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LES of the aero-acoustic coupling in acoustic liners containing
multiple cavities

M. Bauerheim* and L. Joly®
ISAE-Supaéro, Toulouse, 31400, France

Acoustic liners are specific devices dedicated to reduce noise pollution of aircraft. They
contained a large number of cavities which are submitted to a turbulent grazing boundary
flow. In some cases, the shear layer can become unstable, and couples with the acoustic
waves propagating in the cavity, leading to a strong vortex-noise interaction. Whereas this
vortex-noise coupling is well known in single-cavity configurations where the boundary layer
can be described by its upstream characteristics, the interaction between a turbulent grazing
flow and multiple cavities is less understood, mainly because the boundary layer may evolve
along the liner. This study investigates numerically the coupling between acoustic waves and
hydrodynamic fluctuations in an academic liner configuration containing multiple deep cavities.
First a single 3D cavity is simulated using LES, revealing a strong vortex-noise coupling at the
frequency of the quarter-wave mode at 750Hz, due to a shear layer instability with a wavelength
shorter than the cavity width. Then, both a 2D and 3D configuration containing 101 cavities are
computed and analyzed. When the acoustic feedback loop is cut off, no vortex-noise coupling
occurs, however large flow structures can be observed in the boundary layer. When switching
on the acoustic feedback loop, the vortex-noise coupling at 750Hz is again present, yet a more
complex noise spectrum is obtained. In particular, lower frequencies are observed, associated
to intermittency due to the desynchronization between cavities. Moreover, it is shown that the
boundary layer evolves along the liner. One key phenomenon is the massive instability of the
turbulent boundary layer, generating large coherent structures with a wavelength larger than
the cavity width in the downstream part of the liner. A scenario is then proposed to explain
this competition between these two phenomena: in the upstream part of the liner, the flow is
dominated by the vortex-noise coupling at 750Hz. Further downstream, however, the shear
layer becomes thicker, and is therefore more robust to transverse acoustic excitation, leaving
the place for the large turbulent flow structures in the boundary layer to dominate the flow
field.

I. Introduction

cousTic liners are devices widely employed to mitigate noise pollution emitted from transport vehicles, as for
Aexample in the air intake of aeronautical engines or in air conditioning systems. They usually consist in one
(SDOF) or two (DDOF) layers containing multiple cavities (e.g. honeycomb structure) combined with a perforated
porous face-sheet. In most engineering applications, a flow is present along the liner, which therefore leads to an
interaction between the external boundary layer and the acoustic liner. For a single cavity, a constructive interference
can occur when the standing acoustic mode in the cavity couples with the hydrodynamic instability of the shear layer
acting as an acoustic dipolar source term. This phenomenon has been intensively investigated experimentally [[1H6],
numerically [[/H9] and theoretically [4}[10,|11]. Whereas this interaction is well understood for a single cavity interacting
with a grazing flow, it is less studied for configurations containing multiple close cavities. Surprisingly, under peculiar
circumstances, sound waves might be amplified by the damping device rather than attenuated. This occurs when
hydrodynamic instabilities are triggered by the low-resistance liner. Early experiments conducted by Meyer and Kurtze
[12], Brandes and Ronneberger [13] and later by Juschke [[14] have revealed that amplification arises in an array of
thin-walled cavities for excitation frequencies close to the resonance frequency of the liner. It suggests that, as for
single-cavity cases, a constructive coupling between the hydrodynamic instability and the standing acoustic mode in the
cavity is generating a vortex-induced noise. In similar configurations, Marx et al. [[15] have carried out PIV and LDV
revealing the presence of spanwise coherent flow structures inside the boundary layer. Recently, stability analysis have
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been performed [16H18]], demonstrating that these large structures are induced by a convective instability due to the
periodicity of the liner, as a consequence of the Floquet-Bloch theorem [[18]]. The amplification of this Bloch unstable
mode appears in a limited range of frequencies, close and slightly above the quarter-wave mode of the cavity. In most of
these studies however, a major difficulty lies in the definition of the relevant baseline flow, since the boundary layer flow
experiences a fast evolution along the liner because of the unstable Bloch mode. for instance, the mean flow is usually
assumed unaltered over the the liner. An other assumption is the cavity-by-cavity approach, which suggests that all
cavities respond in the same manner to the flow disturbances. These assumptions have been relaxed by the use of a more
relevant baseline flow, extracted from an experiment of a simulation, coupled with Linearized Navier-Stokes Equations
(LNSE) computations for the perturbations. For a single cavity configuration, Boujo et al. [9] have shown that such
an approach is able to reproduce correctly both the linear and non-linear response of the unstable shear layer to the
incoming acoustic waves. For liner cases, Xin et al. [19] have obtained the sound transmission coefficients and the
velocity fluctuations in a lined duct similar to [[15] using LNSE and an experimental baseline flow. Accounting for
the spatial evolution of the flow over the liner has lead to a good agreement for the transmission coefficient compared
with experimental measurements, yet near-wall fluctuating velocity fluctuations were still significantly under-predicted.
Similarly, Burak et al. [20] have obtained an instability pattern combining both LNSE and a base flow computed by
RANS. To reduce the computational time, most of these studies employs an equivalent Impedance Boundary Condition
(IBC) as a surrogate model of the complete liner geometry. The IBC Zw) is defined, either in the frequency- or
time-domaine, by

2wy = L9 M

pocod(w)

where Z(w) is the dimensionless acoustic impedance, p is the complex acoustic pressure and 9 is the complex wall-normal
velocity fluctuation. pg and ¢y are the mean density and sound speed.

Most numerical simulations solving the Navier-Stokes equations for acoustic liners, thus accounting for multiple
cavities, rely on imposing an equivalent IBC as a surrogate model for the whole device. The main advantage is
to reduce the computational cost since the flow and acoustic inside the cavities are not actually solved. Note that
imposing an impedance, usually defined and measured in the frequency domaine, in a time-marching CFD solver is not
straightforward. The classical NSCBC approach [21]] can be used to apply the reflection coefficient R = i:—;, at least in
a limited range of frequency. However, imposing a non-null phase /Z requires advanced computational methods, such
as the Time-Domain Impedance Boundary Condition of Tam and Auriault [22]. For instance, Burak et al. [20] solved
the Navier-Stokes equations with slip-walls and the TD-IBC [22]. Recently, Large Eddy Simulations (LES) of a fully
developed turbulent channel flow have been realized [23] with an IBC applied on one wall. Interestingly, they evidence
that a low-resistance, typically R(Z) = 0.01, can trigger hydrodynamic instabilities without external acoustic forcing.
Similarly, Bodart et al. [24] have performed LES of a turbulent separation control via the IBC on a NACA 4412 airfoil
in near-stalled conditions. They show again that a low-resistance IBC is able to modify the boundary layer evolution
along the suction side leading to a delay in the boundary layer separation accompanied with a higher lift coefficient.

While existing studies have already demonstrated that hydrodynamic instabilities can developed over liner, the
physical mechanisms of this phenomenon remains unclear. To further understand the vortex-noise coupling in multiple-
cavity configurations, one may incorporate the cavities within the computational domain to (i) obtain time-resolved data
near the orifices, especially on the turbulent boundary layer development along the liner, and (ii) on the acoustic waves
inside the cavity, in particular to revealed the correlation between cavities. Where as simulations of a turbulent grazing
flow over a cavity has already been realized [7} 25], LES of turbulent 3D configurations containing numerous cavities
are still rare because highly CPU demanding. One example has been conducted recently by Shelekhov et al. [26] where
77 cavities have been simulated in 2D with very deep cavities. In this paper, both a single-cavity and multiple-cavity
configurations will be computed using LES on 2D and 3D domains. The acoustic liner geometry consists in simple deep
cavities with aspect ratio H/W = 3 at a low Mach number. For the liner configurations, 101 2D and 3D cavities have
been incorporated into the computational domain. The detailed numerical setup and the liner geometry are described in
Section[[I] Results on the 3D single-cavity case (Section [[II.A) as well as the 2D and 3D results on the liner containing
101 cavities (Section are provided in Section where both the turbulent boundary layer flow and the acoustic
waves inside the cavity are analyzed. It shows that the hydro-acoustic interaction with successive cavities can trigger
complex hydrodynamic perturbations in the boundary layer, especially low-frequency modes. Moreover, along the
liner, both the nature and characteristics of the boundary layer evolve, and therefore affect back the oscillations in the
limit cycle observed inside the cavity. Finally, it is shown that this effect depends strongly on the dimensionality of the
problem: for a 2D problem, both the hydrodynamic perturbations and the acoustic oscillations are reduced along the
liner, whereas for a 3D case, the amplitude of the oscillations slightly increase along the liner.
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Fig.1 The single (left, a), and multiple (right, b) configurations investigated. For both cases, the tip boundary
condition can be switched from anechoic to reflecting.

I1. Numerical setup

To investigate the turbulent boundary layer interaction with the acoustic liner, 3 configurations are retained. First, the
classical 3D T-junction computed in Boujo et al. [9] is considered (Fig.[I}a), called case C1_3D. It contains a deep cavity
of aspect ratio W/H = 1/3, connected to a main pipe. At the junction, the typical cell size is 300um, leading to y* < 5
at walls. Walls are therefore treated as no-slip and adiabatic. The Vreman model [27] is adopted to account for the small
turbulent scales. A turbulent mean velocity profile is injected at the inlet, characterized by a bulk velocity Uy, = 56m/s
and a power-law profile where the exponent is set to 1/7. Note however that no synthetic turbulence is injected at
the inlet. The associated Reynolds number is R, = Up,W/v ~ 1.5 10°, where v = 1.12 10°m?s~! is the kinematic
viscosity of the air. Knowing that the width-to-depth ratio of the side cavity is Wx /Ly = 1/3, interactions between
the shear layer instability and the quarter-wave mode of the side tube are expected [28]]. The mesh is a multi-block
structured grid composed of 1.2 millions hexa. The maximum cell size is 6x = 1mm which allows acoustic waves to be
resolved on the grid (10 points per wavelength) for frequencies up to fi,qx = co/Néx = 34 kHz. For hydrodynamic
modes which are convected at a lower speed, typically 0.4U}, in the vortex sheet characterized by éx = 0.3mm, the
maximal resolved frequency is fi,qx = 0.4Up/Nox = 7466Hz. The transverse direction is discretized with 30 cells
which represents Wz /Wx = 33% of the cavity width, and periodic conditions are applied. The upstream/downstream
non-reflecting boundary conditions are imposed using the NSCBC formalism developed by Poinsot and Lele [21]. They
are located far from the cavity junction to limit their effect, typically SWx upstream and 9Wx downstream. For the
outlet condition, an additional sponge zone is defined where the numerical scheme is switched to first order, in order to
dissipate flow structures and thus limiting spurious acoustic wave reflections at this boundary. The boundary at the tube
tip (Fig. a) can be set as non-reflecting to obtain a stable simulation (case C/_3D_S). From this case, the tube tip
boundary condition is then imposed as perfectly reflecting, i.e. a classical no-slip wall, to investigate potential unstable
modes (case CI_3D_U). As shown in Section [III} an unstable mode at 750H z grows exponentially in time until a limit
cycle governed by a non-linear saturation [9]. Since the only difference between case C/_3D_S and CI_3D_U is the
acoustic treatment of the side tube, it ensures that the unstable mode is controlled by the vortex-sound coupling in the
side branch.

Then, a configuration containing N. = 101 2D cavities is simulated, called case C101_2D_U (Fig. E]-b). The same
geometry and mesh characteristics are considered, however no turbulence model is employed here because of the 2D
flow topology, and the main channel is now semi-open with a ratio D/Wyx = 35 as shown in Fig.[ll Moreover, a sponge
layer is applied at the bottom wall, and a non-reflecting NSCBC condition is applied. The resulting mesh contains
3.6 millions quads. This configuration allows the computation of the vortex-noise coupling for long time, since the
2D simulation is affordable. Results will be compared qualitatively with the simulations of Shelekhov et al. [26] on a
similar 2D case containing 77 cavities. Finally, a 3D version of the multiple-cavity case will be computed. The same
mesh characteristics are employed, leading to a structured mesh containing 73.5 millions cells. Compared with the
single-cavity case, the transverse direction is limited to Wz /Wx = 20% of the cavity width, and discretized on 20
points, to reduce the computational time. As for the single-cavity configuration, the tip boundary condition will be
switched from non-reflecting (case C101_3D_S) to reflecting (case C101_3D_U), to ensure that the hydrodynamic



instabilities observed are associated with a vortex-noise coupling due to the acoustic liner. The several configurations
are summarized in Tab. [l

Name | 2D/3D | N,

BCtip | BCbottom | H(mm) | Dimm) | Wx/H | Wz/Wx | Neeus (10° |

Ci_3D_S 3D 1 Non-Refl. No-Slip 90 62 1/3 33% 1.2
Cl_3D_U 3D 1 Refl. No-Slip 90 62 1/3 33% 1.2
Cl101_2D_U 2D 101 Refl. Slip 90 1062 1/3 - 3.6
Cl101_3D_S 3D 101 | Non-Refl. Slip 90 1062 1/3 20% 73.5
Cl101_3D_U 3D 101 Refl. Slip 90 1062 1/3 20% 73.5

Table 1 Configurations investigated in this paper, where N. is the number cavities and N..;;; the number of
cells in the mesh.

In this study, the T-junction and the acoustic liners are investigated thanks to Large Eddy Simulation (LES). LES are
performed using the massively parallel finite-volume code CharlesX. It solves the filtered 2D and 3D compressible
Navier-Stokes equations on unstructured meshes, yet here a structured mesh has been employed. This solver has already
been applied to a large variety of problems, raning from shock-turbulence boundary layer interaction, to high-Reynolds
number flows [24}29]. The grid spacing is constant in the whole boundary layer as well as close to the cavity orifice.
CharlesX employs a variable-stage Runge- Kutta time discretization and a grid-adaptive reconstruction strategy, blending
a high-order polynomial interpolation with low-order upwind fluxes [30]. The code is parallelized using the Message
Passing Interface (MPI) protocol and is highly scalable on a large number of processors [31]. In the present study, the
LES solver was run on the ISAE-Supaero’s supercomputer Pando, up to 384 processors for cases C10/_3D_S and
Cl101_3D_U.

III. Results

A. Single cavity whistling

First, the tip boundary condition is set to non-reflecting to ensure the non-reflection of acoustic waves and therefore
removing the acoustic feedback loop in the system. In such a case, the system is stable (Case C/_3D_S,--~ in figure[2)),
where only small pressure fluctuations around 1200H z are observed, with typical amplitudes of 20Pa. The Strouhal
number is S; = fWx /U, = 0.53, typical of Strouhal numbers where the second hydrodynamic mode is dominant (range
[0.5, 0.7]), as shown in Boujo et al. [9] on the same configuration. This case is therefore considered as stable.

Based on case C/_3D_S, the boundary condition is now switched to non-reflecting (case C/_3D_U). A strong
coupling occurs, leading to pressure oscillations at 7S0H z and amplitude +250 Pa in the limit cycle. This results is
validated using the simulation of Boujo et al. [9]] on the same case with another LES 3D compressible code, called
AVBP. From the PSD, both frequencies and amplitudes of the fundamental modes and its harmonics are well reproduced
between the two codes. These oscillations correspond to a self-excited mode where the frequency is associated with
the quarter-wave mode of the tube. The Strouhal number is S; = 0.40, typical of instabilities involving the first
hydrodynamic mode. The higher harmonics are also present with a lower amplitude. The difference between the two
present cases indicates that the acoustic mode is unstable, potentially driven by the vorticity production at the junction.
The limite cycle is perturbed by the other harmonics as well as turbulence. The main scenario retained for the instability
is that the shear layer becoming unstable, hlgh vorticity is produced at the junction cav1ty It yields an unsteady Coriolis
force f!, which can be written fc —p@’ X U, where &’ is the unsteady vorticity, and U is the time- averaged velocity
field. As an unsteady force, it is a dipolar source term for acoustics. Acoustic waves will therefore propagate inside the
cavity, before being reflected back due to the no-slip wall boundary condition at the tip of the cavity. This new wave
propagates towards the shear layer, creating an external forcing at the frequency of the acoustic waves, which can further
destabilize the system in some conditions. This closed loop system becomes stable when the acoustic feedback loop is
turned off. When unstable, the oscillations grow exponentially in the linear regime before reaching a plateau controlled
by non-linearities where the source term balances acoustic losses. More details on these mechanisms in the present
single-cavity configuration can be found in Boujo et al. [9] as well as in the companion paper [32].
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Fig. 2 a) Power spectral density of the pressure fluctuations at the tip cavity, normalized by the reference
pressure 20uPa, for three configurations: C/_3D_U (—), C1_3D_S (--- ), and CI1_3D_U (---- ) computed

by another LES code (AVBP). b)Temporal evolution of the pressure at the cavity tip for both the stable unstable
cases.

B. 2D and 3D acoustic liners

In order to investigate the vortex-noise coupling in an acoustic liner containing multiple cavities, N. = 101 cavities
have been simulated in both 2D and 3D (Tab. [T). The geometry and inlet flow are the same than for the single-cavity
case studied in Section [[IZA]except for the much larger height D of the main channel to avoid large turbulent structures
to interact with the bottom wall, as well as the transverse direction Wz which has been reduced to save computational
time. For the results, the transient part has been discarded before collecting statistics.
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Fig.3 Instantaneous snapshot (middle) of the Q-criterion for case C/0/_3D_S, highlighted by zooms (bottom)
to indicate the evolution of the 3D boundary layer along the liner. The temporal evolution of the fluctuating
pressure at 3 cavity tips (cavity n°1, n°51 and n°101) are also displayed (top).



1. Acoustic liner with non-reflecting boundary conditions (open-loop system)

First, the simulation of the 3D configuration containing 101 cavities has been simulated by applying a non-reflecting
NSCBC boundary condition at all tips of the cavities (C10/_3D_S in Tab.[I). Such a treatment avoids the acoustic
waves to be reflected back to the shear layer, thus preventing the vortex-noise coupling: in other words, it is equivalent
to an open-loop system with a liner containing infinitely-long cavities. The same case in 2D has been simulated, but not
shown here since conclusions are equivalent to the 3D case. More quantitative details on the acoustic and turbulent
fluctuations in 2D, compared with 3D, will be given for the unstable case in Section [[I.B.2] Figure 3| displays the
instantaneous Q-criterion for the case C101_3D_S, as well as the pressure fluctuations at the tip of three cavities: the
cavity n°1 (first cavity at the upstream edge), n°51 (middle of the liner) and n°101 (last cavity at the downstream edge).
As expected, no acoustic pressure fluctuations are observed at the cavity tips, since the acoustic feedback loop as been
opened: no acoustic resonance in the cavities can occur. The small pressure fluctuations observed are therefore due
to the direct noise generated by the grazing turbulent boundary layer, going out of the computational domain since
non-reflecting BCs are applied.

Surprisingly, even if the aero-acoustic system is stable, large turbulent structures are developing along the liner,
as depicted by the Q-criterion in Fig.[3] These structures were not observed in the single-cavity configuration, yet
they emerge very rapidly, after the third cavity. The amplitude of these large hydrodynamic perturbations increases
while being convected downstream, with a roll-up appearing after a dozen of cavities. Its associated wavelength is
approximately Ar ~ 8Wx (12 to 13 structures are seen over 101 cavities of width Wx). Above these structures, an
intense vortical flow is generated inside the cavities. Note that this case has been initialized in two different ways: (i)
using the mean inlet profile everywhere, and (ii) using the unstable case C10!_3D_U, and switching the boundary of
cavities’ tip to non-reflecting. Similar results were obtained for both initializations, ensuring that the physics and the
present conclusions are not dependent on initial perturbations. Consequently, this case is exhibiting a similar behavior
than the 2D simulations performed by Shelekhov et al. [26] for N. = 77 with very deep cavities (their aspect ratio H /Wy
was varied from 20 to 80, whereas here H/W, = 3). In particular, they obtained large turbulent flow structures combined
with intense vortical flows inside cavities, whatever this aspect ratio. It suggests that this phenomenon (i) requires
the presence of multiple cavities, since not observed in cases CI_3D_S and CI_3D_U, (ii) is not directly triggered
by transverse acoustic waves, but (iii) once triggered, might be affected by acoustics inside the cavities (otherwise all
results from Shelekhov et al. [26]would have been identical if not depend on transverse acoustics, characterized by the
ratio H/Wx.)

2. Acoustic liner with reflecting boundary conditions (closed-loop system)

In the previous section, large flow structures have been observed in the boundary layer when the transverse acoustic
feedback loop has been cut off. In this section, the closed-loop system is now investigated by using reflecting boundary
conditions at each cavity’s tip. Other parameters are unchanged. Figures [d|and [5|display an instantaneous snapshot of
the z-component of the vorticity field for the two unstable cases C10/_2D_U and C101_3D_U.

In both case, it reveals that the initial thin boundary layer evolves along the liner: a thicker boundary layer is
obtained upstream. Moreover, large coherent structures in the flow are noticed, even in presence of the 3D turbulence in
case C101_3D_U. In 2D, the velocity fluctuations are only coherent vortices of various scales, where the largest scale
observed is the order of magnitude of the cavity width Wx. The flow is therefore composed of condensat, where small
vorticies can aggregate because of vortex pairing. However on the 3D case, the largest structures are composed of thin
flow structured rolled-up and growing while being convected downstream. The largest size observed is around 4 times
the cavity width. The spatial distance between these structures are denoted Ar, and varied along the liner. For the
first cavities, A7 = Wx (as in a single-cavity congiguration), whereas further downstream Ay ~ SWx — 8Wx (as in the
previous multiple configuration C/01_3D_S). This large structures are similar to ones observed by Dai and Aurégan
[18] in their stability analysis of a a liner containing 30 cavities. Note that since no synthetic turbulence is injected in
the case C101_3D_U, the first cavities experience only a coherent rolled-up of the shear layer. After a few cavities,
the successive interactions of the shear layer with the cavity edge leads to a large vorticity production, either coherent
vorticies in the 2D case, or turbulence in the 3D case. Thus, the unsteady behavior of the shear layer is evolving along
the liner, which is one of the major differences compared with the previous stable case, for which the characteristics of
these flow structures remained constant along the liner. Note also that now, large acoustic fluctuations occur at the
cavity’s tip, in both 2D and 3D, revealing the presence of a vortex-noise coupling. In particular, it suggests here a
competition between (i) the vortex-noise coupling leading to the unstable mode involving the transverse acoustic waves
inside the cavities, as in the single cavity case CI_3D_U, and (ii) the boundary layer instability with large flow structures
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convected downstream, as in the multiple stable case C101_3D_S.
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Such

an evolution along the liner is further detailed in Fig.[6] Indeed, most studies investigating acoustic liners with



multiple cavities assume that the boundary layer does not evolve in the spanwise direction. Thus, the mean axial velocity
profiles at several locations are provided, showing that the boundary layer profile evolves from the 1/7 power-law at the
upstream cavity towards a more complex profile at the downstream part of the liner. One of the key phenomenon is a
thickening of the shear layer. This may be quantified by the boundary layer thickness 6*/H and 6/H:

5 1H = /0( Ux(y/H))d(H) @)
0/H = Lo UXSE/H) (1 - UXgE/H))d(%) (3)

where Ug is the external axial velocity, obtained as the maximum axial velocity in the profile.
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Fig.6 Mean axial velocity profile Uy /U, (left), rms value of the pressure at the cavity tip (middle), and evolution
of the boundary layer thickness 6*/H, 6/H and the shape factor 5 /0 (right) for the case C101_3D_U.

These two boundary layer thickness are plotted in Fig.[6] showing a strong thickening of the shear layer along the
liner. In particular, it is known that the shear layer thickness is one of the main parameters controlling the hydrodynamic
instability: a thicker shear layer being usually more stable. This is one explanation for the reduced amplitude oscillations
observed for downstream cavities: since the shear layer is thicker, the shear layer is less unstable leading to a reduced
vortex-driven acoustic source term, thus limiting the acoustic resonance in the cavity. When this instability is reduced
downstream, the large flow structures can now dominate: this scenario would explain the competition between these two
phenomena, leading to the evolution of both acoustic and hydrodynamic characteristics along the liner. Finally, it is also
shown that the axial velocity profile starts to converge towards a fixed profile for cavitis after Nc > 80, which suggests
long acoustic liner should be investigated to extract the whole behavior of the hydrodynamic-acoustic coupling and
competition. This can be also observed from the shear layer thickness 6*/H and 6/H, which are still increasing after 80
cavities. Yet, one can notice that the shape factor 6* /6 remains almost constant for cavities N, > 20, which suggests
that the nature of the boundary layer is however determined rapidly. In other words:

* 1 < N, < 20: the boundary layer nature is evolving because of the turbulence generation due to the successive

interations with the cavities. Meanwhile, the boundary layer is also being thickened.

* N, > 20: the nature of the boundary layer is now fully determined (i.e. turbulent), and only the shear layer is just

thickened.

In Figs. dand 5] the temporal evolution of the pressure fluctuations at the cavity tip for three locations (marked by
o), corresponding to the cavity n°1, n°51 and n°51, are also displayed. First, in both cases, a strong coupling occurs
since high pressure levels are obtained in the cavity. To demonstrate that the nature of these oscillations are due to the
interactions of the boundary layer with the acoustic waves inside the cavities, the boundary conditions at the cavities
tip have been switched to non-reflecting, thus cutting out the acoustic feedback loop. The results of case C101_3D_S
(Fig. [3) prove that no pressure fluctuations are observed: the amplitude of the oscillations is less than 100Pa for most
cavities. Thus, the same vortex-noise coupling than in the single-cavity configuration occurs. However, while for a
single cavity, the amplitude of oscillations at the limit cycle was 250Pa, here it strongly depends on the cavity location.
For instance, the first cavity experiences a much larger pressure oscillations (around 5000Pa in C101_2D_U, and
3000Pa in C101_3D_U), whereas the maximum amplitude of the oscillations in the last cavity is approximately 1000Pa



in both 2D and 3D. It therefore shows that there is a cumulative effect due to the acoustic waves emitted from the other
cavities: in particular for the first cavity, the acoustic level is almost 10 times the ones observed in the single-cavity case.
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Fig.7 Power spectral density (PSD) of the fluctuating pressure at six cavity tips (n°1,n°21,n°41,n°61,n°81 and
n°101) for the case C101_2D_U. The evolution of the spectrum along the liner is highlighted by superimposition
of the current spectrum (black) with the previous one (red).

Note also that for all cavities, the pressure oscillations have not a steady limit cycle, but the amplitude is varying
in time. Interestingly, for the first cavities, this amplitude modulation is random for the 2D configuration, but is
well-correlated for the 3D, suggesting a coherent source of this modulation (Fig. [5} top left). The low frequency
associated to this modulation is 1/7;,; ~ 50Hz — 60Hz. To further analyze the vortex-noise coupling in acoustic liners,
and identify the key frequencies of the oscillations as well as the amplitude modulation, Power Spectral Density (PSD)
of the pressure fluctuations at the cavity tips are computed for several locations, namely the cavity n°1, n°21, n°41,
n°61, n°81 and n°101. Results are provided in Figs. [7]and 8] for both the 2D and 3D acoustic liners. First, for the 2D
configuration, spectra look similar than the one obtained for one single cavity (Fig.[2). In particular, a peak at 782Hz is
obtained, compared with 743 Hz for case C1_3D_U: this mode corresponds to the quarter wave mode (m = 1) inside the
cavity, which is given theoretically by:

_ (Zm - I)Co
" A(H + 6H)
where m € N is the modal order of the mode, and 6H is a correction accounting for 3D effects on the acoustic
propagation, which can be approximated by §H = 0.4Wx for closed pipes, leading to f; = 833Hz. The modal structure
of this mode can be visualized in Fig. [}, where the rms normalized values of the pressure fluctuations are displayed for
various locations inside the cavity, i.e. for 0 < y/H < 1, where y/H = 0 refers to the junction and y/H = 1 to the cavity
tip. For all cavities, the modal shape is similar to a quarter-wave mode, given analytically (red dashed line in Fig. [6) by :
A (Y (T
pon () =sin (577) ©)
Additionally, the harmonics of this mode are also observed in the spectra, in particular the first harmonics m = 2 at
2514Hz associated with the theoretical frequency f> =~ 2500Hz. It can be noticed that only this fundamental mode and
its harmonics can be observed in the spectra, which suggests that the amplitude modulation observed in the 2D case
is not locked-in with a fixed frequency. Note also that along the liner, the PSD of the pressure inside the cavity does
not vary in term of frequency content: only the level is slightly reduced for cavity located further downstream in the
acoustic liner.

Jm “4)
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Fig.8 Power spectral density (PSD) of the fluctuating pressure at six cavity tips (n°1,n°21,n°41,n°61,n°81 and
n°101) for the case C10/_3D_U. The evolution of the spectrum along the liner is highlighted by superimposition
of the current spectrum (black) with the previous one (red). For the first cavity, the spectrum is compared with
the one from the single-cavity case C/_3D_U.

PSD for the 3D unstable configuration exhibits a similar frequency content than the 2D case (Fig. [8), where again
the quarter-wave mode and its harmonics can be observed. However, the PSD also exhibits additional frequencies,
not observed either in the 2D configuration or in the single-cavity case (they are highlighted in grey in Fig.[8). They
corresponds to low-frequency modes appearing at frequency S9Hz, 204H z and 529Hz. Interestingly, the amplitude
modulation observed in Fig. |5|with a frequency 1/T;nt ~ S0Hz — 60H? is clearly retrieved in the spectrum for almost
all cavity locations. This is one major difference with the 2D case where an amplitude modulation was also present,
but not locked in frequency. Moreover, the PSD for the first cavity exhibits all these low-frequency modes, while the
incoming grazed boundary flow does not contain any unsteadyness (no synthetic turbulence is injected at the inlet, so
the incoming flow for the first cavity is purely steady). It suggests that this modulation comes from the excitation by the
other downstream cavities, and therefore has an acoustic nature. Indeed the hydrodynamic perturbations can only be
convected downstream, so that the first cavity cannot interact with downstream cavity through this type of perturbations,
whereas acoustic waves can travel upstream at a speed Ux — cp < 0.

Finally, the correlation between the hydrodynamic perturbations in the shear layer and the acoustic level in the cavity
is proposed in Fig.[9] for both the 2D (top) and 3D (bottom) cases. To do so, the y-component of the velocity field V/Uj
at the axial cavity location and y/H = —0.1 is considered. Its rms value is shown for various cavity locations, from
the first to the last cavity. For both cases, a rapid growth of the velocity fluctuations is observed for the first 8 cavities.
Then, a different scenario is played depending on the 2D or 3D configuration. In 2-dimension, the velocity fluctuations
decrease all along the liner through an exponential decay. However, in 3-dimension, no decay of the fluctuating velocity
is noticed: the rms valu is constant for all cavities, so that V5! _/Uj, ~ 0.075. The acoustic level at the cavity locations is
obtained as the rms value of the pressure oscillations at the cavity tip, i.e. y/H = 1. Again, two scenarios are depicted
in Fig. 9] (middle). For both cases a strong amplitude is obtained for the first 10 cavities, corresponding to the locations
where a rapid growth of the hydrodynamic perturbations was found. Then, for the case C101_2D_U, the acoustic level
decreasing exponentially, as for the hydrodynamic fluctuations. However, for case C101_3D_U, the acoustic level is
even increasing linearly with the axial distance, suggesting that the acoustics inside the cavity is not only driven by the
hydrodynamic perturbation at the same location (other wise all cavities N, > 10 having the same velocity fluctuation
would have the same acoustic level), but potentially by cumulative effects. To further investigates the evolution of the
hydrodynamic perturbation with the axial location of the cavities, the PSD of the y-component of the velocity field is
carried out for three positions: cavity n°1, n°51 and n°101 (Fig.[9] right). It is shown that for the first cavity, both 2D
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Fig.9 Rms value of the y-component of the velocity in the shear layer V5., /U, (left), rms value of the pressure
at the cavity tips (middle) and PSD of the y-component of the velocity field in the shear layer (right) for both
the 2D (top) and 3D (bottom) cases. § ~ 1.8 is the Boffetta and Musacchio [33] slope correction accounting for

viscous effects.

and 3D case lead to a similar spectrum with a large peak at the resonance frequency close to 800H z, and a rapid decay
of the energy for higher frequencies. Note that for the two configurations, the spectra are not changing significantly
after the 517 cavity, a results also obtained for the shape factor that was contant after the 21" cavity, denoting the
nature of the boundary layer was no more evolving. For further downstream location however, the PSD spectra are
different depending on the 2D or 3D cases. In 2-dimension, a peak is observed at 454Hz, which is much smaller
than the resonance peak close to 750H z-800H z. Note that such a peak at a lower frequency was not obtained in the
acoustic spectra for the 2D case. For frequencies higher than the peak frequency, two different regimes are obtained,
typical of the double cascade encountered in 2D turbulent flows. The first regime corresponds to the energy flux regime
characterized by a slope —5/3. The second regime is associated with the enstrophy flux, and is characterized by a slope
close to —3. Boffetta and Musacchio [33] provide a more detailed analysis of this peculiar regime, concluding that this
larger slope can be (i) either due to a lack of resolution of the small flow structures, and/or (ii) a viscous effect (i.e.
Reynolds effect), since the slope —3 is obtained for a inviscid flow. For the viscosity v used in the present simulation,
the slope correction proposed by Boffetta and Musacchio [33]] is § = 1.8. This value gives a slope —(3 + §) in good
agreement with the present results (=-=- in Fig.[9] top right). In 3-dimension, the PSD spectra are different. First, the
peak is observed at the resonance peak close to 800Hz. Moreover, the low-frequency modes are visible for all cavities,
in particular the first cavity showing a strong peak close to 60Hz. For higher frequencies, the classical Kolmogorov
cascade with a slope —5/3 is obtained. As a conclusion, these results demonstrates that a trace of the 60Hz mode is
visible in the velocity fluctuations inside the shear layer. These perturbations, observed also at the first cavity, could
have been excited by acoustic waves coming from the other cavities (since the incoming boundary layer steady in the
present case, it cannot contribute to this frequency content).

IV. Conclusion
This present study has investigated numerically the interaction between the hydrodynamic perturbations in the
boundary layer and the acoustic waves inside the cavities of an acoustic liner configuration containing 101 cavities.
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After the analysis of a single-cavity case revealing a strong vortex-noise coupling at 750Hz, the complete multiple-cavity
case was computed both in 2D and 3D. When the acoustic feedback loop is cut off, no vortex-noise coupling at 750Hz
is observed. However, large flow structures inside the boundary layer emerge. When switching on the acoustic feedback
loop by using reflecting boundary conditions, a strong vortex-noise coupling is again present, at the same frequency
750H z, for both the 2D and 3D configurations. In the 2D case, no other peculiar modes are observed. However in the
3D case, large hydrodynamic flow structures can be noticed, similar to the ones observed when the acoustic feedback
loop was switched off. Low-frequency modes are also obtained in PSD, both on the acoustic pressure oscillations inside
the cavity and on the hydrodynamic velocity fluctuations inside the shear layer. It therefore demonstrates the presence of
such typical structures, also obtained by LNSE or experiment in the literature. Further work is still required to keep on
analyzing the complex competition occuring between the turbulent boundary layer and the acoustic waves inside the
multiple cavities, in particular some possible synchronization mechanisms. One possible scenario proposed here is that
upstream of the liner, the vortex-noise instability at 750Hz is dominated. However, further downstream, the shear layer
becomes thicker, thus more stable and robust to transverse acoustic waves, leaving the place for the large flow structures
to exist. Large Eddy Simulations of 3D compressible flows have been proved here to be an effective tool to obtained fine
details on both ingredients of this coupling: the hydrodynamic instability of the shear layer and the acoustic waves
inside the cavities.
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