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dUniversité de Toulon, Aix Marseille University, CNRS, LIS, Toulon, France
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Abstract

Recurrence quantification analysis (RQA) is an acknowledged method for

the characterization of experimental time series. We propose a parametric

version of RQA, pRQA, allowing a fast processing of spatial arrays of time

series, once each is modeled by an autoregressive stochastic process. This

method relies on the analytical derivation of asymptotic expressions for five

current RQA measures as a function of the model parameters. By avoiding

the construction of the recurrence plot of the time series, pRQA is com-

putationally efficient. As a proof of principle, we apply pRQA to pattern
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recognition in multichannel electroencephalographic (EEG) data from a pa-

tient with a brain tumor.

Keywords: Recurrence plots, recurrence quantification analysis,

autoregressive stochastic processes, asymptotic recurrence measures,

multichannel data, EEG data.

1. Introduction

Recurrence plots (RPs) were introduced as a graphical approach for the

analysis of chaotic dynamics [1]. A RP is a binary matrix visualizing the

pairs (i, j) of states of a dynamical system, visited at times i and j, that

are closer than a fixed threshold distance ε in the phase space. Various pat-

terns observed in RPs were associated with specific dynamical properties.

For instance, diagonal lines (Fig. 1) are related to the predictability of the

dynamics [2, 3, 4]. Accordingly, RPs generated by white noise contain very

few diagonals while RPs of deterministic or strongly autocorrelated stochas-

tic signals show more frequent and longer diagonals [5]. The analysis of the

vertical lines can reveal dynamical transitions or intermittency [6]. Recur-

rence quantification analysis (RQA) introduced several quantitative measures

based on these patterns [7, 8]. We here explore the application of RQA to

multichannel data i.e. a spatially extended array of univariate data, as multi-

channel electroencephalographic (EEG) data. Our goal is to visualize spatial

variations and patterns in a topographic map of local RQA measures. An

essential preliminary step, which will be our main focus here, is to develop a

computationally efficient RQA for the fast treatment of all the channels.

The development of RQA measures was mainly carried out in the con-
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text of deterministic chaotic dynamics [3, 9, 10]. However, several studies

have shown the relevance of RP features also in the pattern recognition field.

For instance, Junejo et al. exploited the analogy between RPs and the con-

cept of self-similarity matrices in a descriptor for human action recognition

[11]. Unthresholded RPs were exploited to predict the dynamics of nonlinear

and non-stationary systems through trajectory segmentation [12]. In [13],

the frame kernel matrix, which is basically a recurrence matrix involving a

Gaussian kernel, was used for temporal clustering of human motion. Faria

et al. used RPs to represent time series for plant recognition [14]. The

time series classification problem was also addressed using a semi-supervised

approach based on a similarity measure derived from cross RQA [15].

Few studies have specifically addressed the statistical properties of RPs

generated by random processes. Rohde et al. [16] analyzed statistical features

of unthresholded recurrence plots of stationary stochastic processes. Using

the Shannon-McMillan-Breiman theorem, Faure & Lesne [17] related the

statistics of RPs of symbolic sequences to the entropy per unit time, with

application to Markov chains. Grendár et al. [18] related the asymptotic

values of diagonal-based RQA measures to the concept of correlation integral,

with application to Markov chains and autoregressive processes.

RPs and RQA have been successful for the analysis of real-world data

including noisy biological signals [6, 19, 20], e.g. neurophysiological record-

ings [21, 22]. Intrinsic noise is included in the dynamics of many models

of neurophysiological time series among which the most popular are autore-

gressive processes of order p, denoted AR(p). Accordingly, we here study

the statistical behavior for AR(p) of five RQA measures obtained from the
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diagonal and vertical features of their infinite-size RPs (with no embedding).

The results are based on the improvement of a methodology introduced in

our previous studies [23, 24]. By establishing new convergence proofs, we

analytically derive refined expressions for the asymptotic values of the RQA

measures and their dependence on the AR(p) parameters. These results offer

a novel RQA approach consisting in fitting the experimental signal with an

AR(p) and using the theoretical quantification of its RP, that we name para-

metric RQA (pRQA). The method is assessed by simulating an AR(6) model

fitted on a EEG signal and comparing the RQA measures of the simulated

sample paths to their theoretical asymptotic counterparts. We also check

the consistency between experimental (from the original EEG signal and the

derived RP) and pRQA measures.

The central issue of computational time in the RQA of large real-world

data [25, 26, 27] is circumvented in our pRQA method, as it does not require

the construction of the RPs. This gain, illustrated on a simulated signal of

one million points, makes possible to process multichannel data. We bench-

marked pRQA on multichannel EEG recordings with a 64-channel system

from a patient with a brain tumor, that can be straightforwardly visualized.

Computer memory issues in storing RPs for very long time series [27] are

similarly alleviated by pRQA.

2. Recurrence quantification analysis

The recurrence plot of a time series comprising N real values (xi)i=1,...,N

is constructed (with no embedding) by computing the binary function

ωi,j(ε) = Θ(ε− |xi − xj|) for (i, j) ∈ {1, ..., N}2 (1)
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where Θ is the Heaviside function and ε > 0 is some fixed threshold. Thus

ωi,j(ε) = 1 for pairs (xi, xj) closer than the threshold distance ε. The RP is

the two-dimensional plot representing as black dots the locations (i, j), called

recurrence points, where ωi,j(ε) = 1 (Fig. 1). The points of the main diagonal

(i = j) are all recurrence points, and the RP is symmetric with respect to

this line [4, 20]. A current extension is to consider RPs similarly constructed

from embedded trajectories, where the scalar values xi are replaced with

m-dimensional time-delayed vectors [28, 29, 30]. Considering RPs without

embedding is more relevant for the experimental data and stochastic models

investigated below, as it avoids the introduction of two additional parameters

(embedding dimension and time delay), and makes analytical computations

more tractable (see also [3] for a discussion concerning this issue).

Time	(j)	

Time	(i)	

Figure 1: Sketch of a 10× 10 recurrence plot (RP). The black dots are recurrence points,

i.e. locations (i, j) where |xi − xj | 6 ε. The green ellipse circles a diagonal line of length

4, and the red one a vertical line of length 3.

Recurrence quantification analysis provides a set of measures that can
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be extracted from the RP. The recurrence rate REC (also denoted RR) is

the fraction of recurrence points in the RP. The percent determinism, DET ,

is given by the fraction of recurrence points belonging to diagonal lines of

length at least n [4, 20]. A third measure is the mean diagonal line length,

Ld. Denoting Dk(ε) the number of diagonal lines of length exactly k, DET

and Ld can be respectively expressed as

DET (ε, n) =

N∑
k=n

kDk(ε)

N∑
k=1

kDk(ε)

and Ld(ε, n) =

N∑
k=n

kDk(ε)

N∑
k=n

Dk(ε)

(2)

For vertical lines, the analog of DET is called laminarity, LAM , while

the average vertical line length, Lv, is called the trapping time (also denoted

TT ) [4, 6, 20]. Denoting Vk(ε) the number of vertical lines of length exactly

k, LAM and Lv can be respectively expressed as

LAM(ε, n) =

N∑
k=n

kVk(ε)

N∑
k=1

kVk(ε)

and Lv(ε, n) =

N∑
k=n

kVk(ε)

N∑
k=n

Vk(ε)

(3)

Due to the symmetry of the RP, the vertical and horizontal lines are

equivalent for the latter two measures. The main diagonal is not considered

in the computation of these measures. For our results concerning REC,

DET and LAM , we will report numerical values between 0 and 1 and not

percentages as sometimes found in the literature.

3. Theoretical context and definitions

We consider a real-valued, discrete-time, wide-sense stationary, centered

Gaussian stochastic process x , associated with a sequence of random vari-
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ables (xi), i ∈ N∗. We denote σ2 its variance and assume an asymptotically

vanishing autocovariance γ. The asymptotic behavior of γ is dominated by

an exponential decay for stationary AR(p) processes. We will use the same

symbols for the random variables and their realizations. The infinite-size RP

of the process is a random object whose features are characterized by their

occurrence probabilities. For a location (i, j) in the RP, a threshold distance

ε > 0 and a line length k, we denote:

• Pi,j(ε), the occurrence probability of a recurrence point in (i, j).

• P k
i,j(ε) and T ki,j(ε), respectively the probability of occurrence of a diag-

onal and a vertical line of length k, starting from point (i, j).

• Qk
i,j(ε) and Uk

i,j(ε), respectively the probability of occurrence of a diag-

onal and a vertical line of length exactly k, starting from point (i, j).

The RP being symmetric, we will only consider the case i > j. These proba-

bilities will be involved below in the definition of asymptotic RQA measures.

Definition 1. For a threshold ε > 0 and a line length n, the asymptotic

RQA measures REC∞(ε), DET∞(ε, n), L∞d (ε, n), LAM∞(ε, n) and L∞v (ε, n)

are respectively defined by

REC∞(ε) = lim
(i−j)→+∞

Pi,j(ε);

DET∞(ε, n) =

+∞∑
k=n

kQk(ε)

+∞∑
k=1

kQk(ε)

;

L∞d (ε, n) =

+∞∑
k=n

kQk(ε)

+∞∑
k=n

Qk(ε)

, where Qk(ε) = lim
(i−j)→+∞

Qk
i,j(ε);
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LAM∞(ε, n) =

+∞∑
k=n

kUk(ε)

+∞∑
k=1

kUk(ε)

;

L∞v (ε, n) =

+∞∑
k=n

kUk(ε)

+∞∑
k=n

Uk(ε)

, where Uk(ε) = lim
(i−j)→+∞

Uk
i,j(ε).

The next sections present the demonstrations of the convergence of Pi,j, Q
k
i,j

and Uk
i,j when (i − j) → +∞. Before, we show that Qk

i,j and Uk
i,j can be

expressed using the probabilities P k
i,j and T ki,j, respectively.

3.1. Computation of the probability Qk
i,j of occurrence of an exact diagonal

The occurrence of a diagonal of length exactly k starting from point (i, j)

implies that the points (i − 1, j − 1) and (i + k, j + k) are not recurrence

points, whereas no constraint on these points is involved in P k
i,j(ε). With no

further assumption on the process x , we can write

Qk
i,j = [P k

i,j − P k+1
i,j ]− [P k+1

i−1,j−1 − P k+2
i−1,j−1] (4)

The term [P k
i,j − P k+1

i,j ] ensures that the diagonal beyond (i, j) is not longer

than k. The subtraction of [P k+1
i−1,j−1 − P k+2

i−1,j−1] ensures that the diagonal

starts at (i, j).

3.2. Computation of the probability Uk
i,j of occurrence of an exact vertical

By applying the same reasoning to the probability Uk
i,j(ε), we get

Uk
i,j = [T ki,j − T k+1

i,j ]− [T k+1
i,j−1 − T k+2

i,j−1] (5)

This last result rigorously holds only for vertical or horizontal lines which are

not crossing the main diagonal, that is for (i− j) large enough. This is not

a limitation as we are interested in the asymptotic case (i− j)→ +∞.
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Eqs. (4) and (5) ensure that the convergence of the probabilities Qk
i,j and

Uk
i,j can be proven from the convergence of P k

i,j and T ki,j, when (i− j)→ +∞.

4. Convergence of the probabilities Pi,j, P
k
i,j and T k

i,j

We now prove the convergence of Pi,j, P
k
i,j and T ki,j when (i− j)→ +∞,

that was only numerically assessed in our previous studies [23, 24].

4.1. Convergence of the probability Pi,j(ε)

Introducing the random variable yi,j = xi− xj, the quantity Pi,j(ε) is the

probability that |yi,j| 6 ε, it follows that:

Proposition 1. For a given threshold distance ε > 0 and i 6= j, we have

Pi,j(ε) = erf

(
ε√
2αi,j

)
, with αi,j = 2 [σ2 − γ(i− j)].

Proof. For the non-trivial case i 6= j, yi,j is a centered Gaussian random vari-

able with variance αi,j = 〈x2i 〉−2〈xixj〉+〈x2j〉, where 〈.〉 denotes expectation.

Since the process x is wide-sense stationary, we can write

αi,j = 2
[
σ2 − γ(i− j)

]
(6)

Note that γ(−k) = γ(k). The probability that |yi,j| 6 ε can be expressed

Pi,j(ε) =
1√

2παi,j

∫ +ε

−ε
exp

(
− y2

2αi,j

)
dy (7)

Using the error function, we finally obtain the expression

Pi,j(ε) = erf

(
ε√
2αi,j

)
(8)

which proves Proposition 1.
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In this latter expression of Pi,j(ε), the quantity αi,j = 2 [σ2 − γ(i− j)] is the

only term depending on i and j. Introducing the integer q = i− j leads to

Pq(ε) = erf

(
ε√
2αq

)
(9)

with αq = 2 [σ2 − γ(q)].

Proposition 2. Given a threshold distance ε > 0, lim
q→+∞

Pq(ε) = erf
(
ε
2σ

)
.

Proof. Eq. (9) can be written explicitly

Pq(ε) =
2√
π

∫ ε√
2αq

0

e−u
2

du (10)

Using an indicator function on the interval [0, ε√
2αq

], we have

Pq(ε) =
2√
π

∫ +∞

0

1[0, ε√
2αq

]e
−u2du (11)

Introducing the function hq defined by hq(u) = 2√
π
1[0, ε√

2αq
]e
−u2 , we obtain

Pq(ε) =

∫ +∞

0

hq(u)du (12)

Since we consider a stationary process with an asymptotically vanishing au-

tocovariance γ, we have lim
q→+∞

γ(q) = 0, and thus lim
q→+∞

αq = 2σ2. This

proves the pointwise convergence of the sequence (hq)q∈N∗ to the function h

defined by h(u) = 2√
π
1[0, ε

2σ
]e
−u2 , when q → +∞. In addition, the inequal-

ity 0 < hq(u) 6 2√
π
e−u

2
holds for all q ∈ N∗ and u ∈ R+, which proves

that the sequence (hq)q∈N∗ is dominated by an integrable function. Accord-

ingly, Lebesgue’s dominated convergence theorem applies and ensures that

lim
q→+∞

Pq(ε) =
∫ +∞
0

h(u)du = erf
(
ε
2σ

)
, which proves Proposition 2.
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4.2. Convergence of the probability P k
i,j(ε)

Introducing yki,j = (xi−xj, xi+1−xj+1, ..., xi+k−1−xj+k−1)T , P k
i,j(ε) is the

probability to have ‖yki,j‖∞ 6 ε, where ‖.‖∞ is the maximum norm. As a

centered random vector composed of differences of joint normal components

of the process x , yki,j is Gaussian of dimension k [31, 32]. The components

of the (positive definite) covariance matrix Ω(i, j) of yki,j are given by

Ωr,s(i, j) = 〈(xi+r−1 − xj+r−1)(xi+s−1 − xj+s−1)〉 (13)

for (r, s) ∈ {1, 2, ..., k}2. These components can be expressed using the au-

tocovariance γ of the original process x as

Ωr,s(i, j) = 2γ(r − s)− γ(i− j + r − s)− γ(j − i+ r − s) (14)

As Ωr,s(i, j) depends only on the integer q = i− j, a convenient notation is

Ωr,s(q) = 2γ(r − s)− γ(q + r − s)− γ(−q + r − s) (15)

The probability density function (PDF) of yki,j is given by the multivariate

Gaussian function fkq depending only on the difference q = i− j

fkq (y) =
1

(2π)k/2|Ω(q)|1/2
exp

(
−1

2
yTΩ(q)−1y

)
(16)

for y ∈ Rk, and where |Ω(q)| is the determinant of the matrix Ω(q). For a

fixed ε > 0, the probability to have ‖yki,j‖∞ 6 ε similarly depends only on

q = i− j. Denoting M(ε) = {y : y ∈ Rk, ‖y‖∞ 6 ε}, it can be expressed

P k
q (ε) =

∫
M(ε)

fkq (y)dy (17)

Theorem 1. For a threshold ε > 0 and a positive integer k, we have

lim
q→+∞

P k
q (ε) = P k(ε), with P k(ε) =

∫
M(ε)

fk(y)dy, where fk is the pointwise

limit of the sequence of functions (fkq )q∈N∗, when q → +∞.
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Proof. The proof of this result is based on Lebesgue’s dominated convergence

theorem, as the proof of Proposition 2. See Appendix A for details.

4.3. Convergence of the probability T ki,j(ε)

Introducing zki,j = (xi−xj, xi−xj+1, ..., xi−xj+k−1)T , T ki,j(ε) is the prob-

ability to have ‖zki,j‖∞ 6 ε. The components of the covariance matrix Φ(i, j)

of zki,j, for (r, s) ∈ {1, 2, ..., k}2, are given by

Φr,s(i, j) = 〈(xi − xj+r−1)(xi − xj+s−1)〉 (18)

or in terms of the autocovariance γ of the process x

Φr,s(i, j) = γ(0)− γ(i− (j + s− 1))− γ((j + r − 1)− i) + γ(r − s) (19)

These components depend only on the integer q = i− j, according to

Φr,s(q) = γ(0)− γ(q − s+ 1))− γ(−q + r − 1) + γ(r − s) (20)

Similarly, the PDF of zki,j is a multivariate Gaussian function gkq

gkq (z) =
1

(2π)k/2|Φ(q)|1/2
exp

(
−1

2
zTΦ(q)−1z

)
(21)

depending only on q = i − j. For any fixed ε > 0, the probability T ki,j(ε) to

have ‖zki,j‖∞ 6 ε can thus be written

T kq (ε) =

∫
M(ε)

gkq (z)dz (22)

Theorem 2. For a given threshold ε > 0 and a positive integer k, we have

lim
q→+∞

T kq (ε) = T k(ε), with T k(ε) =

∫
M(ε)

gk(z)dz, where gk is the pointwise

limit of the sequence of functions (gkq )q∈N∗, when q → +∞.

Proof. See Appendix B for the proof.
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5. Computation of the asymptotic RQA measures

Using the convergence results of Proposition 2, Theorem 1 and Theorem 2,

we now derive explicit expressions of the asymptotic RQA measures defined

in Section 3. These five measures REC∞, DET∞, L∞d , LAM∞ and L∞v

constitute the basis of parametric RQA (pRQA).

5.1. Asymptotic recurrence rate REC∞

By definition, REC∞(ε) = lim
q→+∞

Pq(ε). Proposition 2 leads to

REC∞(ε) = erf
( ε

2σ

)
(23)

5.2. Asymptotic percent determinism DET∞

The expression of DET∞(ε, n), Definition 1, involves the limit probability

Qk(ε) = lim
q→+∞

Qk
q(ε). From Eq. (4) in Section 3.1 and Theorem 1, it comes

Qk(ε) = P k(ε)− 2P k+1(ε) + P k+2(ε) (24)

Using this expression, we can rewrite the equation defining DET∞(ε, n)

DET∞(ε, n) =

+∞∑
k=n

k[P k(ε)− 2P k+1(ε) + P k+2(ε)]

+∞∑
k=1

k[P k(ε)− 2P k+1(ε) + P k+2(ε)]

(25)

After some algebra, the sums in Eq. 25 can be simplified, leading to

DET∞(ε, n) =
nP n(ε)− (n− 1)P n+1(ε)

P 1(ε)
(26)

where P n(ε) is given in Theorem 1.
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5.3. Asymptotic average diagonal line length L∞d

From Definition 1, the expression of L∞d (ε, n) involves the limit probabil-

ity Qk(ε). As for DET∞(ε, n), we can rewrite

L∞d (ε, n) =

+∞∑
k=n

k[P k(ε)− 2P k+1(ε) + P k+2(ε)]

+∞∑
k=n

P k(ε)− 2P k+1(ε) + P k+2(ε)

(27)

After simplification, this expression leads to

L∞d (ε, n) =
nP n(ε)− (n− 1)P n+1(ε)

P n(ε)− P n+1(ε)
(28)

5.4. Asymptotic laminarity LAM∞

In the same line, using Definition 1, Eq. (5) (see Section 3.2) and Theorem

2, the probability Uk(ε) = lim
q→+∞

Uk
q (ε) can be written

Uk(ε) = T k(ε)− 2T k+1(ε) + T k+2(ε) (29)

Similar computations to those conducted in Section 5.2 yield

LAM∞(ε, n) =
nT n(ε)− (n− 1)T n+1(ε)

T 1(ε)
(30)

where T n(ε) is given by Theorem 2.

5.5. Asymptotic trapping time L∞v

According to Definition 1 and using a similar procedure, we get the fol-

lowing expression for the average vertical line length

L∞v (ε, n) =
nT n(ε)− (n− 1)T n+1(ε)

T n(ε)− T n+1(ε)
(31)
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6. Application to EEG data

Here, we present the application of pRQA to a single EEG signal and

multichannel EEG data collected from a right-handed 33-year-old man with

a 116.8 cm3 low-grade glioma (grade II) located in the right frontal lobe and

extending to anterior temporal regions. These data were collected during a

study which complied with the World Medical Association’s Code of Ethics

(the 1964 Declaration of Helsinki and its amendments).

6.1. Recording procedure and pre-processing

Resting state EEG data were collected prior to awake neurosurgery. The

patient was asked to rest with eyes closed for at least 1 minute while signals

were recorded at 64 scalp sites using a 10-20 system (BioSemi ActiveTwo).

Horizontal eye movements were recorded with electrodes placed on the outer

left and right canthi. Vertical eye movements were recorded with an elec-

trode placed under the right eye. Two additional electrodes were placed on

the left and right mastoids (A1, A2). The BioSemi system’s common mode

sense electrode served as the reference electrode. Electrophysiological signals

were digitized at a 2048 Hz sampling rate and acquired with ActiView soft-

ware. Classical EEG pre-processing techniques were then applied using the

EEGLAB toolbox [33, 34] for Matlab (The MathWorks, Inc., Natick, MA,

USA). The data were re-referenced against the mean of electrodes A1 and

A2 and filtered using a highpass FIR filter with a cut-off frequency of 1 Hz

to remove low-frequency drifts. Additional independent component analy-

sis was performed using EEGLAB’s binica routine in order to correct for

eye-movement artefacts. Each correction underwent visual inspection. The
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resulting 64 signals were down-sampled by a rate of 4 and a 10, 000-points

time series was selected for each channel. These time series were also stan-

dardized i.e. centered and normalized by their standard deviation.

6.2. Application of pRQA to a single EEG signal and numerical simulations

of the corresponding autoregressive model

In this section, we compute the asymptotic RQA measures of an AR(6)

model fitting a single-channel EEG corresponding to electrode F2 in the right

frontal lobe. We compare these pRQA results to both the standard empiri-

cal RQA measures for an ensemble of simulated sample paths generated from

the AR(6) model and the RQA measures obtained directly from the experi-

mental signal, shown in Fig. 2 together with its RP. We underline that AR

processes are very efficient and accurate stochastic models for the description

and prediction of EEG data [35, 36, 37].

The recorded EEG time series was 10, 000-points long and standardized. The

order of the AR model was obtained through the estimation of the partial

autocorrelation function [38]. The AR modeling was performed using the

least-squares approach minimizing the sum of squared forward-prediction

errors. The alternative Burg’s lattice method [31] was also used, and the

corresponding numerical results, not shown here, were almost identical to

those obtained through the least-squares approach. We obtained the follow-

ing model

xk =
6∑
r=1

arxk−r + ηk (32)

with a1 = 0.8509, a2 = 0.0773, a3 = 0.1089, a4 = −0.0487, a5 = −0.0459,

a6 = −0.0918 and a centered white Gaussian noise η with variance 0.1781.
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Figure 2: A standardized experimental EEG signal (a) and its RP (b), constructed with

ε = 0.4 (with no embedding). The corresponding recurrence rate is 0.2247.

To compute the pRQA measures DET∞(ε, n), L∞d (ε, n), LAM∞(ε, n)

and L∞v (ε, n), we used a threshold ε = 0.4 and a minimal line length n ranging

from 2 to 10. To compute the probabilities P n(ε) and T n(ε) involved in

their analytical expressions, we used approximations of multivariate normal

probabilities based on the standard algorithm proposed by Genz [39] (see

Appendix C). The involved covariance matrices Ω and Φ (see Appendix A

and B) were obtained from the AR(6) model using the Yule-Walker equations
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[31, 38].

To estimate the corresponding empirical RQA measures, for both the

single-channel experimental signal and 30 sample paths 10, 000-points long

generated by the AR(6) model, Eq. (32), we used the same threshold ε = 0.4.

This value was selected to ensure a sufficiently large recurrence rate and a

robust estimation of measures based on diagonal and vertical lines for noisy

data such as EEG [40, 41]. The values obtained were compared to the pRQA

measures for minimal line lengths n ranging from 2 to 10. For the simulated

time series, we computed the mean and standard deviation of the five RQA

measures over the 30 realizations of the AR(6) process. These computations

were performed using the Cross Recurrence Plot Toolbox [42] developed by

N. Marwan [6].

The value of the asymptotic recurrence rateREC∞, obtained from Eq. (23)

using the standard deviation derived from the AR(6) model was 0.2230. The

empirical REC value for the experimental time series was 0.2247. For the

30 simulated signals, we obtained a value of 0.2223 ± 0.0043 (mean ± std.

dev.). Fig. 3 compares the values of the four other pRQA measures and

their counterparts for the simulated and recorded time series, as functions

of the minimal line length n. For the 30 simulated series, we observe a low

variability of the RQA measures around their mean value (plotted in blue).

When n varies, the maximal value of the coefficient of variation is 5.91%,

0.43%, 10.94% and 1.62% for DET , Ld, LAM and Lv measures, respec-

tively. These results indicate a very good consistency between the values

obtained with pRQA and standard RQA, for both the real signal and the

simulation. For smaller values ε = 0.2 and ε = 0.1, respectively correspond-
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ing to asymptotic REC values of 0.1126 and 0.0564, the consistency persists,

as expected. Slight deviations are observed between asymptotic and exper-

imental measures for the vertical-based ones LAM and Lv, for the largest

values of n (not shown) due to poorer estimations of standard RQA. Our

pRQA method can be seen as an alternative to estimate the measures in

such cases, provided that the AR modeling is accurate. We recall that the

threshold distance ε should be adapted to the investigated data and thus

chosen to obtain a large enough REC value.
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Figure 3: RQA measures (DET (a), Ld (b), LAM (c) and Lv (d)) obtained from a recorded

EEG signal with a threshold ε = 0.4 and values of the minimal line length n ranging from

2 to 10 . The red points are the pRQA values. The blue ones display the mean of the

RQA measures obtained from 30 simulated paths. The black points correspond to the

RQA measures of the original EEG signal. For visual clarity, a slight horizontal shift was

applied on the red and black points (all having actually integer abscissas).
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6.3. Application of pRQA to multichannel EEG data and comparison to stan-

dard RQA

The application of pRQA provided asymptotic RQA measures for each

of the 64 EEG sequences. We used the same order (p = 6) for their AR

modeling, the same threshold ε = 0.4 and a minimal line length n = 5. As

a comparison, the standard RQA was applied to the 64 spatially distributed

sequences using the same values for ε and n. The selected ε led to pRQA

REC values with a mean 0.2227 ± 0.0001 over the 64 signals and a mean

REC value for their experimental counterparts of 0.2258±0.0039. The good

correlation between the outcomes of the two approaches is shown by the scat-

ter plots, Fig. 4, of the four RQA measures versus their pRQA counterparts

for the 64 EEG signals. The correlation coefficients are 0.9723, 0.9667, 0.9556

and 0.9369 for DET , Ld, LAM and Lv, respectively. Small systematic bi-

ases are globally observed through a slight overestimation of RQA measures

values with respect to their pRQA asymptotic counterparts. This could be

explained by finite-size effects and artifacts corrupting the signals. We ob-

served that for smaller values ε = 0.2 and 0.1, the good correlations hold,

except for the measure Lv at large values of n (not shown). Unlike standard

RQA, the numerical implementation of pRQA is not sensitive to ε.

Fig. 5 shows the topographic scalp maps obtained from DET , Ld, LAM

and Lv computed using pRQA or RQA. This figure confirms the good con-

sistency between pRQA and RQA measures. The four measures, for both

pRQA and RQA, are maximal in the region of the glioma. Computationally,

pRQA outperforms standard RQA, as it does not require the construction of

potentially very large-size RPs. This method thus allows the visualization of
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multichannel EEG data routinely, and possibly in real time.
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Figure 4: Scatter plot of standard RQA versus pRQA measures DET (a), Ld (b), LAM

(c) and Lv (d) for the spatially distributed 64 EEG signals. A threshold ε = 0.4 and a

minimal line length n = 5 were used for the computation of these measures.

The computation time performance of pRQA was quantified by estimat-

ing the runtime of processing the 64 EEG signals (each comprising 10, 000

values), for minimal line lengths ranging from n = 2 to 10, with ε = 0.4.

The run time included fitting the data with AR(6) models (for which the

computation time was approximately 4 s) and calculating the five pRQA

measures. We also performed tests with a single simulated signal consisting

of one million samples, generated by the AR(6) model given by Eq. (32).

These experiments were conducted with Matlab software through a system

consisting of an Intel i7-4770 CPU running at up to 3.4 GHz, with 16 Go

memory. The runtimes, respectively denoted t1 and t2, are reported in Table
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Figure 5: Topographic scalp maps obtained from DET , Ld, LAM and Lv measures using

standard RQA and pRQA. Same parameters (ε = 0.4 and n = 5) as for Fig. 4.

1. The processing of 64 EEG sequences of 10, 000 points is thus achieved in

9.15 to 34.78 s.

We also performed pRQA for a one million-points simulated signal. The

corresponding runtime t2 (see Table 1) ranges from 3.95 s to 4.42 s, from

n = 2 to 10. A software package (PyRQA), using multiple hardware ar-

chitectures (GPUs) in a parallel manner, was recently proposed to improve

the computational efficiency of RQA of large time series [27]. The authors

reported a runtime of 68.94 s for processing a signal consisting of over one

million values, including the computation of 10 RQA measures (with an

embedding dimension of 2). A comparison with our approach is not fully

relevant because we consider RPs with no embedding and focus on the five

most common RQA measures. However, the far shorter runtimes needed in

our approach (see Table 1) underline the benefit of avoiding RP construction.
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Table 1: Runtime of pRQA processing for line lengths n = 2 to 10 applied to 64 EEG

signals, each of 10, 000-points (t1) and a single simulated million-points signal (t2).

Line length n t1 (s) t2 (s)

2 9.15 3.95

3 12.01 4.03

4 15.30 4.04

5 18.31 4.13

6 21.33 4.12

7 24.77 4.23

8 28.28 4.24

9 31.71 4.33

10 34.78 4.42

7. Discussion

Our pRQA approach is grounded in a theoretical framework previously

introduced [23, 24] for the study of generic stationary Gaussian and fractional

Gaussian noise processes. We now proved the convergence of the probabilities

Pi,j, Q
k
i,j and Uk

i,j when (i−j)→ +∞, which yields the analytical expressions

of five asymptotic RQA measures for stationary AR(p) processes. Despite

the fact that AR(p) processes are fully described by their PDFs and their

correlations (or power spectra), our results show that RQA provides a set of

measures, with a direct concrete meaning, for discriminating these signals.

AR models are not designed to explain nonlinear biological mechanisms but

they are very efficient to provide a robust statistical representation of the
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time series. Our work fully fits into this framework: we consider recurrence

plots as random objects and we analyze the statistical properties of their

patterns. Through the outcomes of pRQA, we are able to quantify some

properties of the underlying dynamics such as predictability, which are not

explicitly available from the AR model itself.

A technical alternative can be considered in the application to real data.

Indeed, the limit probabilities P n and T n, respectively given by Theorem 1

and Theorem 2, are related to the autocovariance γ of the original process

(see Eqs. A.1, A.2,B.1, B.3). The knowledge of this autocovariance is thus

sufficient to compute pRQA measures, with no need to fully determine the

AR(p) model. We presented above the results obtained by fitting an AR(p)

model to EEG data and estimating the autocovariance from the model pa-

rameters using the Yule-Walker relations. Using the alternative method, we

could compute the pRQA measures from the autocovariance directly esti-

mated from the data. The results (not presented here) were almost identical

to those depicted in Figs. 4 and 5. The maximal relative errors over the 64

EEG processed signals between the measures obtained through the two ap-

proaches were 0.59%, 0.05%, 0.44% and 0.08% for DET , Ld, LAM and Lv,

respectively. This can be expected considering the length of the time series

(10,000 points) and the limited number of autocovariance values involved in

the computation of P n and T n. A conceptual advantage of the complete

determination of the AR(p) model is to provide a way to quantify the sensi-

tivity of pRQA results to the model parameters. In addition, the influence of

the variance of the error term in the model can be investigated. Our interest

in AR(p) processes was also motivated by the investigation of the statistical
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properties of the RPs of EEG data. However, pRQA approach is not limited

to these processes since the conditions for its applicability are the knowledge

of the PDF of the process, its stationarity, and an asymptotically vanishing

autocovariance. In this case, the probabilities involved in the expressions of

pRQA measures can be computed and all theoretical results hold.

The proposed approach also overcomes computer memory issues for the

processing of very long time series, when the recurrence matrices cannot be

stored in the computing system memory [27]. Consequently, since pRQA

does not require the construction of these matrices, it can be very helpful

to estimate RQA measures for very large time series all the more since the

quality of AR(p) model estimation increases with the data size.

Another strategy has been proposed to reduce the computation time and

memory usage for large data [25, 26]. It involves the numerical approximation

of RQA measures based on diagonal or vertical lines (DET , Ld and LAM)

using the concepts of pairwise proximities and stationary states, respectively.

In contrast to our methodology, this approach is not probabilistic, hence less

appropriate for real-word noisy data best modeled by stochastic processes.

The scatter plots in Fig. 4 confirm the very good correlation between

the two sets of measures and also reveal that the standard RQA measures

moderately overestimate the corresponding asymptotic values. These devia-

tions could be explained by finite-size effects, artifacts corrupting the signals

and the presence of features that cannot be captured by AR models, such as

deviations from stationarity and Gaussianity. This issue should be investi-

gated further. Our results indicate that pRQA can be used for investigating

multichannel EEG data with recurrence plots measures (see Fig. 5). These
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findings are promising for the investigation of neurophysiological data, for

which AR(p) modeling has been extensively used in the last decades for

analyses based on different techniques such as spectral estimation or causal-

ity quantifications [35, 36, 37].

Our findings concern RPs constructed without embedding for technical

reasons (see Section 2). An extension can be easily envisioned in the case

of measures based on diagonals and for RPs constructed with an arbitrary

embedding dimension m with a time delay τ = 1. Indeed, the statistics of

diagonal lines of length n in a RP constructed with an embedding dimension

m can be derived from the embedding-free RP diagonal lines of length (n+

m− 1) [23, 43]. For the general case, further research should be performed.

8. Conclusion

We presented pRQA, a parametric RQA version based on modeling ex-

perimental data with AR(p) processes. We analytically derived asymptotic

expressions of five main RQA measures, quantitatively characterizing diag-

onal and vertical structures of the infinite-size RP of these processes. Ap-

plication to multichannel EEG data demonstrated the relevance of pRQA

and its computational efficiency. The extension of our methodology to other

RQA measures is possible when the involved probabilities can be computed.

This is the case for the Shannon entropy of the frequency distribution of the

diagonal line lengths and the ε-entropy of the investigated process as derived

from RPs [4, 17, 20, 23]. From an applied point of view, the use of pRQA for

pattern visualization in multichannel EEG data should be investigated sys-

tematically to confirm on a larger cohort the present proof of principle. The
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pRQA performance in terms of computation time and memory requirement is

also promising, with applications to real-time processing and classification of

brain activity patterns for brain computer interfaces or emotion recognition

[22]. Another application could be the characterization of spatio-temporal

patterns in electromyographic signals [44].
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Appendix A. Proof of Theorem 1

Proof. Proving Theorem 1 is equivalent to demonstrate that

lim
q→+∞

∫
M(ε)

fkq (y)dy =

∫
M(ε)

[
lim

q→+∞
fkq (y)

]
dy

This would follow from Lebesgue’s dominated convergence theorem provided

that (i) the sequence (fkq )q∈N∗ converges pointwise to a function fk; (ii) the

functions fkq are dominated by an integrable function F k in the sense that

∀y ∈ M(ε), |fkq (y)| 6 F k(y) for any positive integer q. Eq. (16) shows

that the integer q is only involved in the covariance matrix Ω(q) given by

Eq. (15). Given our assumption of a vanishing asymptotic value of the au-

tocovariance function γ, the limit matrix Ω = lim
q→+∞

Ω(q) is well-defined and
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its components, for (r, s) ∈ {1, 2, ..., k}2, are given by

Ωr,s = lim
q→+∞

Ωr,s(q) = 2γ(r − s) (A.1)

This symmetric matrix depends on k through its size only. Eq. (A.1) shows

that Ω is positive definite so that |Ω| > 0. The determinant and inverse

operations being continuous, the limits of |Ω(q)| and Ω(q)−1 when q → +∞

are given by |Ω| and Ω−1, respectively. Hence for all k, ε > 0, and y ∈M(ε)

lim
q→+∞

fkq (y) = fk(y) =
1

(2π)k/2|Ω|1/2
exp

(
−1

2
yTΩ−1y

)
(A.2)

which proves condition (i). For condition (ii), we analyze the quantity

yTΩ(q)−1y for y ∈ M(ε). The inverse Ω(q)−1 is also positive definite and

thus yTΩ(q)−1y defines a positive definite quadratic form. Hence

yTΩ(q)−1y > λq,1‖y‖2 (A.3)

for y ∈ M(ε), where λq,1 > 0 is the smallest eigenvalue (among k) of the

matrix Ω(q)−1. Being continuously dependent on the matrix, the eigenvalues

of Ω(q)−1 converge to the eigenvalues of the limit matrix Ω−1, when q → +∞.

Thus, there exists an eigenvalue λ1 > 0 of Ω−1 such that lim
q→+∞

λq,1 = λ1.

This convergence implies that

∀η > 0, ∃q1 ∈ N∗,∀q ∈ N∗, q > q1 ⇒ |λq,1 − λ1| < η (A.4)

Choosing η = λ1
2

, and combining the inequality (A.3) with the result (A.4),

we get for all q > q1 that yTΩ(q)−1y > λ1
2
‖y‖2. It follows that, for all q > q1

exp

(
−1

2
yTΩ(q)−1y

)
6 exp

(
−λ1

4
‖y‖2

)
(A.5)
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This result provides an upper bound on the exponential part of the functions

fkq (see Eq. (16)). The convergence of the determinant |Ω(q)| to |Ω| when

q → +∞ ensures that there exists a positive integer q2 such that⇒ |Ω(q)| >
|Ω|
2

for all q ≥ q2, and consequently

1

(2π)k/2|Ω(q)|1/2
6

1

(2π)k/2
(
|Ω|
2

)1/2 (A.6)

According to Eq. (16) and combining the inequalities (A.5) and (A.6), we

conclude that for q > max(q1, q2), we have 0 6 fkq (y) 6 F k(y) for all y ∈

M(ε), where the integrable function F k is defined by

F k(y) =
1

(2π)k/2
(
|Ω|
2

)1/2 exp

(
−λ1

4
‖y‖2

)
(A.7)

This proves (ii) and completes the proof of Theorem 1.

Appendix B. Proof of Theorem 2

Proof. The proof, based on Lebesgue’s dominated convergence theorem, is

very similar to the proof of Theorem 1. The only difference lies in the ex-

pression of the covariance matrix Φ(q). From Eq. (20) and the asymptotic

vanishing of γ, the limit matrix Φ = lim
q→+∞

Φ(q) is well-defined with compo-

nents

Φr,s = lim
q→+∞

Φr,s(q) = σ2 + γ(r − s) (B.1)

for (r, s) ∈ {1, 2, ..., k}2. As Ω, the matrix Φ depends on k only through its

size k × k. Introducing the notations J for the k-dimensional square matrix

with all components equal to 1 and Γ, whose components are γ(r − s), the

limit matrix can be written as Φ = σ2J + Γ, where all matrices depend on k
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through their size. To transpose the demonstration of Theorem 1, we must

prove that the symmetric matrix Φ is positive definite. Noting that J = 11T

where 1 is the k-dimensional column vector with all components equal to 1,

we have for any real k-dimensional column vector z

zTΦz = σ2zT
(
11T

)
z + zTΓz = σ2

(
1Tz

)T (
1Tz

)
+ zTΓz (B.2)

The product
(
1Tz

)
being a scalar, the quantity

(
1Tz

)T (
1Tz

)
is a positive

number vanishing if z = 0. Since Γ is positive definite, we conclude that

Φ is also positive definite. This result leads to the expression of the limit

probability T k(ε) = lim
q→+∞

T kq (ε), that is, T k(ε) =

∫
M(ε)

gk(z)dz, with

gk(z) =
1

(2π)k/2|Φ|1/2
exp

(
−1

2
zTΦ−1z

)
(B.3)

which completes the demonstration of Theorem 2.

Appendix C. Computation of multivariate normal probabilities

We briefly present here the method used to numerically compute the

multivariate probabilities involved in the expressions of P n(ε) and T n(ε) (see

Theorems 1 and 2), as no closed-form expression is available for n ≥ 2.

This approach, which was proposed by Genz [39] (see also the appendix of

[23]), is based on a stochastic algorithm using a reformulation of the original

integral as an integral over the unit hyper-cube after some transformations

requiring a Cholesky decomposition of the covariance matrix involved in the

multivariate PDF. We illustrate here the method for the case of probability

P n(ε).
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Let CCT be the Cholesky decomposition of the covariance matrix Ω. If (ck,l)

are the components of matrix C, according to [39], we get

P n(ε) = (v1 − u1)
∫ 1

0

(v2 − u2)· · ·
∫ 1

0

(vn − un)

∫ 1

0

dw (C.1)

where w = (w1, w2, ..., wn)T , u1 = Ψ
(
a1
c1,1

)
, v1 = Ψ

(
b1
c1,1

)
, with

Ψ(y) = 1√
2π

∫ y
−∞ exp(−1

2
θ2)dθ, and for k = 2, ..., n

uk = Ψ

(
1

ck,k

[
ak −

k−1∑
l=1

ck,lΨ
−1(ul + wl(vl − ul))

])
(C.2)

vk = Ψ

(
1

ck,k

[
bk −

k−1∑
l=1

ck,lΨ
−1(ul + wl(vl − ul))

])
(C.3)

A classical Monte-Carlo algorithm is used to compute the integral given by

expression (C.1) [39]. For our application, we set ak = −ε and bk = ε. We

used the source code provided by A. Genz.
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