I. Alhossen, F. Baudoin, F. Bugarin, S. Segonds, and G. Teyssèdre, Use of Sobol indexes for efficient parameter estimation in a charge transport model, IEEE T. Dielect. El. In, vol.26, issue.2, pp.584-592, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02084279

M. Arnst and J. Ponthot, An overview of nonintrusive characterization, propagation, and sensitivity analysis of uncertainties in computational mechanics, Int. J. Uncertain. Quan, vol.4, issue.5, pp.387-421, 2014.

E. Borgonovo, A new uncertainty importance measure, Reliab. Eng. Syst. Safe, vol.92, issue.6, pp.771-784, 2007.

K. Bulthuis, M. Arnst, S. Sun, and F. Pattyn, Uncertainty quantification of the multi-centennial response of the Antarctic ice sheet to climate change. The Cryosphere, vol.13, pp.1349-1380, 2019.

K. Burrage, I. Lenane, and G. Lythe, Numerical methods for second-order stochastic differential equations, SIAM J. Sci. Comput, vol.29, issue.1, pp.245-264, 2007.

G. Chastaing, F. Gamboa, and C. Prieur, Generalized Hoeffding-Sobol decomposition for dependent variables -application to sensitivity analysis, Electron. J. Stat, vol.6, pp.2420-2448, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00649404

G. Chastaing, F. Gamboa, and C. Prieur, Generalized Sobol sensitivity indices for dependent variables: numerical methods, J. Stat. Comput. Sim, vol.85, issue.7, pp.1306-1333, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00801628

R. Coifman, S. Lafon, A. Lee, M. Maggioni, B. Nadler et al., Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps, P. Natl. Acad. Sci. USA, vol.102, issue.21, pp.7426-7431, 2005.

T. Crestaux, O. L. Maître, and J. Martinez, Polynomial chaos expansion for sensitivity analysis, Reliab. Eng. Syst. Safe, vol.94, issue.7, pp.1161-1172, 2009.

S. D. Veiga, Global sensitivity analysis with dependence measures, J. Stat. Comput. Sim, vol.85, issue.7, pp.1283-1305, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00903283

S. , D. Veiga, and F. Gamboa, Efficient estimation of sensitivity indices, J. Nonparametr. Stat, vol.25, issue.3, pp.573-595, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00266110

C. Farhat, R. Tezaur, T. Chapman, P. Avery, and C. Soize, A feasible probabilistic learning method for model-form uncertainty in vibration analysis, AIAA J, vol.57, issue.1

R. Ghanem and C. Soize, Probabilistic nonconvex constrained optimization with fixed number of function evaluations, Int. J. Numer. Meth. Eng, vol.113, issue.4, pp.719-741, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01576263

R. Ghanem, D. Higdon, and H. Owhadi, Handbook of Uncertainty Quantification, 2017.

R. Ghanem, C. Soize, and C. Thimmisetty, Optimal well-placement using probabilistic learning. Data-Enabled Discovery and Applications, vol.2, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01703255

R. Ghanem, C. Soize, C. Safta, X. Huan, G. Lacaze et al., Design optimization of a scramjet under uncertainty using probabilistic learning on manifolds, J. Comput. Phys, vol.399, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02341912

N. Golledge, D. Kowalewski, T. Naish, R. Levy, C. Fogwill et al., The multi-millennial Antarctic commitment to future sea-level rise, Nature, vol.526, pp.421-425, 2015.

E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2002.

J. Hart and P. Gremaud, An approximation theoretic perspective of Sobol' indices with dependent variables, Int. J. Uncertain. Quan, vol.8, issue.6, pp.483-493, 2018.

A. Janon, T. Klein, A. Lagnoux, M. Nodet, and C. Prieur, Asymptotic normality and efficiency of two Sobol index estimators, ESAIM-Probab. Stat, vol.18, pp.342-364, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00665048

A. Janon, M. Nodet, and C. Prieur, Uncertainties assessment in global sensitivity indices estimation from metamodels, Int. J. Uncertain. Quan, vol.4, issue.1, pp.21-36, 2014.
URL : https://hal.archives-ouvertes.fr/inria-00567977

M. Lamboni, Global sensitivity analysis: An efficient numerical method for approximating the total sensitivity index, Int. J. Uncertain. Quan, vol.6, issue.1, pp.1-17, 2016.

B. Laurent, Efficient estimation of integral functionals of a density, The Annals of Statistics, vol.24, issue.2, pp.659-681, 1996.

O. , L. Maître, and O. Knio, Spectral Methods for Uncertainty Quantification with Applications to Computational Fluid Dynamics, 2010.

X. Luo, Z. Lu, and X. Xu, Non-parametric kernel estimation for the ANOVA decomposition and sensitivity analysis, Reliab. Eng. Syst. Safe, vol.130, pp.140-148, 2014.

J. Nossent, P. Elsen, and W. Bauwens, Sobol' sensitivity analysis of a complex environmental model, Environ. Modell. Softw, vol.26, issue.12, pp.1515-1525, 2011.

J. Oakley and A. O'hagan, Probabilistic sensitivity analysis of complex models: a Bayesian approach, J. Roy. Stat. Soc. B, vol.66, issue.3, pp.751-769, 2004.

A. Owen, Variance components and generalized Sobol' indices, SIAM-ASA J. Uncertain, vol.1, issue.1, pp.19-41, 2013.

F. Pattyn, Sea-level response to melting of Antarctic ice shelves on multi-centennial timescales with the fast Elementary Thermomechanical Ice Sheet model (f.ETISh v1.0). The Cryosphere, vol.11, pp.1851-1878, 2017.

E. Qian, B. Peherstorfer, D. O'malley, V. Vesselinov, and K. Willcox, Multifidelity Monte Carlo estimation of variance and sensitivity indices, SIAM-ASA J. Uncertain, vol.6, issue.2, pp.683-706, 2018.

R. Rosolem, H. Gupta, W. Shuttleworth, X. Zeng, and L. Gonçalves, A fully multiple-criteria implementation of the Sobol' method for parameter sensitivity analysis, J. Geophys. Res, vol.117, issue.D7, pp.1-18, 2012.

A. Saltelli, Making best use of model evaluations to compute sensitivity indices, Comput. Phys. Commun, vol.145, issue.2, pp.280-297, 2002.

D. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization, 2015.

I. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math. Comput. Simulat, vol.55, issue.1-3, pp.271-280, 2001.

C. Soize, Steady-state solution of Fokker-Planck equation in higher dimension, Probabilist. Eng. Mech, vol.3, issue.4, pp.196-206, 1988.
URL : https://hal.archives-ouvertes.fr/hal-00770322

C. Soize, The Fokker-Planck Equation for Stochastic Dynamical Systems and its Explicit Steady State Solutions, 1994.
URL : https://hal.archives-ouvertes.fr/hal-00770411

C. Soize, Construction of probability distributions in high dimension using the maximum entropy principle. applications to stochastic processes, random fields and random matrices, Int. J. Numer. Meth. Eng, vol.76, issue.10, pp.1583-1611, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00684517

C. Soize, Polynomial chaos expansion of a multimodal random vector, SIAM-ASA J. Uncertain, vol.3, issue.1, pp.34-60, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01105959

C. Soize, Uncertainty Quantification. An Accelerated Course with Advanced Applications in Computational Engineering, 2017.
URL : https://hal.archives-ouvertes.fr/hal-00826082

C. Soize and C. Farhat, Probabilistic learning for modeling and quantifying model-form uncertainties in nonlinear computational mechanics, Int. J. Numer. Meth. Eng, vol.117, pp.819-843, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02052833

C. Soize and R. Ghanem, Data-driven probability concentration and sampling on manifold, J. Comput. Phys, vol.321, pp.242-258, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01325279

C. Soize and R. Ghanem, Physics-constrained non-Gaussian probabilistic learning on manifolds, Int. J. Numer. Meth. Eng, vol.121, issue.1, pp.110-145
URL : https://hal.archives-ouvertes.fr/hal-02341991

C. Soize and R. Ghanem, Probabilistic learning on manifolds, pp.1-41, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02530133

C. Soize, R. Ghanem, C. Safta, X. Huan, Z. Vane et al., Entropy-based closure for probabilistic learning on manifolds, J. Comput. Phys, vol.388, pp.528-533, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02100250

B. Sudret, Global sensitivity analysis using polynomial chaos expansions, Reliab. Eng. Syst. Safe, vol.93, issue.7, pp.964-979, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01432217

S. Tarantola and T. Mara, Variance-based sensitivity indices of computer models with dependent inputs: The Fourier amplitude sensitivity test, Int. J. Uncertain. Quan, vol.7, issue.6, pp.511-523, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01568006