J. Alibert, P. Seppecher, and F. Dell'isola, Truss modular beams with deformation energy depending on higher displacement gradients, Math Mech Solids, vol.8, issue.1, pp.51-73, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00497327

N. Auffray, F. Isola, V. A. Eremeyev, A. Madeo, and G. Rosi, Analytical continuum mechanics la Hamilton-Piola least action principle for second gradient continua and capillary fluids, Math Mech Solids, vol.20, issue.4, pp.375-417, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00836085

C. Banfi, A. Marzocchi, and A. Musesti, On the principle of virtual powers in continuum mechanics, Ricerche di Matematica, vol.55, pp.299-310, 2006.

J. L. Bleustein, A note on the boundary conditions of Toupin's strain-gradient theory, Int J Solids Struct, vol.3, issue.6, pp.1053-1057, 1967.

P. Casal, La capillarité interne, Cahier du groupe Français de rhéologie, vol.3, pp.31-37, 1961.

P. Casal, La théorie du second gradient et la capillarité. C R Acad Sci Paris, t. 274, Série A, pp.1571-1574, 1972.

A. L. Cauchy, De la pression ou tension dans un corps solide, Available in Gallica.bnf.fr, vol.2, p.4256, 1827.

C. Chesnais, C. Boutin, and S. Hans, Effects of the local resonance on the wave propagation in periodic frame structures: generalized Newtonian mechanics, J Acoust Soc Am, vol.132, issue.4, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00853842

C. Chesnais, C. Boutin, and C. Hans, Wave propagation and non-local effects in periodic frame materials: generalized continuum mechanics, Math Mech Solids, vol.20, issue.8, pp.929-958, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00967960

F. Collin, R. Chambon, and R. Charlier, A finite element method for poro mechanical modelling of geotechnical problems using local second gradient models, Int J Numer Methods Eng, vol.65, pp.1749-1772, 2006.

E. Cosserat and F. Cosserat, Note sur la théorie de l'action euclidienne, 1908.

E. Cosserat and F. Cosserat, Sur la Théorie des Corps Déformables, 1909.

O. Coussy, . Poromechanics, C. Wiley, M. Degiovanni, A. Marzocchi et al., Edgeforce densities and second-order powers, Annali di Matematica, vol.185, pp.81-103, 2004.

F. Dell'isola and P. Seppecher, The relationship between edge contact forces, double force and interstitial working allowed by the principle of virtual power, Comptes Rendus de l'Academie de Sciences -Serie IIb: Mecanique, Physique, Chimie, Astronomie, vol.321, pp.303-308, 1995.

F. Dell'isola and P. Seppecher, Edge contact forces and quasi-balanced power, Meccanica, vol.32, pp.33-52, 1997.

F. Dell'isola and P. Seppecher, By Prof. Podio Guidugli and Prof. Vianello and some related papers on higher gradient theories, Continuum Mech Thermodyn, vol.22, issue.5, pp.473-478, 2010.

F. Dell'isola, G. Sciarra, and S. Vidoli, Generalized Hooke's law for isotropic second gradient materials, Proc R Soc Lond Ser A Math Phys Eng Sci, vol.465, pp.2177-2196, 2009.

F. Dell'isola, P. Seppecher, and A. Madeo, How contact interactions may depend on the shape of Cauchy cuts in N-th gradient continua: approach á la D'Alembert, ZAMP), vol.63, issue.6, pp.1119-1141, 2012.

F. Dell'isola, A. Madeo, and L. Placidi, Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua, ZAMM J Appl Math Mech/Zeitschrift fur Angewandte Mathematik und Mechanik, vol.92, issue.1, pp.52-71, 2012.

F. Dell'isola, G. Maier, U. Perego, U. Andreaus, R. Esposito et al., Cham dell'Isola F, Seppecher P, Della Corte A (2015a) The postulations á la D'Alembert and á la Cauchy for higher gradient continuum theories are equivalent: a review of existing results, Proceedings of the Royal Society A, vol.38, 2014.

F. Dell'isola, U. Andreaus, and L. Placidi, At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola, Mech Math Solids, vol.20, issue.8, pp.887-928, 2015.

F. Dell'isola, D. Steigmann, D. Corte, and A. , Synthesis of fibrous complex structures: designing microstructure to deliver targeted macroscale response, Appl Mech Rev, vol.67, issue.6, pp.60804-060804, 2016.

F. Dell'isola, A. Madeo, and P. Seppecher, Cauchy tetrahedron argument applied to higher contact interactions, Arch Ration Mech Anal, vol.219, issue.3, pp.1305-1341, 2016.

D. Piero and G. , Non-classical continua, pseudobalance, and the law of action and reaction, Math Mech Complex Syst, vol.2, issue.1, p.7110, 2014.

J. E. Dunn, Interstitial working and a non classical continuum thermodynamics, Serrin J (ed) New perspectives in thermodynamics, pp.187-222, 1986.

J. E. Dunn and J. Serrin, On the thermomechanics of interstitial working, Arch Ration Mech Anal, vol.88, issue.2, pp.95-133, 1985.

S. Forest, Mechanics of generalized continua: construction by homogenization, J Phys IV Fr, vol.8, pp.4-39, 1998.

S. Forest, K. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner et al., Generalized continua, Encyclopedia of materials: science and technology updates, pp.1-7, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01518777

S. Forest, Milieux continus généralisés et matériaux hétéérogènes. Les Presses de l'Ecole des Mines de Paris, pp.2-911762, 2006.

S. Forest, M. Amestoy, S. Cantournet, G. Damamme, S. Kruch et al., Mécanique des Milieux Continus, 2005.

R. Fosdick, On the principle of virtual power for arbitrary parts of a body, Continuum Mech Thermodyn, vol.23, pp.483-489, 2011.

E. Fried and M. E. Gurtin, Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small length scales, Arch Ration Mech Anal, vol.182, pp.513-554, 2006.

P. Germain, Sur l'application de la méthode des puissances virtuelles en mécanique des milieux continus, C R Acad Sci Paris Série A-B, vol.274, pp.1051-1055, 1972.

P. Germain, La méthode des puissances virtuelles en mécanique des milieux continus. Première partie. Théorie du second gradient, J Mécanique, vol.12, pp.235-274, 1973.

P. Germain, Cours de Mècanique des Milieux Continus, tome I, 1973.

P. Germain, The method of virtual power in continuum mechanics. Part 2: microstructure, SIAM J Appl Math, vol.25, pp.556-575, 1973.

A. E. Green and R. S. Rivlin, Multipolar continuum mechanics. Arch Ration Mech Anal, vol.17, pp.113-147, 1964.

A. E. Green and R. S. Rivlin, Simple force and stress multipoles, Arch Ration Mech Anal, vol.16, pp.325-353, 1964.

A. E. Green and R. S. Rivlin, On Cauchy's equations of motion, Z Angew Math Phys (ZAMP), vol.15, pp.290-292, 1964.

A. E. Green and R. S. Rivlin, Multipolar continuum mechanics: functional theory I, Proc R Soc Ser A, vol.284, pp.303-324, 1965.

A. Marzocchi and A. Musesti, Balanced virtual powers in continuum mechanics, Meccanica, vol.38, pp.369-389, 2003.

R. D. Mindlin, Influence of couple-stresses on stress concentrations main features of cosserat theory are reviewed by lecturer and some recent solutions of the equations, for cases of stress concentration around small holes in elastic solids, are described, Exp Mech, vol.3, issue.1, pp.1-7, 1962.

R. D. Mindlin, Complex representation of displacements and stresses in plane strain with couple-stresses, Appl Theory Funct Contin Mech (Proc Int Symp, Tbilisi), vol I, pp.256-259, 1963.

R. D. Mindlin, Second gradient of strain and surface tension in linear elasticity, Int J Solids Struct, vol.1, issue.4, pp.417-438, 1965.

R. D. Mindlin, Stress functions for a Cosserat continuum, Int J Solids Struct, vol.1, issue.3, pp.265-271, 1965.

R. D. Mindlin, On the equations of elastic materials with micro-structure, Int J Solids Struct, vol.1, issue.1, pp.73-78, 1965.

R. D. Mindlin and N. N. Eshel, On first strain-gradient theories in linear elasticity, Int J Solids Struct, vol.4, issue.1, pp.109-124, 1968.

R. D. Mindlin and H. F. Tiersten, Effects of couplestresses in linear elasticity, Arch Ration Mech Anal, vol.11, pp.415-448, 1962.

W. Noll, The foundations of classical mechanics in the light of recent advances in continuum mechanics, Proceeding of the Berkeley symposium on the axiomatic method, pp.226-281, 1959.

W. Noll and E. G. Virga, On edge interactions and surface tension, Arch Ration Mech Anal, vol.111, issue.1, pp.1-31, 1990.

C. Pideri and P. Seppecher, A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium, Contin Mech Thermodyn, vol.9, issue.5, pp.241-257, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00527291

G. Piola, Sull'applicazione de' principj della meccanica analitica del Lagrange ai principali problemi. Memoria di Gabrio Piola presentata al concorso del premio e coronata dall'I.R. Istituto di Scienze, ecc. nella solennita del giorno 4 ottobre 1824, 1825.

G. Piola, Memoria intorno alle equazioni fondamentali del movimento di corpi qualsivogliono considerati secondo la naturale loro forma e costituzione, Modena, 1846.

C. Polizzotto, Strain-gradient elastic-plastic material models and assessment of the higher order boundary conditions, Eur J Mech A Solids, vol.26, issue.2, pp.189-211, 2007.

J. Salençon, Editions Ecole Polytechnique Schwartz L (1973) Théorie des Distributions, Mécanique des milieux continus: concepts généraux, vol.44, pp.6607-6629, 2005.

P. Seppecher, J. J. Alibert, and F. Dell'isola, Linear elastic trusses leading to continua with exotic mechanical, J Phys Conf Ser, vol.319, issue.1, p.12018, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00630098

D. J. Steigmann and A. C. Pipkin, Equilibrium of elastic nets, Philos Trans R Soc Lond A: Math Phys Eng Sci, vol.335, pp.419-454, 1639.

R. A. Toupin, Elastic materials with couple-stresses, Arch Rat Mech Anal, vol.11, pp.385-414, 1962.
URL : https://hal.archives-ouvertes.fr/hal-00852443

R. A. Toupin, Theories of elasticity with couplestress, Arch Ration Mech Anal, vol.17, pp.85-112, 1964.
URL : https://hal.archives-ouvertes.fr/hal-00853382

N. Triantafyllidis and E. C. Aifantis, A gradient approach to localization of deformation. I. Hyperelastic materials, J Elast, vol.16, issue.3, pp.225-237, 1986.

C. Truesdell and W. Noll, The non-linear field theories of mechanics, Fliigge's Encyclopedia of Physics, pp.1-662, 1965.

C. Truesdell and R. A. Toupin, The classical field theories. Handbuch der Physik III/1, 1960.