms in order to learn models
of dynamical systems which predictions can be explained by human readable
rules. Experiments and metrics of the previous sections evaluate the use of the
model regarding both accuracy of predictions and quality of the explanation
of the predictions. But one could also be interested about the explainability of
the model itself: we could consider the readability of the program learned not
only its use. In this section we do a short case study of the program learned
by GULA on one of the benchmarks used in the previous experiments. Here
we consider again the “faure_cellcycle” Boolean network [15] that is composed
of ten variables. Starting from the seminal contribution of Novak and Tyson,

Title Suppressed Due to Excessive Length 53

Fig. 12: Explanation score of the WDMVLP learned by GULA and triv-
ial baselines when predicting possible target atoms from unseen states with
different amounts of training data of the transitions from Boolean network
benchmarks with synchronous, asynchronous and general semantics.

(a) Synchronous semantics.

synchronous 5 variables. synchronous 6 variables

| g&*iii i ;é* L
?4 LTI byt y ‘*fi*itff

°

Explanation score
Explanation score

°

02 B guia 02 = gua
B baseline_perfect_predictions_random_rules W baseline_perfect predictions_random_rules
B baseline_perfect_predictions_no.rules = baseline_perfect predictions_no_rules
B baseline_perfect_predictions_most_general_rules
B baseline_perfect_predictions_most_specific_ules B baseiinepertect predictions_most specific_nles
00— - - - - - 00— - - - - - -
% 2% 4% 8% 16% 20% 32% 40% 48% S6% 64% 72% 80% 1% 2% 4% 8% 16% 24% 32% 40% 48% 56% 64% 72% B0%
Percent of training data Percent of training data
synchronous 7 variables. synchronous 9 variables

b T—!—_T—T * -
11 |||||“ 27

B F & & 8 % 5 8 § %

°

Explanation score
Explanation score

°

[B B |
Method Method
0z = gua 02 = qua
B baseline_perfect_predictions_random_rules B baseline perfect_predictions_random rules
= baseline_perfect predictions_no_rules = = = = = = .mm baseineperect predictions no_rules
B baseline_perfect_predictions_most_general_rles B baseline perfect_predictions_most general_ruies
B baseine perfct redictions most_specifc_uies B baseine perfect prcictons most specic_vies
0 - = = = - = w - = = ===
W 2% 4% 8% 1o% 20% 3% 40% 48% SS% 6% 72% 60% 1% 2% 4% 8% 16% 20% 2% 40% 48% S6% 64% T2% 80%
Percent of training data Percent of training data

(b) Asynchronous semantics.

asynchronous 5 variables asynchronous 6 variables

—

: R =" .
$ 1ot ; %;* TE f%;f
L byt idqﬁ+*o SRR EREE
£ 1 | R ﬁi' e

°

Explanation score
Explanation score

Method Method
B Baseinepertect prections andom ries B baseine perfect prcictions random ules
= baseine perfect predictons o rles m baseine,perfec prdicons no_ries
B aseine,perfct predicions_most genera vies B baselne perfect precictions.most generslries
I saslne,pertect redtons. mostspeiic.rls B casein,perect redctors mostspeciicnes
== oo o0 === oo
% a% % I 206 3w A ek Sew ew % aow W % % me lew ek 3w % % Sw e% % so%
Percent of training data Percent of training data
asynchronous 7 variabies asynehvonous 9 variables
10 T 10 —
=T =
© © o o 5 o 5 g9c—-F o o o

)
f

”illliiiii?lll

% os %06 i
: iiéé{-{-.}é?gie--i-,-};,.;i
A A @B & &
Method Method
02 mm gula 02 = - Em gula
W baseline_perfect_predictions_random_rules - - - “EEE baseline_perfect_predictions_random_rules
o Basin.rtic pedcions s o Easabo i procons ot
o s e s o o i escoans et e
I i e prd i e St I iyt rctoe e St
oo T on I
e W w o m am am me dow s e o aon

Percent of training data Percent of training data

54 Tony Ribeiro et al.

(c) General semantics.

“'I"'I"I'T?T-}-}-!-I-r'r
‘ ==
Lo
iEif@Tﬁii!jii

Explanatio

. - - - - - - = o . -
% 2% 4% 8% 16% 20% 32% 40% 48% S6% 64% 72% 80% % 2% 4% 8%
Percent of training data
general 7 variables general 9 variables

éTﬁi-%TT ¥ ___i_PTe—

N EFL SRR —
*I}

§ii§;;a+§+§-@@i-}

B

Explanation score

who proposed a set of ordinary differential equations (ODE) to model the
mammalian cell cycle [40], the authors of [15] synthesized the knowledge about
the core control of mammalian cell division into a single logical model. This
model, whose biological significance is high, appears as a good candidate to
illustrate the impact of our contribution. As in the previous experiment, the
original Boolean network is converted into its DMVLP equivalent as shown
in Figure 13.

A training set and test set are randomly produced from all its synchronous
transitions as in Figure 10. Here we take about 10% of the transitions as the
training set 7" and 20% as the test set 7", with no common initial states in the
two sets, as previously. The WDMVLP (Po(T"), Po(T")) learned by GULA
using the training set T” as input achieves 87.97% accuracy and 94.85% expla-
nation score. Each prediction explanation of the model is at most 40 rules: 10
Boolean variables make 20 possible atoms, and each target atom probability is
explained by a rule of possibility and impossibility, thus multiplying by 2. The
prediction explanation could arguably be considered readable but the program
itself contains several thousands rules, in this example run: |Po(7”)| = 9,439
and |Po(T")| = 4, 520.

To make the program more human readable, we can use a heuristic. What
is readable or not depends of the context; for this case study, we will consider
that a total of 40 rules is a reasonable number for our model and that rules

Title Suppressed Due to Excessive Length 55

targets, factors

CycD, CycD

Cdc20, CycB

CycA, 'cdh1&!Rb&E2F&!Cdc20 | !UbcH10&!Rb&E2F&!Cdc20 | !'cdh1&!Rb&CycA&!Cdc20 | !'UbcH10&!Rb&CycA&!Cdc20
CycB, !cdh1&!Cdc20

CycE, !Rb&E2F

E2F, Pp27&'Rb&!CycB | !Rb&!CycB&!CycA

Rb, !CycE&!CycD&!CycB&!CycA | p27&!CycD&!CycB

UbcH10, UbcH10&CycB | UbcH10&CycA | UbcH10&Cdc20 | !cdhil

cdhi, p27&!CycB | !CycB&!CycA | Cdc20

p27, p27&!CycE&!CycD&!CycB | p27&!CycD&!CycB&!CycA | !CycE&!CycD&!CycB&!CycA

DMVLP equivalent: {

C‘yCDt1 — Cch}71

Cde20} + CycB}_,

CycAtl +— Cd(:‘zO(tLl A E2F';71 A Rb(t)—l A cdh l(t]—l
CycA} + Cdc209_1 A E2F}L | A Rb)_; A UbcH109_
CycA} + Cde209_1 A CycAl_ ARbY_| A cdhll_,
CycA}l + Cde209_ | A CycAl_| ARBY_| AUbcH10Y_,
CyeB} « Cde209_; A cdh19_,

CycE} «+ E2F} | ARbY_|

E2F} «+ CycB?_| ARb)_| Ap27}_

E2F} « CycAY_; A CycBY_| ARV,

Rb} + CyeDY_; A CycAY_| A CyeBY_| A CycEY_,
Rb} + CycDY_; A CycBY_| Ap27;_4

UbcH10} + CycBj_; A UbcH10}_;

UbcH10} + CycAj_; A UbcH10}_,

UbcH10} + Cde20i_; A UbcH10}_4

UbcH10} 4 cdh1y_,

cdhl} + CycB?_, A p27}_4

cdhl} +— CycAg71 A CycB?71

cdhl}l + Cde20;_4

p27} — Cch?71 N CycB?71 A C’chill A 1)27(}71
p27% < Cchg_l A CycA(tJ_l A CycBg_l A p27%_1
;727t1 “— C’chg71 A CycA(t)71 A C’ycB?71 A Cch?71

}

Fig. 13: Boolean functions of the “faure_cellcycle” Boolean network [15], in
.bnet file format from PyBoolNet [28] (top) and the equivalent DMVLP
(bottom). The rules colored in red are missing from the final learned model of
Figure 14.

with more than four conditions are not readable (thus bounding the maximal
size of clauses observed in the Boolean network). As we have 10 variables in
the studied Boolean network, we force to have no more than four rules per
variable to achieve at most 40 rules of activation (rule with value of 1 as head)
that will form our final readable model. For this, the best four rules for each
possible head are selected according to their weight, the others are filtered out.
We end up with at most 80 rules of possibility (resp. impossibility).
Applying this heuristic on (Po(T"), Po(T")), we obtain a new WDMVLP
WP = (WP ,WP"), with WP C Po(T') and WP” C Pp(T') (given in
appendix in Figure 15). The accuracy of WP is 97.45% (+9.47%) and expla-
nation score is 98.37% (+3.52%). In this example, the heuristic improved both
scores but it could also reduce it; an important aspect of such a heuristic is

56 Tony Ribeiro et al.

to not lose too much prediction/explanation quality for readability. Further-
more, the rules of impossibility can now be ignored since they are only used for
probabilistic predictions. Also, since we are considering only Boolean variables
(and we know the system is determinist) we can also discard the rules with
head atoms encoding the false value (typically: all atoms 2°). We end up with
the 40 activation rules of Figure 14 and can compare them to the original rules
of the Boolean network.

Pruned Pp(T') = {

(48, Cch% — Cch%_l),

(6, CyeD} + E2F} | A Rbi_; AUbcH10}_1 A p27L_1),

(6, CyeD} + CycAY_; A CycEO_| AUbcH10}_; A p27E_1),
(6, CyeD} + Cde209_1 A CyeBY_| A CycE?_; AUbcH10}_ 1),
(44, Cde20} <+ CycB}_,),

(6, Cde20} + Cdc20i_; A E2F_; AUbcH109_; A p270_1),
(6, Cdc20} + CycAY_; A E2F)_{ A RbY_; AUbcH109_ 1),
(6,Cdc20} «+ CycDY_| A Cdc20}_; A E2F_ | Acdhl}_,),
(7,CycA} + Cde209_; A CycAl_; A RBY_| A cdhll_)),
(7, CycA} + Cdc20Y_ A CycAr_; A RBY_| Ap27i_1),

(7, CycA} + Cdc209_; A CyeBY_; A RBY_; AUbcH109_,),
(6, CycA} + Cde209_y A E2F} | ARb)_| A UbcH10?_),
(25, CycB} + Cde209_; A edh1?_ 1),

(9, CyeB} « Cde209_; A E2FP_ | A RBY_ 1),

(7, CycB} < Cde209_1 A CycA}l_| A CycEY_| Ap271_1),
(7, CycB% +— C'chfl,_1 A Cdc20(t’_1 A CycA%_l A p27%_1),
(21, CycE} + E2FL | ARbWY_,),

(7, CycE} + Cdc209_1 A RbY_; A cdhll_),

(6, CycE} + CycA?_| ACycB?_{ A RbW)_; AUbcH10?_ 1),
(5, CyCE% — Cch?_l A CycA?_1 A CycB?_l A Rbg_l),
(15, B2F} + CyceBY_| ARV, Ap27L_ 1),

(11, B2F} + CycAY_| A CyeBY_; A RBY_),

(9, E2F} <+ CyeBY_; A E2F} | A RbY_| A UbcH109_,),
(7, BE2F} < Cdc20}_, A CycBY_, A E2FP_| A RbY_)),
(16, Rb} < CyeDY_| A CyeBY_| Ap27L_ 1),

(6, Rb} « CycDY_; A CycAY_| A CycBY_| A CycEY_)),
(5, Rby + CycDY_; A Cdc20}_ A CycA_; A CycBY_,),
(5, Rb} «+ CycDY_| A Cde20]_ A cdh19_| A p27i_ 1),

(52, UbcH10} < edh1?_ 1),

(33, UbcH10} < CycA}_; AUbcH10}_ 1),

(27, UbcH10} < Cdc20;_; A UbcH10}_1),

(25, UbcH10} + CyecB}_, A UbcH10}_,),

(53, cdhl} « Cdc20_),

(35, cdhl} < CycBY_| Ap27i_4),

(26, cdhl% < C'ycA?_1 A CycB?_l),

(20, cdhl} < CyeBY_| A E2F} | A UbcH109_,),

(7,p27% — Cy(:DgL1 A CycA?71 A Cy(:B?71 A p27%71),
(6,p27} — Cch?71 A CycAng A CycBELl A CUCngl)’
(6,p27% — C'chS_1 A CycB?_l A Cch?_l A p27%_1),
(5,;727tl — C’chg71 A Cdc20%71 A CycA(t:Ll A CycB?fl),
}

Fig. 14: The set of activation rules of the WDMVLP (Po(T"), Po(T")) learned
by GULA after pruning for readability. The rules that appear in the original
DMVLP of Figure 13 are colored in blue.

Title Suppressed Due to Excessive Length 57

Here, 20 of the 22 original rules are in the final output, there are two
missing rules (shown in Figure 13) and 20 spurious rules. Most of the original
program is found and the missing/spurious rules have a small impact as shown
by the accuracy/explanation score. The presence of spurious rules is due to the
lack of training observations, a few more negative examples could specialize
them enough so that they become dominated by the original rules learned. For
example, the three spurious rules of Cdc20; will end up needing CycB}_; as
condition to remain consistent (since it is the only way to have Cdc20} in the
original program) with the observation and will be dominated by Cdc20} «
CycB}_; and discarded. Discarding those spurious rules without the needed
observation is not trivial, we could use a minimal weight of 10 for example to
discard most of them but we would lose some original rules like the one of p27}.
The weight of the rules, which is already used as a degree of confidence for the
prediction of the dynamics, could also be used on the static model as a degree
of confidence of the correctness of the rules. More complex analysis of the rule
conditions and its relation with other rules could produce a better pruning,
for example we could detect rules that will never be used for prediction, i.e.,
when another rule with better weight can always be applied. Developing such
heuristics to ensure readability (in the sense simplicity) of the model itself
would be interesting and the subject of future works.

8 Related Work
8.1 Modeling Dynamics

In modeling of dynamical systems, the notion of concurrency is crucial. His-
torically, two main dynamical semantics have been used in the field of sys-
tems biology: synchronous (Boolean networks of Stuart Kauffman [25]) and
asynchronous (René Thomas’ networks [55]), although other semantics are
sometimes proposed or used [14].

The choice of a given semantics has a major impact on the dynamical fea-
tures of a model: attractors, trap domains, bifurcations, oscillators, etc. The
links between modeling frameworks and their update semantics constitute the
scope of an increasing number of papers. In [19], the author exhibited the
translation from Boolean networks into logic programs and discussed the point
attractors in both synchronous and asynchronous semantics. In [39], the au-
thors studied the synchronism-sensitivity of Boolean automata networks with
regard to their dynamical behavior (more specifically their asymptotic dynam-
ics). They demonstrate how synchronism impacts the asymptotic behavior by
either modifying transient behaviors, making attractors grow or destroying
complex attractors. Meanwhile, the respective merits of existing synchronous,
asynchronous and generalized semantics for the study of dynamic behaviors
has been discussed by Chatain and Paulevé in a series of recent papers. In [7],
they introduced a new semantics for Petri nets with read arcs, called the inter-
val semantics. Then they adapted this semantics in the context of Boolean net-

58 Tony Ribeiro et al.

works [8], and showed in [6] how the interval semantics can capture additional
behaviors with regard to the already existing semantics. Their most recent
work demonstrates how the most common synchronous and asynchronous se-
mantics in Boolean networks have three major drawbacks that are to be costly
for any analysis, to miss some behaviors and to predict spurious behaviors. To
overcome these limits, they introduce a new paradigm, called Most Permissive
Boolean Network which offers the guarantee that no realizable behavior by a
qualitative model will be missed [44].

The choice of a relevant semantics appears clearly not only in the recent
theoretical works bridging the different frameworks, but also in the features
of the software provided to the persons involved in Systems Biology modeling
(e.g., the GinSIM tool offers two updating modes, that are fully synchronous
and fully asynchronous [38]). Analysis tools offer the modelers the choice of
the most appropriate semantics with regard to their own problem.

8.2 Learning Dynamics

In this paper, we proposed new algorithms to learn the dynamics of a system
independently of its update semantics, and apply it to learn Boolean networks
from the observation of their states transitions. Learning the dynamics of
Boolean networks has been considered in bioinformatics in several works [31,
1,42,29,14]. In biological systems, the notion of concurrency is central. When
modeling a biological regulatory network, it is necessary to represent the re-
spective evolution of each component of the system. One of the most debated
issues with regard to semantics targets the choice of a proper update mode of
every component, that is, synchronous (Boolean networks of Stuart Kauffman
[25]), or asynchronous (René Thomas’ networks [55]), or more complex ones.
The differences and common features of different semantics w.r.t. properties of
interest (attractors, oscillators, etc.) have thus resulted in an area of research
per itself, especially in the field of Boolean networks [39,8,6].

In [14], Fages discussed the differential semantics, stochastic semantics,
Boolean semantics, hybrid (discrete and continuous) semantics, Petri net se-
mantics, logic programming semantics and some learning techniques. Rather
than focusing on particular semantics, our learning methods are complete al-
gorithms that learn transition rules for any memory-less discrete dynamical
systems independently of the update semantics.

As in [42], we can also deal with partial transitions, but will not need to
identify or enumerate all possible complete transitions. [43] learns a model as
a probability distribution for the next state given the previous state and an
action. Here, exactly one dynamic rule fires every time-step, which corresponds
to the asynchronous semantics of Definition 16.

In [52], action rules are learned using inductive logic programming but re-
quire as input background knowledge. In [3], the authors use logic program as
a meta-interpreter to explain the behaviour of a system as stepwise transitions
in Petri nets. They produce new possible traces of execution, while our output

Title Suppressed Due to Excessive Length 59

is an interaction model of the system that aims to explain the observed behav-
ior. In practice, our learned programs can also be used to predict unobserved
behavior using some heuristics as shown in the experiments of Section 7.

In [27], Klarner et al. provide an optimization-based method for comput-
ing model reduction by exploiting the prime implicant graph of the Boolean
network. This graph is similar to the rules of Po(T) that can be learned by
GULA. But while [27] requires an existing model to work, we are able to
learn this model from observations.

In [29], Lahdesméki et al. propose algorithms to infer the truth table
of Boolean functions of gene regulatory network from gene expression data.
Each positive (resp. negative) example represents a variable configuration that
makes a Boolean function true (resp. false). The logic programs learned by
GULA are a generalization of those truth tables.

8.3 Inductive Logic Programming

From the inductive logic programming point of view, GULA performs a gen-
eral to specific search, also called top-down approach. Algorithmically, GULA
shares similarities with Progol [34,35] or Aleph [53], two state-of-the-art ILP
top-down approaches. Progol combines inverse entailment with general-to-
specific search through a refinement graph. GULA is limited to propositional
logic while those two methods handle first order predicates. Learning the equiv-
alent of DMVLP rules should be possible using Progol or Aleph assuming
some proper encoding. But both methods would only learn enough rules to
explain the positive examples, whereas GULA outputs all optimal rules that
can explain these examples. The completeness of the output program is critical
when learning constraint of a CDMVLP to guarantee the exact reproduction
of the observed transitions. Thus, nor Progol or Aleph can replace GULA in
the Synchronizer algorithm to learn the optimal CDMVLP. But the complete-
ness of the search of GULA comes with a higher complexity cost w.r.t. Progol
and Aleph. The search of Progol and Aleph is guided by positives examples. In-
deed, given a positive example, Progol performs an admissible A*-like search,
guided by compression, over clauses which subsume the most specific clause
(corresponding to the example). The search of GULA is guided by negative
examples. It can also be seen as an A*-like search but for all minimal clauses
that subsume none of the most specific clauses corresponding to the negative
examples.

[12,13] propose the Apperception Engine, a system able to learn programs
from a sequence of state transitions. The first difference is that our approach
is limited to propositional atoms while first order logic is considered in this
approach. Furthermore, the Aperception Engine can predict the future, retro-
dict the past, and impute missing intermediate values, while we only consider
rules to explain what can happen in a next state. But our input can represent
transitions from multiple trajectories, while they consider a single trajectory
and thus our setting can be considered as a generalized apperception task in

60 Tony Ribeiro et al.

the propositional case. Another major difference is that they only consider
deterministic inputs while we also capture non-deterministic behaviors. Given
the same kind of single trajectory and a DMVLP (or CDMVLP), it should
be possible to produce candidates past states or to try to fill in missing values.
But in practice that would suppose to have many other transitions to build
such DMVLP using GULA while the Aperception Engine can perform the
task with only the given single trajectory. This system can also produce a set
of constraints as well as rules. The constraints perform double duty: on the
one hand, they restrict the sets of atoms that can be true at same time; on the
other hand, they ensure what they call the frame axiom: each atom remains
true at the next time-step unless it is overridden by a new fact which is incom-
patible with it. The constraints of CDMVLP can prevent some combinations
of atoms to appear, but only in next states, while in [12,13], constraints can
prevent some states to exist anywhere in the sequence, and ensure the conser-
vation of atoms. From Theorem 7, the conservation can also be reproduced by
CDMVLP by the right combination of optimal rules and constraints.

In [30] the authors propose a general framework named ILASP for learn-
ing answer set programs. ILASP is able to learn choice rules, constraints and
preferences over answer sets. Our problem settings is related to what is called
“context-dependant” tasks in ILASP. Our input can be straightforwardly rep-
resented using ILASP when variables are Boolean, but the learned program
does not respect our notion of optimality, and thus our learning goals differ,
i.e., we guarantee to miss no potential dynamical influence. Indeed, ILASP
minimizes a program as a whole, i.e., the sum of the length of all rules and
constraints; in contrast, we aim to minimize each rule and constraint individ-
ually and expect to find as many of them in practice and all of them in theory
to ensure good properties regarding dynamical semantics.

[24] proposes an incremental method to learn and revise event-based knowl-
edge in the form of Event Calculus programs using XHAIL [45], a system that
jointly abduce ground atoms and induce first-order normal logic programs.
XHAIL needs to be provided with a set of mode declarations to limit the
search space of possible induced rules, while our method do not require back-
ground knowledge. Still it is possible to exploit background knowledge with
GULA:.: for example one could add heuristic inside the algorithm to discard
rules with “too many” conditions; influences among variables, if known, could
also be exploited to reduce possible bodies. Finally, XHAIL does not model
constraints, thus is not able to prevent some combinations of atoms to appear
in transitions, which can be achieve using our Synchronizer.

General research about evaluation of explainability in Al systems has been
led into two major directions [22]. One of them is about the evaluation of model
complexity, while the second one focuses on human evaluation of explainabil-
ity based on experimental studies involving a set of humans. Especially in
the ILP litterature, [37] the authors study the comprehensibility of logic pro-
grams and provide a definition of comprehensibility of hypotheses which can
be estimated using human participant trials. In this work they evaluate the
readability of entire programs while our explainability metric only considers

Title Suppressed Due to Excessive Length 61

the quality of the rules used for a prediction in a learned model. Furthermore,
our metric evaluates a learned model against an ideal model that we consider
readable at least by the experts that build it by hand, i.e., the biologists who
build the Boolean network. Thus our metric cannot be used on a program
alone contrary to the study of [37] but requires the knowledge of the original
program. The goal of our proposed explanation metric is to assess how the
dynamics of a learned program approaches an expected one, not to provide a
readability measure. This is done by considering both the choice taken (the
value predicted) and the way the choice is made (the rules used).

9 Conclusions

While modeling a dynamical system, the choice of a proper semantics is critical
for the relevance of the subsequent analysis of the dynamics. The works pre-
sented in this paper aim to widen the possibilities offered to a system designer
in the learning phase. Until now, the systems that the LFIT framework handles
were restricted to synchronous deterministic dynamics. However, many other
dynamics exist in the field of logical modeling, in particular the asynchronous
and generalized semantics which are of deep interest to model biological sys-
tems. In this paper, we proposed a modeling of memory-less multi-valued dy-
namic systems in the form of annotated logic programs and a first algorithm,
GULA, that learns optimal programs for a wide range of semantics (see The-
orem 1) including notably the asynchronous and generalized semantics. But
the semantics need to be assumed to use the learned model, in order to pro-
duce predictions for example. Our second proposition is a new approach that
makes a decisive step in the full automation of logical learning of models di-
rectly from time series, e.g., gene expression measurements along time (whose
intrinsic semantics is unknown or even changeable). The Synchronizer algo-
rithm that we proposed is able to learn a whole system dynamics, including
its semantics, in the form of a single propositional logic program. This logic
program explains the behavior of the system in the form of human readable
propositional logic rules, as well as, be able to reproduce the behavior of the
observed system without the need of knowing its semantics. Furthermore, the
semantics can be explained, without any previous assumption, in the form of
human readable rules inside the logic program.

This provides a precious output when dealing with real-life data coming
from, e.g., biology. Typically, time series data capturing protein (i.e., gene)
expressions come without any assumption on the most appropriate semantics
to capture the relevant dynamical behaviors of the system. The methods intro-
duced in this paper generate a readable view of the relationships between the
different biological components at stake. GULA can be used when biological
collaborators provide partial observations (as shown by our experiments), for
example when addressing gene regulatory networks. Meanwhile the Synchro-
nizer algorithm is of interest for systems with the full set of observations, e.g.,
when refining a model that was manually built by experts.

62 Tony Ribeiro et al.

We took care to show the benefits of our approach on several benchmarks.
While systems with ten components are able to capture the behavior of com-
plex biological systems, we exhibit that our implementation is scalable to sys-
tems up to 10 components on a computer as simple as a single-core computer
with a 1000 seconds time-out. Further work will consist in a practical use of
our method on open problems coming from systems biology.

An approximate version of the method is a necessity to tackle large sys-
tems and is under development [47]. In addition, lack of observations and
noise handling is also an issue when working with biological data. Data sci-
ence methodologies and deep learning techniques can then be good candidates
to tackle this challenge. The combination of such techniques to improve our
method may be of prime interest to tackle real data.

References

1. Akutsu, T., Kuhara, S., Maruyama, O., Miyano, S.: Identification of genetic networks by
strategic gene disruptions and gene overexpressions under a boolean model. Theoretical
Computer Science 298(1), 235-251 (2003)

2. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. Foun-
dations of deductive databases and logic programming p. 89 (1988)

3. Bain, M., Srinivasan, A.: Identification of biological transition systems using meta-
interpreted logic programs. Machine Learning 107(7), 1171-1206 (2018)

4. Blair, H.A., Subrahmanian, V.: Paraconsistent foundations for logic programming. Jour-
nal of non-classical logic 5(2), 45-73 (1988)

5. Blair, H.A., Subrahmanian, V.. Paraconsistent logic programming. Theoreti-
cal Computer Science 68(2), 135 — 154 (1989). DOI http://dx.doi.org/10.1016/
0304-3975(89)90126-6. URL http://www.sciencedirect.com/science/article/pii/
0304397589901266

6. Chatain, T., Haar, S., Kol¢dk, J., Paulevé, L., Thakkar, A.: Concurrency in boolean
networks. Natural Computing 19(1), 91-109 (2020)

7. Chatain, T., Haar, S., Koutny, M., Schwoon, S.: Non-atomic transition firing in contex-
tual nets. In: International Conference on Applications and Theory of Petri Nets and
Concurrency, pp. 117-136. Springer (2015)

8. Chatain, T., Haar, S., Paulevé, L.: Boolean networks: Beyond generalized asynchronic-
ity. In: AUTOMATA 2018. Springer (2018)

9. Cropper, A., Dumancié, S., Muggleton, S.H.: Turning 30: New ideas in inductive logic
programming. In: C. Bessiere (ed.) Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI-20, pp. 4833-4839. International Joint
Conferences on Artificial Intelligence Organization (2020). DOI 10.24963/ijcai.2020/
673. URL https://doi.org/10.24963/ijcai.2020/673. Survey track

10. Davidich, M.I.; Bornholdt, S.: Boolean network model predicts cell cycle sequence of
fission yeast. PloS one 3(2), €1672 (2008)

11. Dubrova, E., Teslenko, M.: A SAT-based algorithm for finding attractors in synchronous
boolean networks. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics (TCBB) 8(5), 1393-1399 (2011)

12. Evans, R., Hernandez-Orallo, J., Welbl, J., Kohli, P., Sergot, M.: Making sense of sensory
input. arXiv preprint 1910.02227 (2019)

13. Evans, R., Hernandez-Orallo, J., Welbl, J., Kohli, P., Sergot, M.: Evaluating the apper-
ception engine. arXiv preprint 2007.05367 (2020)

14. Fages, F.: Artificial intelligence in biological modelling. In: A Guided Tour of Artificial
Intelligence Research, pp. 265-302. Springer (2020)

15. Fauré, A., Naldi, A., Chaouiya, C., Thieffry, D.: Dynamical analysis of a generic boolean
model for the control of the mammalian cell cycle. Bioinformatics 22(14), e124-e131
(2006)

http://www.sciencedirect.com/science/article/pii/0304397589901266
http://www.sciencedirect.com/science/article/pii/0304397589901266
https://doi.org/10.24963/ijcai.2020/673

Title Suppressed Due to Excessive Length 63

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Fitting, M.: Bilattices and the semantics of logic programming. The Journal
of Logic Programming 11(2), 91 — 116 (1991). DOI http://dx.doi.org/10.1016/
0743-1066(91)90014-G. URL http://www.sciencedirect.com/science/article/pii/
074310669190014G

Gibart., L., Bernot., G., Collavizza., H., Comet., J.: Totembionet enrichment method-
ology: Application to the qualitative regulatory network of the cell metabolism. In:
Proceedings of the 14th International Joint Conference on Biomedical Engineering Sys-
tems and Technologies (BIOINFORMATICS), pp. 85-92. INSTICC, SciTePress (2021).
DOI 10.5220/0010186200850092

Ginsberg, M.L.: Multivalued logics: A uniform approach to reasoning in artificial intel-
ligence. Computational intelligence 4(3), 265-316 (1988)

Inoue, K.: Logic programming for boolean networks. In: Proceedings of the Twenty-
Second International Joint Conference on Artificial Intelligence, IJCAI’11, vol. 2, p.
924-930. AAAI Press (2011)

Inoue, K., Ribeiro, T., Sakama, C.: Learning from interpretation transition. Machine
Learning 94(1), 51-79 (2014)

Inoue, K., Sakama, C.: Oscillating behavior of logic programs. In: Correct Reasoning,
pp. 345-362. Springer (2012)

Islam, S.R., Eberle, W., Ghafoor, S.K.: Towards quantification of explainability in ex-
plainable artificial intelligence methods. In: The Thirty-Third International Flairs Con-
ference (2020)

Kaplan, S., Bren, A., Dekel, E., Alon, U.: The incoherent feed-forward loop can generate
non-monotonic input functions for genes. Molecular systems biology 4(1), 203 (2008)
Katzouris, N., Artikis, A., Paliouras, G.: Incremental learning of event definitions with
inductive logic programming. Machine Learning 100(2-3), 555-585 (2015)

Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic
nets. Journal of theoretical biology 22(3), 437-467 (1969)

Kifer, M., Subrahmanian, V.: Theory of generalized annotated logic programming and
its applications. Journal of Logic Programming 12(4), 335-367 (1992)

Klarner, H., Bockmayr, A., Siebert, H.: Computing symbolic steady states of boolean
networks. In: Cellular Automata, pp. 561-570. Springer (2014)

Klarner, H., Streck, A., Siebert, H.: PyBoolNet: a python package for the gener-
ation, analysis and visualization of boolean networks. Bioinformatics 33(5), 770—
772 (2016). DOI 10.1093/bioinformatics/btw682. URL https://doi.org/10.1093/
bioinformatics/btw682

Léhdesmaki, H., Shmulevich, I., Yli-Harja, O.: On learning gene regulatory networks
under the boolean network model. Machine Learning 52(1-2), 147-167 (2003)

Law, M., Russo, A., Broda, K.: Iterative learning of answer set programs from context
dependent examples. Theory and Practice of Logic Programming 16(5-6), 834-848
(2016). DOI 10.1017/S1471068416000351

Liang, S., Fuhrman, S., Somogyi, R.: Reveal, a general reverse engineering algorithm for
inference of genetic network architectures. In: Proceedings of the 3rd Pacific Symposium
on Biocomputing, pp. 18-29 (1998)

Martinez, D., Alenya, G., Torras, C., Ribeiro, T., Inoue, K.: Learning relational dy-
namics of stochastic domains for planning. In: Proceedings of the 26th International
Conference on Automated Planning and Scheduling (2016)

Martinez Martinez, D., Ribeiro, T., Inoue, K., Alenya Ribas, G., Torras, C.: Learn-
ing probabilistic action models from interpretation transitions. In: Proceedings of the
Technical Communications of the 31st International Conference on Logic Programming
(ICLP 2015), pp. 1-14 (2015)

Muggleton, S.: Inverse entailment and progol. New generation computing 13(3-4), 245—
286 (1995)

Muggleton, S.: Learning from positive data. In: International Conference on Inductive
Logic Programming, pp. 358-376. Springer (1996)

Muggleton, S., De Raedt, L., Poole, D., Bratko, I., Flach, P., Inoue, K., Srinivasan, A.:
Ilp turns 20. Machine learning 86(1), 3-23 (2012)

Muggleton, S.H., Schmid, U., Zeller, C., Tamaddoni-Nezhad, A., Besold, T.: Ultra-
strong machine learning: comprehensibility of programs learned with ILP. Machine
Learning 107(7), 1119-1140 (2018)

http://www.sciencedirect.com/science/article/pii/074310669190014G
http://www.sciencedirect.com/science/article/pii/074310669190014G
https://doi.org/10.1093/bioinformatics/btw682
https://doi.org/10.1093/bioinformatics/btw682

64

Tony Ribeiro et al.

38.

39.
40.

41.

42.
43.
44.
45.

46.

47.

48.
49.

50.

51.

52.
53.
. Thieffry, D., Thomas, R.: Dynamical behaviour of biological regulatory networks—ii.
55.
56.

57.

Naldi, A., Hernandez, C., Abou-Jaoudé, W., Monteiro, P.T., Chaouiya, C., Thieftry, D.:
Logical modeling and analysis of cellular regulatory networks with ginsim 3.0. Frontiers
in physiology 9, 646 (2018)

Noual, M., Sené, S.: Synchronism versus asynchronism in monotonic boolean automata
networks. Natural Computing 17(2), 393-402 (2018)

Novék, B., Tyson, J.J.: A model for restriction point control of the mammalian cell
cycle. Journal of theoretical biology 230(4), 563-579 (2004)

Ortega, A., Fierrez, J., Morales, A., Wang, Z., Ribeiro, T.: Symbolic ai for xai: Evalu-
ating 1fit inductive programming for fair and explainable automatic recruitment. target
1(v1), 1 (2020)

Pal, R., Ivanov, 1., Datta, A., Bittner, M.L., Dougherty, E.R.: Generating boolean net-
works with a prescribed attractor structure. Bioinformatics 21(21), 4021-4025 (2005)

Pasula, H.M., Zettlemoyer, L.S., Kaelbling, L.P.: Learning symbolic models of stochastic
domains. Journal of Artificial Intelligence Research 29, 309-352 (2007)

Paulevé, L., Kolcdk, J., Chatain, T., Haar, S.: Reconciling qualitative, abstract, and
scalable modeling of biological networks. bioRxiv (2020)

Ray, O.: Nonmonotonic abductive inductive learning. Journal of Applied Logic 7(3),
329-340 (2009)

Ribeiro, T., Folschette, M., Magnin, M., Roux, O., Inoue, K.: Learning dynamics with
synchronous, asynchronous and general semantics. In: International Conference on In-
ductive Logic Programming, pp. 118-140. Springer (2018)

Ribeiro, T., Folschette, M., Trilling, L., Glade, N., Inoue, K., Magnin, M., Roux, O.:
Les enjeux de 'inférence de modeles dynamiques des systémes biologiques & partir de
séries temporelles. In: C. Lhoussaine, E. Remy (eds.) Approches symboliques de la
modélisation et de I’analyse des systémes biologiques. ISTE Editions (2020). In edition.
Ribeiro, T., Inoue, K.: Learning prime implicant conditions from interpretation transi-
tion. In: Inductive Logic Programming, pp. 108-125. Springer (2015)

Ribeiro, T., Magnin, M., Inoue, K., Sakama, C.: Learning delayed influences of biological
systems. Frontiers in Bioengineering and Biotechnology 2, 81 (2015)

Ribeiro, T., Magnin, M., Inoue, K., Sakama, C.: Learning multi-valued biological models
with delayed influence from time-series observations. In: 2015 IEEE 14th International
Conference on Machine Learning and Applications (ICMLA), pp. 25-31 (2015). DOI

10.1109/ICMLA.2015.19

Ribeiro, T., Tourret, S., Folschette, M., Magnin, M., Borzacchiello, D., Chinesta, F.,
Roux, O., Inoue, K.: Inductive learning from state transitions over continuous domains.
In: N. Lachiche, C. Vrain (eds.) Inductive Logic Programming, pp. 124-139. Springer
International Publishing, Cham (2018)

Schiiller, P., Benz, M.: Best-effort inductive logic programming via fine-grained cost-
based hypothesis generation. Machine Learning 107(7), 1141-1169 (2018)

Srinivasan, A.: The aleph manual (2001)

immunity control in bacteriophage lambda. Bulletin of mathematical biology 57(2),
277-297 (1995)

Thomas, R.: Regulatory networks seen as asynchronous automata: a logical description.
Journal of Theoretical Biology 153(1), 1-23 (1991)

Van Emden, M.H.: Quantitative deduction and its fixpoint theory. The Journal of Logic
Programming 3(1), 37-53 (1986)

Van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a programming
language. Journal of the ACM (JACM) 23(4), 733-742 (1976)

Title Suppressed Due to Excessive Length 65

A Appendix: Proofs of Section 2

Lemma 1: Double Domination Is Equality Let Ry, R2 be two MVL rules. If Ro > Ry
and R1 > Rz then Ry = Rs.

Proof. Let R1, R2 be two MVL rules such that R2 > R; and R; > Ra. Then head(R1)
head(R2) and body(Ri) C body(R2) and body(R2) C body(R1), hence body(R1)
body(R2) C body(R1) thus body(R1) = body(R2) and R1 = Ra.

oin

Proposition 1: Uniqueness of Optimal Program Let T C S¥ x S7. The MVLP
optimal for T is unique and denoted Po(T).

Proof. Let T C S¥ x S7. Assume the existence of two distinct MVLPs optimal for T
denoted by Pp,(T) and Po,(T) respectively. Then w.l.o.g. we consider that there exists
a MVL rule R such that R € Pp,(T) and R ¢ Po,(T). By the definition of a suitable
program, R is not conflicting with T" and there exists a MVL rule Ry € Pp, (T, such that
R2 > R. Using the same definition, there exists R; € Po, (T) such that R; > Rs since R is
not conflicting with T'. Thus R1 > R and by the definition of an optimal program R > R;.
By Lemma 1, Ry = R, thus Rg > R and R > Rz hence Ry = R, a contradiction. O

B Appendix: Proofs of Section 3

Theorem 1: Characterisation of Pseudo-idempotent Semantics of Interest Let
DS be a dynamical semantics.
If, for all P a DMVLP, there exists pick € (S7 x p(Al7) = ©(ST)\ {0}) so that:
(1) VD C A|y,pick(s,Us’) = pick(s, D), and
s’ €pick(s,D)
(2) Vs € 87, (DS(P))(s) = pick(s, Conclusions(s, P)),

then DS is pseudo-idempotent.
Proof. Let DS be a dynamical semantics, P a DMVLP, pick a function from S¥ x p(A7)
to ©(ST)\ {#} with the properties described in (1) and (2).

In this proof, we use the following equivalent notations, for all (s,s’) € S¥ x ST
(s,s') € DS(P) < s’ € (DS(P))(s).

By Definition 10, first(DS(P)) = 87 (%).

By Definition 9, Po(DS(P)) realizes DS(P). Therefore, according to Definition 5, for
all (s,s’) in DS(P) and v¥® in &', because v € T, there exists R in Po(DS(P)) so that
var(head(R)) = v A RM s A head(R) € s’. Because of Definition 3, a discrete state cannot
contain two different atoms on the same variable: from var(head(R)) = v A v*® € s A
head(R) € &', it comes: head(R) = v?%. Moreover, by definition of Conclusions, because
R € P A RMs, we have: v’ € Conclusions(s, Po(DS(P))). By generalizing on all v?%!, it
comes: s’ C Conclusions(s, Po(DS(P))). By generalizing on all &', it comes: Vs € S7,J s’ C

s'€(DS(P))(s)
Conclusions(s, Po(DS(P))) (t)-

By Definition 9, Po(DS(P)) is also consistent with DS(P). Therefore, according to
Definition 7: VR € Po(DS(P)),Vs € first(DS(P)),RMs = 3s’ € (DS(P))(s), head(R) €
s'. From (), first(DS(P)) = 87, thus Vs € S7,vvv% € Conclusions(s, Po(DS(P))),3s’ €
DS(P)(s), v € s'. Thus: Vs € S7, Conclusions(s, Po(DS(P))) CUs’ (§).

s'€(DS(P))(s)

From (1) and (§): Vs € 87, Conclusions(s, Po (DS(P))) = s’ (x).

s'e(DS(P))(s)

From (%) and (2): Vs € 87, Conclusions(s, Po(DS(P))) = s’ ().

s’ €pick(s,Conclusions(s, P))

Let s in S7.

— From (2): (DS(Po(DS(P))))(s) = pick(s, Conclusions(s, Po (DS(P)))).

66 Tony Ribeiro et al.

From (0): (DS(Po(DS(P))))(s) = pick(s, U s")
s’ €pick(s,Conclusions(s,P))

From (1): (DS(Po(DS(P))))(s) = pick(s, Conclusions(s, P))
— From (2): (DS(Po(DS(P))))(s) = (DS(P))(s).

Thus: Vs € S7, (DS(Po(DS(P))))(s) = (DS(P))(s), QED. a

Theorem 2 Semantics-Free Correctness Let P be a DMVLP.

= Tsyn(P) = Tsyn(Po(Tsyn(P))),

= Tasyn(P) = Tasyn(Po(Tasyn (P))),

= Tgen(P) = Tgen(Po(Tgen(P)))-
Proof. Let d € (87 x o(T) — 9(AT)), so that Vs € ST VW C T,W C var(d(s, W)) A
d(s,0) C d(s,W).

Let p be a function from S7 x p(A7) to p(ST)\{0} so that Vs € S¥,¥D C A, p(s, D) =
{s' € ST | s’ C DUd(s, T \ var(D))}. Since T \ var(D) C var(d(s, W)),0 & p(s, D). Thus
from Definition 15, Vs € S, Tsyn (P)(s) = p(s, Conclusions(s, P)) (property 1).

Since VW C T,d(s,0) C d(s,W), VD C Ar,d(s,0) € D Ud(s, T \ var(D)), thus
d(s,0) CJs' (property 2).

s'€p(s,D)
Moreover, VD C A7, let D’ :=|J s'. Straightforwardly: D’ = DUd(s, T\var(D)) because
s'€p(s,D)

we can always create a state with any atom in D Ud(s, T \ var(D)), thus all atoms of this
set are in D', and conversely (property 3). p(s, D') = {s' € ST | s’ C D'Ud(s, T \var(D’))}
by definition of p. p(s, D) = {s’ € ST | s’ C D' Ud(s,0)} since var(D’) = T by definition
of D' and p. p(s,D’) = {s’ € ST | s/ C D'} from property 2. p(s,D’) = {s’ € ST |
s’ € DUd(s, T \ var(D))} = p(s,D) from property 3. Therefore p respects (1). Since
Tsyn(P) = p(s, Conclusions(s, P)), p also respects (2). Thus, Tsyn(P) = Tsyn(Po (Tsyn(P)))
according to Theorem 1.

By definition of Tgen: Vs € ST, (Tgen(P))(s) = {s' € ST | s’ C Conclusions(s, P) U
d(s, T'\var(Conclusions(s, P)))} with sp=_7(s) C d(s,0). Thus, the same proof gives Tgen (P)
Tgen (Po(Tgen(P))) according to Theorem 1.

[Let us show that: Tasyn(P) = Tasyn(Po(Tasyn(P))).] Let p be a function from S¥ x
©(AT) to (ST) \ {} so that Vs € S ,vD C At:

p(s,D)={s' € ST | s C DUd(s, T \ var(D)) A
(Is"\'spz_,7(s)| = [T\ TI =1V (DUd(s,T \ var(D)))7 = spz_,7(s))}

where A7 and D7 are restriction notations from Definition 12. From Definition 16, we have:
TasynP = p(s, Conclusions(s, P)).
[Let us show that: VD C Ay, p(s,Us’) = p(s, D).] Let D in Ay.
s'ep(s,D)
— If (DUd(s, T \ var(D)))s = spx=_,=7(s), then [Js’ = D and thus p(s,Js") = p(s, D).
s’ €p(s,D) S'Ep(s,@

— If there exists vV € A= so thét var(D U d(s, T \ var(D)) \ SEH?(S)) NnNT = {v},. then
for all state s’ € p(s, D), s’ differs from s on the regular variable v and on variables
in T\ 7. Thus, Us' = (DUd(s,T \ var(D))) \ {V““l/ | yval’ ¢ s}. By construction

s'ep(s,D)
of p, it comes: p(s,|Js’) = p(s, D) because vval’ ¢ ¢ would contradict the condition
s'ep(s,D)
Is"\'spz_7(s)| = IT\ T =1. B

— Otherwise, |var(D U d(s, T \ var(D)) \ spz_,7(s)) N T| > 1 then there exists two states
s}, 85 € p(s, D), so that they differ from s on a different regular variable each. Especially,
by construction of p, spz_,=(s) C s} Usy C DUd(s, T \ var(D)). Therefore, Js" C

s’ep(s,D)
D Ud(s,T \var(D)). Finally, and by definition of p, D Ud(s, T \ var(D)) C |J s’ because
s’ €p(s,D)
for each atom in D Ud(s, T \ var(D)), it is possible to build a state s’ containing it:

Ti

tle Suppressed Due to Excessive Length 67

C

either as the projection of the initial state s or as the only variable changing its value
in s’ compared to spz_ 7 (s). In conclusion: D Ud(s,T \ var(D)) = |Js’, which gives:

s'€p(s,D)
p(s,Us") =p(s, D).
s'ep(s,D)
Thus, Tasyn(P) = Tasyn(Po(Tasyn(P))), according to Theorem 1. [}

Appendix: Proofs of Section 4

Theorem 3: Properties of Least Revision Let R be a MVL rule and s € S such that

R

Ms. Let Sp :={s' € ST | RN '} and Sspe := {s' € S7 | AR € Lepe(R, s, A, F), R’ Ms'}.
Let P be a DMVLP and T, T" C S* x ST such that |first(T)| = 1 Afirst(T) Nfirst(T7) =

0. The following results hold:
1. Sspe = Sr\ {s},
2. Lrev(P, T, A, F) is consistent with T,
P Lyev (P, T,A,F)
3 =T — —— 5T,
P Lyev (P, T,A,F)
4 =T —= — T,
5. P is complete => Liev(P, T, A, F) is complete.
Proof.

1. First, let us suppose that 3s”” ¢ Sg \ {s} such that IR’ € Lgpe(R, s, A, F),R' M s". By
definition of matching R'Ms” = body(R’) C s”. By definition of least specialization,
body(R') = body(R)U{v'e!},vvel’ € s, v*al & body(R),val # val’. Let us suppose that
s = s, then body(R') Z s" since v'® € body(R’) and v¥® ¢ s, this is a contradiction.
Let us suppose that s” # s then —~(R 1 s”), thus body(R) € s” and body(R') € s”,
this is a contradiction.
Second, let us assume that 3s” € Sg \ {s} such that VR’ € Lepe(R, s, A, F),~(R' Ms").
By definition of Sg, RMs’'. By definition of matching —=(R'Ms”) = body(R’) Z s”. By
definition of least specialization, body(R’) = body(R) U{v*®},vva’ € s, val # val’. By
definition of matching RMs” = body(R) C s = s” = body(R)UI,body(R)NI =
(¢ and thus body(R') Z s" = v ¢ I. The assumption implies that wyvel' ¢ I VR €
Lspe(R, 8, A, F),v*® € body(R'),val # val’. By definition of least specialization, it
implies that vvo!' € s and thus I = s\body(R) making s” = s, which is a contradiction.
Conclusion: Sspe = Sgr \ {s}

2. By definition of a consistent program, if two sets of MVL rules SR1, SRy are consistent

3

with 7' then SR; U SRy is consistent with T. Let Rp = {R € P | R s,Y(s,s’) €

T,head(R) ¢ s’} be the set of rules of P that conflict with 7. By definition of least

revision Lyev(P, T, A, F) = (P \ Rp) U Lspe(R, s, A, F). The first part of the ex-
RERp

pression P \ Rp is consistent with 7' since IR e P \ Rp such that R’ conflicts
with T'. The second part of the expression |J Lspe(R, s, A, F) is also consistent with
RERp
T: 3R’ € Lepe(R, s, A, F), R’ Ms thus 3R’ € Lepe(R, s, A, F) that conflict with T and
U Lspe(R, s, A, F) is consistent with T'. Conclusion: Lyey (P, T, A, F) is consistent with
RERp
T.
. Let (s1,s2) € T’ thus s1 # s. From definition of realization, v?* € s = 3R €

l Lyev(P,T,A,F)

P,head(R) = v'*,RM s1. If "RM s then R € Lyev(P, T, A, F) and ——m———

(s1,s2). If RMs, from the first point IR’ € Lepe(R, s, A, F), R'Ms1 and since head(R') =
Lrev(P,T,A,F

head(R) = v¥*, % (s1,s2). Applying this reasoning on all elements of T”
Lrev(P,T,A,F)

Eh A

P
implies that <— T/ — T'.

68 Tony Ribeiro et al.

P
4. Let (s1,s2) € T, since — T by definition of realization ¥v?* € s3,3R € P,R M
s1,head(R) = v¥. By definition of conflict, R is not in conflict with T thus R €

Lrey (P,T,A,F)
Leoy(P,T, A, F) and =0 2
5. Let (s1,82) € 87 x ST, if P is complete, then by definition of a complete program
Vv € V,3dR € P,RnM sy, var(head(R)) = v. If (R M s) then R € Lyev(P, T, A, F). If
RnMs, from the first point AR’ € Lepe(R, s, A, F), R'M sy and thus R’ € Lyev (P, T, A, F)
and since var(head(R')) = var(head(R)) = v, Lrev(P, T, A, F) is complete.
O

Proposition 2: Optimal Program of Empty Set Po(0) = {v¥® « 0 | v*% € Ar}.
Proof. Let P = {v'¥ < @ | vv* € Ar}. The MVLP P is consistent and complete by

P
construction. Like all MVLPs, — () and there is no transition in) to match with the rules
in P. In addition, by construction, the rules of P dominate all MVL rules. [}

Proposition 3: From Suitable to Optimal Let T C S” x S7. If P is a DMVLP
suitable for T, then Po(T) ={R€ P|VR' € PR >R — R > R'}.

Proof. Since any possible MVL rule consistent with 7" is dominated, all the rules of the
optimal program are dominated. Since the only rules dominating a rule of the optimal
program is the rule itself, the optimal program is a subset of any suitable program. If we
remove the dominated rules, only remains the optimal program. O

Theorem 4: Least Revision and Suitability Let s € S7 and T,T' C S x 8T such
that |first(T")| = 1 A first(T) N first(T”) = 0. Lyev(Po(T), T, A, F) is a DMVLP suitable
for TUT'.

Proof. Let P = Lyev(Po(T),T"). Since Po(T) is consistent with T', by Theorem 3, P is also
consistent with 7" and thus consistent with 77 U T'. Since Pp(T) realizes T by Theorem 3,

L 7. Since s ¢ first(T'), a MVL rule R such that body(R) = s does not conflict with T.
By definition of suitable program 3R’ € Pn(T), R’ > R, thus <PO—(T)> T'. Since ‘PO—(T)> T
by Theorem 3 ‘z) T’ and thus i> T UT'. Since Po(T) is complete, by Theorem 3, P is
also complete. To prove that P verifies the last point of the definition of a suitable MVLP,
let R be a MVL rule not conflicting with T"U T”. Since R is also not conflicting with T,
there exists R’ € Po(T) such that R’ > R. If R’ is not conflicting with 7", then R’ will
not be revised and R’ € P, thus R is dominated by a rule of P. Otherwise, R’ is in conflict
with 7, thus R’ M's and V(s,s’) € T",head(R’) € s’. Since R is not in conflict with 77 and
head(R) = head(R'), since R’ > R then body(R) = body(R’) U I,3vve ¢ I,vvel ¢ 5. By
definition of least revision and least specialization, there is a rule R € Lgpe(R’, s) such that
vV ¢ body(R") and since R” = head(R') < body(R') U+v¥% thus R” > R. Thus R is
dominated by a rule of P. [}

T]l__leore;n 5: GULA Termination, Soundness, Completeness, Optimality Let T C
ST x ST

(1) Any call to GULA on finite sets terminates,

(2) GULA(Av T7 -Fv T) = PO(T)7

(3) VA C Al7,GULAAr UA T, F,T) ={R € Po(T) | head(R) € A’}.
Proof. In this proof we refer to the detailed pseudo-code of GULA given in Appendix in
Algorithm 5 and Algorithm 6.

(1) The algorithm of GULA iterates on finite sets, and thus terminates.

(3) Let T C S¥ x S7. The algorithm iterates over each atom v?¥ ¢ A/, A’ C Ay
iteratively to extract all states s such that (s,s’) € T = v¥® ¢ s’. This is equivalent to
group the transitions by initial state: generate the set TT = {T. C T | s € S”, first(T%) =
{s}AVs' € ST, (s,s) €T = (s,8') € T!}.

To prove that VA" C A7, GULA(Ar UA ,T,F,T) = {R € Po(T) | head(R) € A’}
and thus GULA (A, T, F,T) = Po(T), it suffices to prove that the main loop (Algorithm 5,
lines 23-50) preserves the invariant PY% = {R € Po(T;) | head(R) = v** ¢ A’} after the

Title Suppressed Due to Excessive Length 69

i*h iteration where T is the union of all set of transitions of TT already selected line 23
after the tP iteration for all 4 from 0 to |T'T).

Line 22 initializes P a1 to {V“al < 0}. Thus by Proposition 2, after line 22, P ya1 =
{R € Po(D) | head(R) = vV*}.

Let us assume that before the (i+ 1) iteration of the main loop, P,vai = {R € Po(T}) |
head(R) = v¥®}. Through the loop of lines 25-28, P’ = {R € Po(T;) | R does not conflict with
T;+1Ahead(R) = vV} is computed. Then the set P/ = Urepo (T))\ P/ Ahead(R)=vval Lspe(R, s, A, F)
is iteratively build through the calls to least_specialization (Algorithm 6) at line 31 and
the dominated rules are pruned as they are detected by the loop of lines 32—49. Each re-
vised rule can be dominated by a rule in {R € Po(T;)\P’} or another revised rule and
thus dominance must be checked from both. But only a revised rule (R € P”) can be
dominated by a revised rule: if a rule in {R € Po(T;)\P’} is dominated by a revised
rule, then it was dominated by its original rule in {R € Pn(T;)} which is impossible since
Pva = {R € Po(T;) | head(R) = v¥}. Thus it is safe to only check domination of
the revised rules by previous rules (Po(7T;) \ P’) or by other revised rules (P”). Thus
by Theorem 4 and Proposition 3, P,va = {R € Po(Tj1+1) | head(R) = v¥%} after the
(i + 1)th iteration of the main loop. By induction, at the end of all the loop lines 23-50,
Pyt = {R € Po(Ugierr T') | head(R) = v¥*} = {R € Po(T) | head(R) = vV} since
it has iterated on all elements of T'T. Since the same operation holds for each v’ € A/,
P = Uyvatgar Pyvat = {R € Po(T) | head(R) = vval A yval ¢ A’} after all iterations
of the loop of line line 6. Finally: VA’ C A7, GULA(Ax UA",T,F,T) = {R € Po(T) |
head(R) € A’}.

(2) Thus GULA(A,T,F,T) = GULA(Ar UA7,T,F,T) ={R € Po(T) | head(R) €
A1} = Po(T). m|

Theorem 6: GULA Complexity Let T C S7 x ST be a set of transitions, Let n :=
maz(|F|,|T|) and d := max({|dom(v)|) € N|v € FUT}. The worst-case time complezity
of GULA when learning from T belongs to O(|T|? + |T'| x (2n*d?"*2 + 2n3d"*1)) and its
worst-case memory use belongs to O(d?™ + 2nd™ 1 + nd™*+2).

Proof. Let df := max({|dom(v)| € N|v € F}) (resp. dt := max({|dom(v)| € N |v € T}))
be the maximal number of values of features (resp. target) variables. The algorithm takes as

input a set of transition T C S¥ xS7 bounding the memory use to O(dlff‘) X dltTI) = 0(d?").
The learning is performed iteratively for each possible rule head v¥® € A’ C As. The

extraction of negative example requires to compare each transition of 7" one to one and
thus has a complexity of op; = O(|T’|?). Those transitions are stored in Neg, va: which size

is at most |S7 | extending the memory use to O(dlf}_| X dLT‘ —+ dlf}_l) which is bounded by
O(d?™ + d™).

The learning phase revises a set of rule P .41 where each rule has the same head yval,
There are at most d‘fﬂ < d™ possible rule bodies and thus |Pva1| < dltfl < d", the memory

use of | P vat| is then O(dlt}_l) extending the memory bound to O(d‘f}_‘ X dLT‘ +d‘f}_‘) +d‘f}_‘) =
O(d" x d™! + 2dl7)), which is bound by O(d*" + 2d").

For each state s of Neg, vai, each rule of P, that matches s are extracted into a set
of rules Ry,. This operation has a complexity of ops = O(dlf}_| x |F|) bound by O(nd™).
Each rule of R;, are then revised using least specialization, this operation has a complexity
of O(]JF|?) bound by O(n?). |Rm| < d‘fﬂ < d" thus the revision of all matching rules is
op3 = O(d‘f}_‘ x n?) bounded by O(d™ x n?). All revisions are stored in LS and there are at
most dy x |F| < dn revisions for each rule, thus |LS| < dlf}_l xds|F| < d"™ x dn extending the
memory bound to O(d” x d} ' +2dl71) +dy| F| x d 1) bounded by O(d?" +2d7 +na™+1).

Learning is performed for each v?% € A’ C T, thus the memory usage of GULA is
therefore O(d xd,” 1+ | A'|(2d}" +dy| F| x d1)), bounded by O(d xd,” +tdy(2d7") +
dy|F| x d1)) wich is bounded by O(d?" + dn(2d™ +nd"*+1)) = O(d>" + 2nd"+1 + nd™+2).

The worst-case memory use of GULA is thus O(d?" + 2nd"*+! + nd™+2).

70 Tony Ribeiro et al.

All rules of LS are compared to the rule of P, ,q: for domination check, this operation
has a complexity of ops = O(2 X |LS| x |P,vat| X | F|?) = O(2 x d‘f}-‘ X df|F| x d" x n?) =
O(2 x |F|? x d771*1) which is bounded by O(2 x n® x d?"+1).

Learning is performed for each v¥® ¢ A’ C T, |A/| < |T|ds, thus the complexity is
bound by O(op1 +|T| X |T| x d¢(op2 + op3 +opa)) = O(|T|? +|T| times|T| x dt(d‘fﬂ x |F|+
71 xn?+2x| FI3xd} 7)) which is bounded by O(|T|>+|T|x nd(d"™ xn?+d" xn®+2xn® x
d>n 1)) = O(|T|? + |T| x nd(2nr3d?" 1 +2n2d™)) = O(IT|2 + |T'| x (2n*d?"+2 4 2n3dn+1)).

The computational complexity of GULA is thus O(|T|? +|T| x (2n*d?"*2 4-2n3d"*1)).

[m]

D Appendix: Proofs of Section 5

Theorem 7: Optimal DMVLP and Constraints Correctness Under Synchronous
Constrained Semantics Let T C S x S7, it holds that T = Toyn—c(Po(T) U Cl(T)).
Proof. From Definition 9, V(s,s’) € T, s’ C Conclusions(s, Po(T)) thus according to Defi-
nition 22, s’ € Tayn—c(Po(T))(s), thus T' C Tayn—c(Po(T)) (property 1).

By Definition 25, V(s,s') € T, 3C € Co(T), Cr(s, s'), thus since C%, (T) C Co(T), #C €
C\(T),CM(s,s") and then T' C Tsyn—c(Po(T) U C{,(T)) (property 2).

Let us suppose 3(s,s’) € Tsyn—c(Po(T) U C,H(T)),(s,s’) ¢ T. From Definition 22,
vvvel € s’ 3R € Po(T),body(R)Ms, head(R) = v¥*!. From Definition 25, 3C’ € Co(T),C'M
(s,8") since (s,s’) ¢ T. But since (s, s") € Tsyn—c(Po(T)UC,(T)), thus C' ¢ C(,(T). From
Definition 26, it implies that Iv*¥ € s', AR € Po(T), head(R) = v, Vw € F,Vval’,val” €
dom(w), w?a’ € body(R) A w¥e"" € body(C) = wval’ = val”. Since body(C’) C (s U s'),
3R € Po(T),head(R) = v**, body(R) C s, thus s’ Z Conclusions(s, Po(T)) and by Defini-
tion 22, (s,5") & Tsyn—c(Po(T)UC,(T)), contradiction, thus Tsyn—c(Po(T)UC,(T)) € T
(property 3).

From property 2 and 3: Tsyn—c(Po(T)UCH(T)) =T. O

Theorem 8: Synchronizer Correctness Given any set of transitions T,
Synchronizer (A, T, F, T) outputs Po(T) U Cy,(T).

Proof. Let G1 = GULA(A,T,F,T) and G2 = GULA(Az_rye1y: T, FUT, {e}). From
Theorem 5, P = G1 = Pp(T) (property 1).

Let P’ = G2. By definition of T": ¥(s,s’) € T/, s’ = {€%}. Thus VR € P’, R is consistent
with 7/ by Theorem 5, thus #(s,s’) € T/, RM s, since head(R) = ¢! because V(s,s’) €
T',s" = {°} (property 2).

From Theorem 5, P’ = {R € Po(T") | head(R) = ¢'}. From Definition 9, Po(T") is
complete thus ¥(s,s’) € SF x 8T ,ss' :== sUs/,ss’ ¢ first(1”),3R € P, RM ss’ (property
3).

From definition of T, (s,s’) € T = (sUs’,{€°}) € T’, thus VC € P’,C is a constraint
(property 4).

— From property 2 and 4: (s,s') € T = (sUs',{e°}) € T' = #C € P',CN(s,s'), P
consistent with 7.

— From property 3 and 4: (s,s') ¢ T = (sUs') & first(T') = IR € P/, R (s,s"),
P’ is complete with 7.

— If there exists a constraint consistent with T that is not dominated by a constraint in
P’ it implies that a rule consistent with 7”7 whose head is ¢! is not dominated by a
rule in G2 wich is in contradiction with Theorem 5. All constraint consistent with T" are
dominated by a constraint in P’.

— From Theorem 5, the rules of G2 do not dominate eachover, thus the same hold for the
constraint of P’.

— From Definition 25, P’ = Co(T) (property 5).

Title Suppressed Due to Excessive Length 71

Now let us prove that P = C{,(T). Let us suppose that P" # C(,(T). Since P C
Co(T), according to Definition 26, therefore P’ is missing a useful optimal constraint
(CH(T)\ P” #0), or contains a useless optimal constraint (P \ C(,(T) # 0).

1) Suppose that C ¢ P but C € C,(T), meaning that P’ misses a useful constraint

C. Since C € O (T), 3(s,s)s FolD), s', C'M(s,s"). Since s FoD), s', according to

Definition 5 35 C Pp(T),s’ = {head(R) | R € S} AVR € S,R M s. By Definition 21,
C C sUs’ thus body(C)NAx C s and body(C)N.A C s’. By definition of Cpyjes, ¥V €
body(C) N Ar,VR € S, (var(head(R)) = v A head(R) € body(C) = R € Cryies(v))

. Po (T . .
and since s M s', Vv € Ctargets; Crutes(v) # 0. Thus there exists a combi such that

Vv € F, [{v¥® € body(R) | val € dom(v) A R € combi}| < 1, contradiction.

2) Suppose that C' ¢ C/,(T) but C € P, meaning that P’ contains a useless constraint

C. Thus, {(s,58') € ST x ST | s PoD, v pcn (s,s’)} = 0. Since C € P" there is a combi

such that [{v?% € body(R) | val € dom(v) A R € combi}| < 1, thus 3s € S7,body(C) N

Po(T
AT C s AVR € combi,RMs. Let S := {s' € ST | s FPo (™), s'}. Because Po(T) is

complete, S # 0. Since VR € combi, R € Po(T),3s’ € S,VR € combi,head(R) € s’. Since
body(C) N Ay = {head(R) | R € combi} Cs’, C(s,s’).

Thus P"” = C/,(T) (property 6).

From property 1 and 6, Synchronizer(A,T,F,T) = Po(T)UCy,(T).

Theorem 8: Synchronizer Complexity Let T C S x ST be a set of transitions, let
n := maz(|F|,|T]) and d := max({|dom(v)| e N|ve€ FUT}) and m:= |F| + |T|.

The worst-case time complezity of Synchronizer when learning from T belongs to
O((d2™ 4 2nd™ Tt + nd™2) + (|T|2 4 |T| x (2mAd2™+2 4 2m3d™+1)) 4 (d»")) and its worst-
case memory use belongs to O((d?"+2nd" 1 +nd™+2)+(d?™+2md™ T +md™+2)+(nd")).

Proof. Let dy := max({|dom(v)| € N|v € F}) (resp. di := max({|dom(v)| e N|v € T}))
be the maximal number of values of features (resp. target) variables. Let n := maz(|F|,|T]|)
and d := max({|[dom(v)| € N|v € FUT}) and m := |F| + |T|. The first call to GULA
has complexity of O(|T|2 + |T| x (2n*d?"*2 + 2n3d"*1)) and the memory is bound by
O(d?™ + 2nd™ 1 + nd™*2) according to Theorem 6.

Computing T’ := {(sUs’,{€°}) | (s,s’) € T} has a linear complexity of O(|T|). The call
GULA(Az 7uqery, T', FUT, {e}) considers target variables as features variables to learn
constraints, i.e., the body of constraints can have m conditions. Thus the complexity of this
call to GULA is bound by O(|T’|? + |T’| x (2m*d?™*2 + 2m3d™+1)) = O(|T|? + |T| x
(2mAd?™+2 4 2m3d™*+1)) since |T’| = |T| and the memory is bound by O(d?™ +2md™*1 +
md™*2) according to Theorem 6.

To discard useless constraints, Algorithm 3 searches for a set of rules that can be applied
at the same time as the constraint: first it extract the constraint target variables Ciargets :=
{v € T | Jval € dom(v), v’ € body(C)} and search for compatible rules with the constraint
Vv € Ctargets; Crules(v) := {R € P | var(head(R)) = v A head(R) € body(C) A Vw €
F,Yval,val’ € dom(w), (w¥ € body(R) A woal’ ¢ body(C)) => wal = val’}. The
constraint contains at most | 7| target conditions. For each target variable, there is at most
dlfF‘ rules in P. Thus, computing the Cartesian product of rules grouped by head variables

has a time complexity of O(dlfFl‘T‘) which is bound by O(d"n) and a memory complexity
of O(|P|) which is bound by O(nd™).

The computational complexity of Synchronizer is thus O((d?" + 2nd*t! + nd"+2?) +
(IT|2 + |T| x (2m*d2™+2 4 2m3d™+1)) + (d™")) and its memory is bound by O((d2" +
2nd" Tl + nd?t2) 4 (d?™ + 2md™ 1 + md™+2?) + (nd")). O

72 Tony Ribeiro et al.

E Appendix: Proofs of Section 6

Proposition 5: Uniqueness of Impossibility-Optimal Program Let T C S¥ x S7.
The DMVLP impossibility-optimal for T is unique and denoted Po(T).

Proof. Same proof than for Proposition 1 by replacing “suitable” by “impossibility-
suitable”. O

F Appendix: detailed pseudo-code of Section 4

Algorithms 5 and 6 provide the detailed pseudocode of GULA. Algorithm 5 learns from a
set of transitions 7" the conditions under which each value val of each variable v may appear
in the next state. Here, learning is performed iteratively for each value of variable to keep
the pseudo-code simple. But the process can easily be parallelized by running each loop
in an independent thread, bounding the run time to the variable for which the learning is
the longest. In the case where we are not interested about the dynamics of some variables,
the parameter A’ and 7’ can be reduced accordingly. The algorithm starts by the pre-
processing of the input transitions. Lines 7-18 of Algorithm 5 correspond to the extraction
of Neg,va1, the set of all negative examples of the appearance of vvel in next state: all states
such that v never takes the value val in the next state of a transition of T'. For efficiency
purpose, it is important that the negatives examples are ordered in a way that reduce the
difference between nearby elements, for example lexicographically. Indeed, it increase the
proportion of revised rules (produced to satisfy a previous example) still consistent with the
following examples, reducing the average number of rules stored and thus checked in the
following processes. Those negative examples are then used during the following learning
phase (lines 21-50) to iteratively learn the set of rules Pn(T'). The learning phase starts
by initializing a set of rules P,va to {R € Po(f) | head(R) = v¥@} = {v¥ <+ 0} (see
Proposition 2).

P,ya is iteratively revised against each negative example neg in Neg, vai. All rules R,
of P, a1 that match neg have to be revised. In order for P, a1 to remain optimal, the revision
of each R,, must not match neg but still matches every other state that R,, matches. To
ensure that, the least specialization (see Definition 18) is used to revise each conflicting rule
Ry,. Algorithm 6 shows the pseudo code of this operation. For each variable of F’ so that
body(Rm) has no condition over it, a condition over another value than the one observed in
state neg can be added (lines 3-8). None of those revision match neg and all states matched
by R, are still matched by at least one of its revisions.

Each revised rule can be dominated by a rule in P, 4.1 or another revised rules and thus
dominance must be checked from both. But only revised rule can be dominated by a revised
rule: if a rule in P, ,q: is dominated by a revised rule, then it was dominated by its original
rule and thus could not be part of P, .4 since it would have been discard in a previous step.
Thus we can safely only check the revised rules to discard the ones dominated by the new
current revised rule. The non-dominated revised rules are then added to P, vai.

Once P,y has been revised against all negatives example of Neg, val, Pyvat = {R €
Po(T) | head(R) = vV}, that is, P,va: is the subset of rules of the final optimal program
having v¥% as head. Finally, P41 is added to P and the loop restarts with another atom.
Once all values of each variable have been treated, the algorithm outputs P which is then
equal to Po(T).

Title Suppressed Due to Excessive Length 73

Algorithm 5 GULA(A',T,F', T, learning_mode)

1:

24:

52:

NN N e R e
D H OO0 0N G © XIS Y

V)

! !
INPUT: A set of atoms A’, a set of transitions T' C ST x 8T , two sets of variables F/ and 7/, a
string learning-mode € {“possibility”, “impossibility” }.

: OUTPUT: Py (T) if learning-mode = “possibility” or Py (T) if learning-mode = “impossibility”.

T := {(s1,{s2 | (s1,s2) € T}) | s1 € first(T)} // Group transitions by initial state
T sort(T) // Sort the transitions in Lexicographical order over feature states
P:=90

for each v¥? ¢ A’ such that v € T/ do

// 1) Extraction of positives and negative examples of possibility

Posvual =

Neg yat =0
for each (s1,S5) € T do
negative_example := true
for each s3 € S do
if v'% € 55 then

negative_example := false
Pos_yq1 := Pos_yq1 U {s1}
break
if negative_example == true then
| Neg var := Neg yar U{s1}
if learning-mode == “impossibility” then
‘Negvval = Posvval // Positive examples of possibility are negatives examples of impossibility.

// 2) Revision of the rules of v¥el to avoid matching of negative examples
l

Pvual = {vU" 0}
for each neg € Negvual do
M :=0 // Set of rules of P yq1 that are in conflict
for each R € vaal do // Extract all rules that conflict and remove them from P
if body(R) C neg then

M := M U{R}

val ._ pval
Py = PJ* \ {R}

LS:=0

for each Ry, € M do // Revise each conflicting rule
P = least_specialization(Ry,, neg, A, .7-")

for each Ry, € P’ do
dominated := false

for each Rp € P ;4 do // Check if the revision is dominated by P yal
if body(Rp) C body(R;s) then
dominated := true
break
if dominated == true then
‘ continue

for each Ry € LS do // Check if the revision is dominated by LS

if body(Rp) C body(R;s) then
dominated := true
break
if dominated == true then
\ continue

for each Ry, € LS do// Remove previous specialization that are now dominated
if body(R;s) C body(Rp) then
|Ls:= LS\ {Rp}

LS :=LSU{R;s} // Add the revision
P yal = P yq1 U LS // Add non-dominated revisions

P:=PUP ,q

return P

74 Tony Ribeiro et al.

Algorithm 6 least_specialization(R, s, .A’, ') : specialize R to avoid matching of s

: INPUT: a rule R, a state s, a set of atoms A’ and a set of variables F’
: OUTPUT: a set of rules LS which is the least specialization of R by s according to F’ and A’.

LS:=0
// Revise the rules by least specialization
: for each vV@! € s do
if v ¢ var(body(R)) then // Add condition for all values not appearing in s
!
for each vV € A’ v € F',val’ # val do

R’ := head(R) « (body(R) U {v¥2!'})
LS :=LSU{R'}
. return LS

© O P g W e

Title Suppressed Due to Excessive Length 75

asynchronou

1000 1000

o T g
= =

o f
= s = s
= 1o = 0%
= = =2
i - - 50% - 50%
- 75% - - 75%
I = lone -— = 100w
s 1 s s , s

6 7 6
Number of variables Number of variables

general semantics
1000

100 +

Run Time (in seconds)

= 10%
- 25%
i = 5%
B3 100%

6
Number of variables

Fig. 15: Run time of Synchronizer from a random set of
1%, 5%, 10%, 25%, 50%, 75%, 100% of the transitions of a Boolean net-
work from Boolenet and PyBoolNet with size varying from 3 to 10 variables.
Time out is set at 1,000 seconds and 10 runs where performed for each
setting.

G Synchronizer Scalability

Figure 15 shows the run time of Synchronizer when learning from transitions of Boolean
networks from Boolenet [11] and PyBoolnet [28] with same settings as in the experiements of
Table 4. For the synchronous and general semantics, it is only when we are given a subset of
all possible transitions that the algorithm output constraints, since all combination of heads
of matching rules are allowed for those two semantics. Those constraint at least prevent
transitions from unseen states and also some combination of atoms that are missing in next
states but that are observed individually. Even when it outputs an empty set of constraint,
the learning process needs to produce and revises constraint until its no more possible,
so run time of full set of transitions is also considered. In the asynchronous case, given
a set of transitions 7', it needs to learn the constraints ensuring at most one change per
transitions, i.e., {(i ai,b{,ail,b{/il | a,b € Ax,i# i’ Aj # j'} and the ones preventing
the projection when only one variable can be updated: {C | {ai,al ,} € body(C),a €
A=, #(s,s’) € T,body(C) C sUs'}. Those second kind of constraint will be specific to the
few states this limitation occurs and show the limits of propositional representation for the
explanation of the dynamics.

Learning constraints is obviously more costly than learning regular rules since both
features and targets variables can appear in the body, i.e., number of features becomes
|F|+|T]. The algorithm reached the time out of 1,000 seconds with benchmarks of 10 nodes
for synchronous semantics and 7 nodes for asynchronous and general semantics. Scalability
of the algorithm can be greatly improved by using the approximated version of GULA for

76 Tony Ribeiro et al.

learning both rules and constraints. If learning rules can be done in polynomial time, learning
constraints remains exponential. Since we do not present this approximated algorithm in
this paper we will not go into the details. In short, this approximated version needs positives
examples and thus require to generate the Cartesian product of all applicable rules heads
for each initial state observed which is exponential. Scalability, readability and applicability
could be improved by considering first order generalization of both rule and constraints
but those generalization are application dependant and thus remains as future work. Such
generalization is required to perform proper prediction from unseen states, thus application
of the synchronizer output for prediction from unseen states are out of the scope of this
paper.

H Complete pruned WDMVLP of Section 7.4

Title Suppressed Due to Excessive Length 7

WP ={
(54, CyeDt° « CycD_t_10),
(10, CyeD % « CycA_t_1* A UbcH10_t_1° A cdh1_t_11),
(8, CyeDt® « Cdc20t_1' A Rb_t_ 11 A UbcH10t_1° A cdh1t_11),
(8, CycDt® « Cdc20t1' A CycE_t1° A UbcH10-t_1° A cdh1t_11),
(48, CycD_t' + CycD_t_1'),
(6, CycD_t* + E2F_t_1' A Rb_t_1' A UbcH10_t_1' A p27_t_11),
(6, CycD_t' «+ CycAt 19 A CycE_t1° A UbcH10t_1' A p27_t_11),
(6, CycD-t' + Cdc20t_1° A CycB-t_1° A CycE_t_1° A UbcH10.t_1'),
(58, Cdc20-t° « CycB_t_19),
(8, Cdc20-t0 « Cdc20t10 A E2F t.11 A UbcH10t_10 A p27_t_11),
(8, Cdc20_t° «+ Cdc20_t_11 A CycA_t_1' A cdh1_t1° A p27_t_11),
(7, Cdc20_t° « Cdc20_t_1° A CycE_t_1Y A UbcH10_t_10 A p27_t_11),
(44, Cdc20t' « CycB_t_1'),
(6, Cdc20_t" « Cdc20t_1' A E2F £.1° A UbcH10t_10 A p27.¢_10),
(6, Cdc20_t « CycAt 10 A E2F £1° A Rb-t_10 A UbcH10-t-19),
(6, Cdc20_t' « CycD_t_1° A Cdc20_t_ 1 A E2F_t_1° A cdh1_t_11),
(57, CycA_t® « Rb_t_1'),
(53, CycAt? « Cdc20-t_11),
(28, CycAt? « CycBt1° A UbcH10t_11),
(28, CycAt® « UbcH10-t_1' A cdh1_t-11),
(7, CycA_tt « Cdc20_t_1° A CycA_t_1* A Rb_t_1° A cdh1_t_1°),
(7, CycA_tt « Cdc20t1° A CycA_t_ 11 A Rb_t 19 A p27_t.11),
(7, CycA_tt « Cdc20-t_1° A CycBt1° A Rb_t_10 A UbcH10_t_19),
(6, CycA_t! « Cdc20-t-19 A E2F_t.11 A Rb_t-1° A UbeH10-t-19),
(53, CycB_tY « Cdc20-t_1'),
(50, CyeB_t% « cdh1_t_1'),
(17, CycB_t° « CycA_t_1* A UbcH10_t_1' A p27_t_10),
(16, CycB_tY «+ CycD_t_1° A CycA_t1* A CycE_t 1Y),
(25, CycB_t" «+ Cdc20-t-1° A cdh1_t19),
(9, CycB_t' + Cdc20_t.19 A B2F 19 A Rb_t_19),
(7, CyeB_t' «+ Cdc20_t_.19 A CycA_t_1* A CycE_t1° A p27_t_11),
(7, CycB_t' « CycD_t1' A Cdc20-t_1° A CycA_t 1 A p27_t11),

,CycE_t° <+ -t s
57, CycEt? « Rb_t_1'

,CycE 1t <+ i N
51, CycEt? « E2F_t_1°

,CycE_t° <+ c20_t_1° NCycE_t_1" AN c —t_ N
15, CycE_t° « Cdc20_t 11 A CycE_t_1* A cdh1_t_1°
(15, CycE_t < CycD_t_1' A CycE_t_1' A cdh1_t_19),
(21, CycE_t' « E2F_t_1' A Rb_t_10),

, CycE_t~ «+ c20t_17 A _t- A c -t s
7,CycEt' «+ Cdc20t_1° A Rb_t_1° A cdh1t_11
,CycE_t" <+ CycA_t.1" N CycB_t_-1" A 17 A C. t_ s

6, CycE_t' « CycAt1° A CycBt1° A Rb_t_1° A UbcH10t_1°
(5, CycE_t' + CycD_t.1° A CycA_t1° A CycB_t1° A Rb_t_19),
(57, E2F_t° « Rb_t1'),

(44, E2F _t° « CycB_t_1Y),

(26, B2F_t° « CycA_t_1' A p27t_10),

(15, B2Ft° « Cdc20t_10 A CycA_t_1' A UbcH10-t1'),
(15, E2F _t* «+ CycB_t_1° A Rb_t_10 A p27_t_11),

(11, E2F_t* + CycA_t_1° A CycB_t_.1° A Rb_t_19),

(9, E2F t' « CycB_t.1° A E2F_t_1' A Rb_t_1° A UbcH10-t19),
(7, E2F t* «+ Cdc20_t_1* A CycB_t.19 A E2F_¢t1°9 A Rb_t_19),
(48, Rb_tY « CycD_t_1'),

(44, Rb_tY « CyeB_t1'),

(26, Rb_tY « CycE_t1* A p27_¢19),

(26, Rb_tY « CycA_t_1' A p27t.10),

(16, Rb_t* « CycD_t_1° A CycB_t_10 A p27_t_11),

(6, Rbt' « CycDt 19 A CycAt 19 A CycB-t_1° A CycE_t_1°),
(5, Rb_t' + CyeD_t_1° A Cdc20_t_1' A CycA_t_1° A CycB_t_19),
(5, Rb_t! « CycD_t1° A Cdc20_t 11 A edh1t10 A p27_t_11),

(22, UbcH10t° < UbcH10.t_1° A cdh1_t_11),

(8, UbcH10t0 < Cdc20-t-19 A CycAt_10 A CycB_t_10 A cdh1_t_11),
(8, UbcH10t0 «+ Cdc20-t-1° A CycB-t1° A cdh1t_1' A p27t11),
(6, UbcH10t° «+— CycB_t_1° A CycE_t_1° A E2F 1Y A cdh1_t_11),
(52, UbcH10_t' « cdh1.t_10),

(33, UbcH10_t* < CycA_t_1' A UbcH10_t_1'),

(27, UbcH10-t* < Cdc20-t_1' A UbcH10_t_1%),

(25, UbcH10-t" < CycB_t_1' A UbcH10-t_1'),

(19, cdh1_t° « Cdec20.t_19 A CycB_t_1'),

(11, cdh1.t° « Cde20_t19 A CycAt 11 A p27¢.10),

(8, cdh1t? « Cdc20t1° A CycA_t_1* A UbcH10t 1 A cdh1_t11),
(6, cdh1t? « CycD_t 19 A Cde20t10 A CycE_t1° A Rb_t_10),
(53, cdh1_t! « Cdc20_t_1Y),

(35, cdhl_t' « CycB_t_19 A p27_t_11),

(26, cdh1.t! « CycA_t19 A CyeB_t19),

(20, cdh1.t! « CycB_t.1° A E2F_t_1' A UbcH10-t_10),

(48, p27-t° « CyeD_t_1'),

(44, p27_t° + CycB_t_11'),

(29, p27_t° « CycA_t_1' A CycE_t_1'),

(26, p27_t% « CycE_t_1' A p27_t_10),

(7, p27t* + CyeD_t 19 A CycAt 10 A CycB_t_10 A p27_t_11),

(6, p27-t' « CyeDt 19 A CycAt 19 A CycB-t_1° A CycE_t19),
(6, p27-t' « CycD_t_1° A CycB_t_1° A CycE_t19 A p27_t_11),

(5, p27-t' + CyecD_t 19 A Cdc20_t_ 11 A CycA_t1° A CycB_t19),

78 Tony Ribeiro et al.

WPII = {
,CycD_t” < CycD_t_ s
48, CycD_t° « CycD_t_11
(6, CycD_t% « E2F_t 11 A Rb_t_1' A UbcH10_t_1' A p27_t_11),
(6, CycD_t9 « CycAt19 A CycE_t.1° A UbcH10_t_1' A p27_t_11),
, CycD_t” <+ c20-t_1° AN CycB_t_1°" AN CycE_t_.1" N\ c t_ s
6, CycD_t° « Cdc20.t_1° A CycB_t_1° A CycE_t_1° A UbcH10-t_11
,CycD_t~ < CycD_t_ s
54, CycD_t' « CycD_t_1°
,CycD_t* <~ CycA_t_1° N c t_1° AN c _t_ s
10, CyeD_t* < CycA_t_1* A UbcH10_t_1°9 A cdh1_t_11
(8, CyeD_t' + Cdc20_t_1* A Rb_t_1' A UbcH10_t_1° A cdh1_t_11),
(8, CycD-t' + Cdc20t_1' A CycE_t1° A UbcH10-t_1° A cdh1_t_11),
s c20_t” < CycB_t_ N
44, Cdc20.t° « CycB_t_1!
s c20-t" < c20-t_1- A t1° A c t-1° AN p27_t_ s
6, Cdc20t? « Cdc20.t_1' A E2F_t 19 A UbcH10-t.1° A p27_t_1°
(6, Cdc20_t° « CycA_t1° A E2F_t_1° A Rb_t_10 A UbcH10_t_10),
(6, Cdc20_t° « CycD_t_1° A Cdc20_t_ 11 A E2F_t_10 A cdh1_t_11),
s c20_t™ < CycB_t_ N
58, Cdc20_t' «+ CycB_t_1°
y c20_t" <+ c20_t_1° A t 17 A c t-17 A p27_t_ N
8,Cdc20-t! « Cdc20.t_1° A E2F _t 1' A UbcH10t10 A p27_t_11
) c20_t" <« c20-t_1- N CycA_t_1- A c 17 A p27_t_ N
8, Cdc20-t! « Cdc20.t_1' A CycAt 1t A cdhl1_t19 A p27_t 1t
(7, Cdc20_t* « Cdc20.t_1° A CycE_t_1' A UbcH10.t_10 A p27_t_11),
(7, CycA_tY « Cdc20_t_1° A CycA_t_1* A Rb_t_1° A cdh1_t_1°),
(7, CycA_t® « Cdc20t_1° A CycA_t_1' A Rb_t1° A p27_t11),
, CycA_t” <+ c20-t_1° N CycB_t_1" A 17 A c t_ s
7, CycAt0 « Cdc20.t1° A CycB_t-1° A Rb_t_1° A UbcH10-t_1°
,CycA_t" + c20-t_17 A t1° A -t-1° A c -t s
6, CycAt? « Cdc20.t.1° A E2F_t.1' A Rb_t-1° A UbcH10-t_1°
(57, CycA_tt < Rb_t_1'),
,CycA_t~ < c20_t_ N
53, CycA_t! Cde20-t 1"
(28, CycAt! «— CycB_t_1° A UbcH10t_11),
,CycA_t™ <« c t.1° ANc —t_ s
28, CycA_t' < UbcH10-t_1' A cdh1t 1!
,CycB_t" <+ c20-t_17 A c —t s
25, CycB-t0 « Cdc20-t-1° A cdh1t_1°
(9, CycB_t° « Cdc20.t_.1° A E2F ¢t_19 A Rb_t_19),
(7, CyeB_t° « Cdc20t_.19 A CycA_t_ 1Y A CycE_t1° A p27_t_11),
(7, CycBt° « CycD_t1' A Cdc20-t_1° A CycA_t 1 A p27_t11),
,CycB_t~ <+ c20-t_ N
53, CycB_t! « Cdc20_t_1'
,CycB_t" + c —t_ s
50, CycB_t! dh1_t_1!
(17, CycB_t' « CycA_t_1' A UbcH10_t_1' A p27_t_10),
(16, CycB_t' « CycD_t_1° A CycA_t_1' A CycE_t_1'),
(21, CycEt? « E2F_t1' A Rb_t_19),
(7, CycE-tY « Cdc20.t19 A Rb_t_19 A cdh1_t11),
(6, CycE_t° « CycA_t1° A CycB_t_19 A Rb_t_1° A UbcH10_t_19),
(5, CycE_t° « CycD_t_1° A CycA_t_1° A CycB_t_1° A Rb_t_19),
(57, CycE_t' « Rb_t_1'),
(51, CycE_t' «+ E2F_t10),
(15, CycEt' « Cdc20t 11 A CycE_t.1' A cdh1-t10),
(15, CycE_t' + CycD_t_1' A CycE_t_1' A cdh1_t_19),
(15, E2F _t° « CycB_t_1° A Rb_t_10 A p27_t_11),
(11, E2F_t° « CycA_t_1° A CycB_t_.19 A Rb_t_19),
(9, E2F t° « CycB_t.1° A E2F_t_1' A Rb_t_1° A UbcH10-t-19),
(7, E2F t° < Cdc20-t_1* A CycB_t19 A E2F 19 A Rb_t_19),
(57, E2F_t' « Rb_t_1'),
(44, E2F _t' + CycB_t_1'),
(26, BE2F_t' « CycA_t_1' A p27.t.10),
(15, B2F_t' «+ Cdc20-t_10 A CycA_t_1' A UbcH10-t_1'),
(16, Rb_t9 «+ CycD_t_1° A CycB_t_10 A p27_t_11),
(6, Rb_t° < CycD_t_1° A CycA_t_1° A CycB_t_1° A CycE_t_19),
(5, Rb_t° « CycD_t_1° A Cdc20_t_1' A CycA_t_1° A CycB_t_19),
(5, Rbt® « CycD_t1° A Cdc20-t_1' A edh1t10 A p27_t_11),
(48, Rb_t' + CycD_t_1'),
(44, Rb_t' «+ CycB_t1'),
(26, Rb_t' < CycE_t_1' A p27_t_1°),
(26, Rb_t! + CycA_t_1' A p27_t_1°),
(52, UbcH10-t° « cdh1.t_10),
(33, UbcH10-t° < CycA_t_1' A UbcH10_t_1'),
(27, UbcH10-t° < Cdc20-t_ 11 A UbcH10-t_11),
(25, UbcH10_t° «+— CycB_t_1' A UbcH10_t_1'),
(22, UbcH10_t' «+ UbcH10_t_1° A cdh1_t_1'),
(8, UbcH10t' + Cdc20-t.19 A CycAt_10 A CycB_t_1° A cdh1_t_11),
y c tT c20-t_1°" N CycB_t_1° N c -t 17 Ap27_t_ s
8, UbcH10_t' + Cdc20-t_1° A CycBt_1° A cdh1_t1' A p27_t_1t
B c -t~ < CycB_t.1° N CycE_t_1" A t1" Ac -t N
6, UbcH10-t' < CycB_t-19 A CycE_t1° A E2F_t_1' A cdh1_t1'
(53, cdh1.t? « Cdec20_t11),
(35, cdh1.t? « CycB_t_1° A p27_t_11),
(26, cdh1.t° « CycA_t19 A CycB_t19),
, C t° + CycB_t_1" N -t 17 A c _t_ N
20, cdh1t0 « CycB_t19 A E2F_t_1' A UbcH10-t_1°
, C T c20_t_17 N CycB_t_ s
19, cdh1_t! « Cdc20t.19 A CycB_t_11
(11, edhl_t' « Cdc20_t_1° A CycA_t_ 1t A p27_t_1°),
(8, cdhl1_t' « Cdc20.t_19 A CycA_t_1' A UbcH10t_1' A cdhl_t_11),
s C it CycD_t 1" A c20_t_1° N CycE_t_1° A -t s
6, cdhl t' « CycD_t19 A Cdc20t_1° A CycE_t_1° A Rb_t_1°
(7, p27t° « CyeDt 19 A CycAt_10 A CycB_t10 A p27_t_11),
(6, p27-t° « CycD_t_1° A CycA_t_1° A CycB_t_19 A CycE_t_19),
(6, p27-t° « CycD_t1° A CycB_t_1° A CycE_t_19 A p27_t_11),
(5,p27t° + CycD_t19 A Cdc20.t_ 11 A CycA_t1° A CycB_t_19),
(48, p27_t* «+ CycD_t_1'),
(44, p27-t* + CycB-t_11),
(29, p27_t* < CycA_t_1' A CycE_t_11),
(26, p27_t* + CycE_t_1' A p27_t_10),

Fig. 15: Final learned WDMVLP WP = (WP',WP") of Section 7.4 after

pruning of (Po(T"), Po(T")) for readability, |WP’| = |[WP"| = 80. The rules
that appear in the original DMVLP of Figure 13 are colored in blue.

Title Suppressed Due to Excessive Length 79

I Information About this Paper
1.1 History of the paper

This paper is a substantial extension of [46] where a first version of GULA was introduced.
In [46], there was no distinction between feature and target variables, i.e., variables at time
step t and t+ 1. From this consideration, interesting properties arise and allow to character-
ize the kind of semantics compatible with the learning process of the algorithm (Theorem 1).
It also allows to represent constraints and to propose an algorithm (Synchronizer, Section
5) to learn programs whose dynamics can mimic any given set of transitions with optimal
properties on both rules and constraints. It also allows to use GULA to learn human read-
able explanations in form of rules on static classification problems (as long as all variables
are discrete), which will be one of the focus of our future works.

1.2 Main contributions of the paper

The main contributions of this paper are:

— A modeling of discrete memory-less dynamics system as multi-valued propositional logic.
This modeling is independent of the dynamical semantics the system relies on, as long
as it respects some given properties we provided in this paper. The main contributions
of this formalism is the characterization of optimality and the study of which semantics
are compatible with this formalism (which includes notably synchronous, asynchronous
and general semantics).

— A first algorithm named GULA, to learn such optimal programs.

— The formalism is also extended to represent and use constraints. This allows to reproduce
any discrete memory-less dynamical semantics behaviors inside the logic program when
the original semantics is unknown.

— A second algorithm named Synchronizer, that exploits GULA to learn a logic pro-
gram with constraints that can reproduce any given set of state transitions. The method
we proposed is able to learn a whole system dynamics, including its semantics, in the
form of a single propositional logic program. This logic program not only explains the
behavior of the system in the form of human readable propositional logic rules but also
is able to reproduce the behavior of the observed system without the need of knowing
its semantics. Furthermore, the semantics can be explained, without any previous as-
sumption, in the form of human readable rules inside the logic program. In other words,
the approach allows to learn all the previously cited semantics, as well as new ones.

— A heuristic method allowing to use GULA to learn a model able to predict from unseen
case.

— Evaluation of these methods on benchmarks from biological litterature regarding scala-
bility, prediction accuracy and explanation quality.

1.3 What evidence is provided

We show through theoretical results the correctness of our approach for both modeling
and algorithms (see above contribution for details). Empirical evaluation is performed on
benchmarks coming from biological literature. It shows the capacity of GULA to produce
correct models when all transitions are available. Also, we observe that learned models
generalize to unseen data when given a partial input in those experiments.

80 Tony Ribeiro et al.

1.4 Related work

The paper refers to relevant related work. As we discussed in the related work section, our
approach is quite related to Bain and Srinivasan [3], Evans et al. [12,13], Katzouris et al.
[24], Fages [14].

The techniques we propose in this paper are a continuation of the works on the LFIT
framework from [20,48,46].

In [19,21], state transitions systems are represented with logic programs, in which the
state of the world is represented by a Herbrand interpretation and the dynamics that rule the
environment changes are represented by a logic program P. The rules in P specify the next
state of the world as a Herbrand interpretation through the immediate consequence operator
(also called the Tp operator) [57,2] which mostly corresponds to the synchronous semantics
we present in Section 3. In this paper, we extend upon this formalism to model multi-
valued variables and any memory-less discrete dynamic semantics including synchronous,
asynchronous and general semantics.

[20] proposed the LFIT framework to learn logic programs from traces of interpretation
transitions. The learning setting of this framework is as follows. We are given a set of pairs
of Herbrand interpretations (I, J) as positive examples such that J = Tp([), and the goal
is to induce a mormal logic program (NLP) P that realizes the given transition relations.
As far as we know, this concept of learning from interpretation transition (LFIT) has never
been considered in the ILP literature before [20]. In this paper, we propose two algorithms
that extend upon this previous work: GULA to learn the minimal rules of the dynamics
from any semantics states transitions that respect Theorem 1 and Synchronizer that can
capture the dynamics of any memory-less discrete dynamic semantics.

J Declarations

J.1 Funding
This work was supported by JSPS KAKENHI Grant Number JP17H00763 and by the ” Pays
de la Loire” Region through RFI Atlanstic 2020.

J.2 Conflicts of interest/Competing interests

None

J.3 Availability of data and material

Experiments data and sources code is available at https://github.com/Tony-sama/pylfit
under GPL-3.0 License.

J.4 Code availability

Algorithms and experiments sources code is available at https://github.com/Tony-sama/
pylfit under GPL-3.0 License.

https://github.com/Tony-sama/pylfit
https://github.com/Tony-sama/pylfit
https://github.com/Tony-sama/pylfit

Title Suppressed Due to Excessive Length 81

K Response to Reviewers

We thank again the reviewers for their care in providing feedback and suggestions to improve
the paper.
Summary of updates:

— Majors
— Improved WDMVLP section (Section 6), clarified definition of predictions, added
a detailed example and corresponding discussion with more details about the choice
of heuristics.
— Added an example of predictions scoring in evaluation section (Section 7) to clarify
the claim about explainability regarding quality of the explanation of prediction.
— Added a case study section (Section 7.4) in evaluation part to illustrate explain-
ability claim by the means of readability. In this case study, we show that some
heuristics can be used to approach the original Boolean network rules.
— Minors
— Improved the part about pseudo-idempotent semantics in Section 3.
— Clarified notations.
— Compared explainability measure with other works.

In the following, we provide comments on how every remark from the panel of reviewers
has been taken into account.

K.1 Reviewer 3

Thank you for your comments, we addressed your claims as follows.

The revised version has addressed several issues raised in my previous review. In particu-
lar, I think the authors have properly applied some of suggestions about 1) adding examples
for formal definitions & theorems to make them more readable, 2) re-organising the exper-
imental results, adding baselines, and more discussions. However, I am not sure if other
required changes have been addressed properly. For example, I couldn’t find examples of
‘problem specific’ learned rules in the evaluation section to exemplify the claim that ”In the
case where explainability is of interest, the rules used for the predictions and their weights
may be quite simple human readable candidates for explanations.”

We added an example (coming from one of the benchmarks from the experiments:
mammalian cell cycle) where explanation rules appear in Section 6 and the corresponding
scoring in Section 7 to show the readability of the predictions. We also added a section with
a case study regarding readability of an entire program learned where we show how we can
approach the original rules of a Boolean network using some heuristics.

On the other hand, the new version has introduced a new measure on ”Explainabil-
ity Power” and included additional results based on this new measure. However, I didn’t
understand why this measure which seems to be defined as a similarity measure (using ham-
ming distance) between a given hypothesis and the target concept could be a measure for
explainability ?

The measure we propose assesses the quality of the prediction explanation, in our case
we expect the model to explain the predictions with the original rules of the observed system.
The metric we propose is indeed a similarity measure and can only be used when we know
the perfect hypotheses to be found. Here the goal is to show that given enough observations,
the programs we learn behave like the observed system and also use similar rules to perform
this behavior. We clarified it in the discussions and changed the term “explainability” for
“explanation” when needed to avoid confusion.

The theoretical framework seems to be appropriate, however I haven’t checked the cor-
rectness of all proofs in the paper (and there are more in the appendix). There are some
discussions on the previous version of this work and its limitations. However, the limita-
tion of the proposed approach in this paper should be also discussed in more details. The
experimental results and the connections with the theory should be also clarified further.

82 Tony Ribeiro et al.

We added more discussion about the limitations of the approach regarding readability.
The limitations of the Synchronizer approach are also discussed in the corresponding scala-
bility evaluation in appendix. We clarified Section 6 that makes the link between the theory
and the experiments and add more discussion about the significance of the results.

I think the paper is still very heavy with maths notations and definitions and difficult
to follow though the new examples added in the revised version are helpful.

We clarified some definitions in Section 3 and Section 6.

Please include examples of learned rules (wrt to the specific problem/applications) in
the evaluation section to exemplify the claim that ”In the case where explainability is of
interest, the rules used for the predictions and their weights may be quite simple human
readable candidates for explanations.”.

We added examples of predictions explanation and scoring containing rules learned
during experiments and a case study section about readability of program learned with the
detailed programs.

The significance results and the limitation of the proposed approach (e.g. the new mea-
sure for explainability) in this paper should be discussed in more details and compared with
other relevant work.

We clarified in the discussion that our explanation scoring is a metric of quality of
the explanation not its readability and compared with the paper you suggested [37] about
comprehensiveness measurement of logic programs in related work section.

K.2 reviewer 4

Thank you for your comments, we fixed the typos you found and addressed your claims as
follows.

I find some points in the paper to need more explanation or rephrasing. For example,
Theorem 1 and its preceding explanation and Example 12 are not easy to grasp. I find it
difficult to understand the intuitive meaning of ’pick’.

We tried to clarify explanations of theorem 1 and its example to give more intuition
about the ”pick” function.

I also think that the new section (Section 6) is very brief and dense. Definition 29 is
not readable and there is also no intuition behind the scoring definition. For example, I was
expecting that the weights should add up for the rules with the same head and matching
bodies.

The section has been extended with an example of prediction and explanation with
corresponding detailed description. Definition 29 (now Definition 30) has been re-organised
to be less dense and more clear. We gave more details about the choice in our prediction
heuristics. The intuition behind our choice is that rules with bigger weight are more likely to
be consistent with unobserved transitions, thus the rule(s) with the biggest weight is (are)
the most likely to be part of the real optimal program Other viable heuristics are possible
of course. One could for instance combine all matching rules, for example by computing the
sum or average of their weights like you propose; however, combining rules can be more
noise sensitive: a lot of small-weighted incorrect rules might counter a single high-weighted
rule that would happen to be optimal under all observations. This is why we chose to use a
single-rule heuristics, which also happens to give a unique pair of rules as explanation (why
a target atom might be possible and why it might not) and is easier to compare against
rules of the original model.

I am also not sure if the addition of Section 6 makes the paper stronger. In my opinion
it needs a more careful rewrite.

We tried to improve Section 6. This section is crucial to make predictions with our
method. Subsections 7.2 to 7.4 are dedicated to scoring the predictions and explanations
provided by a WDMVLP. It does not provide much regarding theoretical aspects but is
useful regarding the practical use of the method. We believe it is important to provide a
concrete way to use the model we learn.

page 2, line 25: there is an ellipsis which I am not sure how to interpret.

We replaced “...” by “or another semantics”

Title Suppressed Due to Excessive Length 83

page 11, line 1: ”ensures local minimality”: please clarify the ordering,presumably the
< in Def 1.

We clarified

page 13, example 11, line 30-38: I think the definitions are wrong: Take DS2. It requires
that s’ is an atom (in the set of the heads). I think you should change € with C. Same for
the rest of the definitions.

Indeed, corrected.

page 14, line 30: I would recommend to have a formal definition about which semantics
are called pseudo-idempotent. I am guessing: A dynamical semantics DS is called pseudo-
idempotent iff DS(P) = DS(Po(DS(P))). This is also used in later sections as if there was
a definition about pseudo-idempotency (e.g. Lemma 2)

We added a dedicated definition for a pseudo-idempotent semantics and adapted The-
orem 1 and discussion accordingly.

page 15, example 12, line 27: DS(s, D) should be pick(s,D)?

Corrected.

page 20, definition 15: If I am not mistaken I think that definition can be more simple.
page 20, definition 15: Is this definition coincide with the definition in example 117 The
definition in example 11 seems to me much more simple than the one in def 15. Can you
simplify def 157 T am not sure but I think you can say |spp_7(s) —s'| <=1.

Definition of example 11 is a simpler asynchronous semantics where:

— Feature and target variables correspond, which is not necessarily the case in Def 15 (now
Definition 16 in last version);

— More importantly, in Example 11, the semantics always allows self-transitions (s — s)
while Definition 16 only allows it when no other transition is possible (which corresponds
to what is usually considered as “purely” asynchronous semantics in bioinformatics
literature).

However, it is a matter of choice and your proposition is still (another) valid semantics
which could be called asynchronous. We added more discussion on this matter before this
definition.

page 25, algorithm 2: The definition of the Neg,, q; is confusing. After the response of
the authors I think the definition should be Neg,, a1 := {s|3’, (s,8') € T, v’ € s}

Corrected, although we changed the last s of your definition to s’ (must have been a
typo) and quantified both s and s’.

page 34, def 26, line 11: "such that for all s € S7,RMs,(s,s') €T

Corrected, but we quantified both s and s’ at the transition level.

page 36, line 40: (resp. brute force): Which is the brute force method for weighted
programs? Is it algorithm 4 if we substitute GULA calls with algorithm 17

Yes, what we referred as brute force is Algorithm 1, we clarified it in the discussion
and explained the changes to be done on the brute force algorithm to compute impossibility
rules.

page 39, line 17: ”Because of space limitations”? The current version of the paper is 56
pages.

We removed this statement.

page 41, line 2: ”approximation of the pair”. Please define what an approximation of a
pair of programs is. Needs more careful phrasing especially in a sentence that starts with
”Formally”.

Corrected, we rephrased.

	Introduction
	Logical Modeling of Dynamical Systems
	Dynamical semantics
	GULA
	Learning From Any Dynamical Semantics using Constraints
	Predictions From Partial Observations with Weighted DMVLPs
	Evaluation
	Related Work
	Conclusions
	Appendix: Proofs of Section 2
	Appendix: Proofs of Section 3
	Appendix: Proofs of Section 4
	Appendix: Proofs of Section 5
	Appendix: Proofs of Section 6
	Appendix: detailed pseudo-code of Section 4
	Synchronizer Scalability
	Complete pruned WDMVLP of Section 7.4
	Information About this Paper
	Declarations
	Response to Reviewers

