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Abstract—Legacy and novel network services are expected to architecture on top of which a decision-making framework
be migrated and designed to be deployed in fully virtualized could be developed and deployed at large scale, for instance
environments. Starting with 5G, NFV becomes a formally re- 4 golve routing or resource allocation optimization problems.
quired brick in the speci cations, for services integrated within . . o .
the infrastructure provider networks. This evolution leads to With the ad\{er_wt of network V|rtu_allzat|0n technologies, the
dep|0yment of virtual resources Virtual-Machine (VM)_based’ reference bUIldIng blocks for 5G |nfrastructures, and beyond,
container-based and/or server-less platforms, all calling for a are today clearly specied and adopted. On the one hand,
deep virtualization of infrastructure components. Such a network the relative maturity of NFV-SDN systems has focused the
softwarization also unleashes further logical network virtualiza- industry speci cation efforts on the interfaces required for
tion, easing multi-layered, multi-actor and multi-access services, . . .
so as to be able to ful ll high availability, security, privacy and network aummaf['on' some_how meeting the expecta_tlon of
resilience requirements. However, the derived increased compo- former autonomic networking research, but now with an
nents heterogeneity makes the detection and the characterization operational environment ready for their integration. The Zero-
of anomalies dif cult, hence the relationship between anomaly Touch Network and Service Management and Experiential

detection and corresponding recon guration of the NFV stack 1o Natworked Intelligence groups at ETSI are addressing this
mitigate anomalies. In this article we propose an unsupervised

machine-learning data-driven approach based on Long-Short- need and recently produced a set OT speci cations [3; 4].
Term-Memory (LSTM) autoencoders to detect and characterize On the other hand, network automation platforms recently
anomalies in virtualized networking services. With a radiography emerged, notably the Open Network Automation Platform,
visualization, this approach can spoF and_describe deviatior_ls from chosen by many operators as a reference platform for network
nominal parameter values of any virtualized network service by 5, ;1omation [5; 6; 7]. More recently than for the core segment,
means ofal_lghtwelght and iterative mean-squared_reconstructlon the radio one is undergoing an increasing softwarization, with
error analysis of LSTM-based autoencoders. We implement and . '
validate the proposed methodology through experimental tests New platforms as the Open Radio Access Network one [8; 9].
on a vIMS proof-of-concept deployed using Kubernetes. These activities are opening the way to orchestration decisions
for which there is a critical need of automation algorithms and
methods to (i) determining how the state of a fully virtualized
Network automation is a vibrant research area targeting taerd programmable infrastructure, composed of a variety of
deployment of novel solutions in operational networks in theoftware modules, should be modeled, (i) inferred in runtime,
coming few years. Even though initial network automatioand (iii) to support automated network orchestration.
research actually dates back up to a few decades ago, tru€his paper presents a rst brick in this direction and
network automation fueled by arti cial intelligence (Al) andproposes a methodology to detect anomalies in the rather
machine learning (ML) has only recently become a tangiblenidenti ed network state space composed of a very large
possibility for operational services, thanks in particular toumber of software components. These components can be
novel technologies related to Software De ned Networkingharacterized of a large number of metrics, changing in num-
(SDN) - with the speci cation of open con guration interfacesber and behavior in time, that can be correlated or not to each
- and Network Functions Virtualization (NFV) - breaking theother, depending on network conditions. This unde ned and
coupling between network functions and the hosting hardwakarying environment motivates us to propose a unsupervised
In the past few decades, the community has addressmdchine learning framework for anomaly detection of NFV
challenges related to how to let distributed sets of agenitdgrastructures. We run tests in a virtualized IP Multimedia
self-organize, automatically discover themselves the netwdskibsystem (IMS) architecture, the legacy framework used for
states, and operate necessary recon guration of the networkice-over-IP traf ¢ routing and processing. Simulated call
This was for the focus of many research projects in the ardstributions and used datasets are available at [42].
of autonomic networks [1]. We can also cite standardization In Section I, we draw the background on anomaly detection
activities related to network automation, as for instance tle softwarized networks. We present our framework, named
ones related to the autonomic signaling protocols amo®&YRROCA (SYstem Radiography and ROot Cause Analysis),
distributed decision-making agents [2]. Nonetheless, these pim-Section Ill, and discuss experimental results in Section IV.
neering research activities did lack a stable reference technifektion V concludes the paper.

I. INTRODUCTION



Il. BACKGROUND and fueling network (re-)orchestration logic. We also propose a

o _ . complete and compact representation to correlate faults among
Anomaly detection in SDN/NFV systems is partlcularlyfayers easing root cause analysis

challqulng due to the reasons Yve summarize as follows: We summarize in the following the state of the art in
Multi-layered nature of softwarized network®n one hand, neqyork resilience, anomaly detection and machine learning

SD_N s_eparates the control-plane from the forwa_rdmg pl_armat inspired our methodology.

which implies a three-layered architecture grouping devices,

controllers and service abstractioni elements [10]. On the ojcl)gr Network Resilience

hand, NFV concerns the abstraction of the network function N ) N ) _

itself from the physical hardware. This approach requires a.Resmence is the ability of the.network to prowde. and main-

concrete NFV architecture composed of the NFV Infrastru@in an acceptable level of service in presence of impairments

ture (NFVI) layer, the VNF layer, and the network servicsuch as faults or attacks. Its modeling is challenging because

layer [11] . The 5G architecture is multi-layered by desigdf'Stéad of being quanti able with one or few metrics, re-

its speci cation formally requires a NFV system, which carfii€nce is rather a system-wide property that depends on many

be completed for ease of deployment by SDN controller@ctors. Authors in [13] deem that complexity in modelling

Detecting anomalies and determining how they propaga{f’es'“ence come from the varied natur_e of provided services,

across the different logical layers become challenging task§® numerous layers and corresponding parameters, and the
New faults and vulnerabilitiesin SDN/NFV environment, impairments threatening network stability.

the decoupling of the physical hardware from the network Nevertheless, attempts to model and de ne network re-

function opens the way for new types of faults that did nailience do exist. Authors in [14] formalize the notion of

exist in legacy hardware-based networks or had not a igsilience for IP networks using three factors: dropped IP
important impact to the communication infrastructure. Nef@f ¢ Q0S (Quality of Service) degradation, and network

vulnerabilites can be grouped in hypervisor-speci c, yNfecovery time under several attack scenarios; however, the

application-speci ¢, operating system vulnerabilities and bugSiudy only covers the IP layer and its security, leaving out
SDN controller bugs and novel SDN protocol vulnerabilitied!on-intentional scenarios impacting resilience. Authors in [15]

Furthermore, in both SDN and NFV architecture, as wetle ne resilience as the largest number of component failures
as 10T access and radio access architecture, we obsenAid do not impede the network to operate under normal
centralization of control, orchestration and con guration funcconditions. However, this de nition does not allow to describe

tions that makes them critical points of failure and vectors GW faults at a given layer or component propagate across
large-scale attacks [12]. Detecting system-level faults due lgyers, which is essential in multi-layer architectures such

overload, attacks and changing network and service conditighs SPN/NFV. Authors in [16] propose a way to measure
is therefore more important than in legacy systems. resilience based on the capability of the network to get back

Flexible network provisioning and recon gurationSDN to a normal state after a disruptive event. This de nition is

and NFV open the door to an elastic usage of the compu@ther more appropriate to quantify hOW. fast a system Is ab!e
storage and networking resource stacks, such as for instafic et baCk to a normal state aftgr a @srupyon. mdegd, this
scaling of VNFs to overcome faults at physical substra 8rmulat|on focuses the recoverability dimension of resilience.
to continue delivering the expected service. The decision-AqthorS in [18; 19; 20] model netv\(ork resilience with a
making related to the provisioning and recon guration oE“U't!"al(ef approach, refe”'”g 'to moplle ad-hoc networks as
already-provisioned service is therefore challenged in that tﬁgpllcatlon case. Network resilience is assessed as a function

dependencies of the delivered services from the underlyig the network deviation between two network states caused

resources continuously evolve (e.g., network and system st ¥eanoma|ies. Identifying the states and their borders is a chal-

changes) demanding an intelligent management of netwéﬂ?ge that may be tackled using anomaly detection techniques.
and system resources in a real-time or near-real-time fashi
These factors depict a complex framework that, different
from legacy single-operator, single-vendor, single-integrator, Machine learning techniques, and in particular unsupervised
and/or single-editor environment - or an environment lockezhes, are appropriate for the detection and characterization of
by few stakeholders having direct control of all componentomalies in heterogeneous softwarized infrastructure environ-
- does evolve as a function of the conditions of a large setents, where labeled data are not available. Authors in [21]
of software components, edited and managed by a large a@wtvocate for leveraging SDN principles to conceive scalable
varying set of stakeholders. The high heterogeneity derivimgomaly detection mechanisms. They developed a two-stage
from such a rich environment does call for a data-driven framanomaly detection algorithm based on feature selection and
work rather than a model-based one, to scale with the multifkensity Peak-Based Clustering to handle large-scale, high
dimensions of the virtualized infrastructure components. Vimensional, and unlabeled network data.
propose a possible learning framework for detecting anomalieOn the other hand, authors in [22] propose an anomaly
at each level composing virtualized infrastructure architedetection algorithm based on a probabilistic approach using
tures, hence spotting anomalies, with the goal of triggeringixture models to target data leading to a few anomalies.

n. _ . .
%/. Machine learning for anomaly detection



independently of the others, RNNs apply a recurrent relation
at every time step to process a sequence in order to take
into account past inputs, like a sort of memory. Neverthe-
less, many studies as [26] report that RNNs suffer from the
vanish gradient problem, preventing long-term relations to be
learned. To solve this problem, authors in [27] propose the
use of Long Short Term (LSTM) RNN that enforce constant
error ow through the internal states of special units called
memory cells by employing multiplicative gates to learn long
term sequence correlations and to model complex multivariate
sequences [28]. In the context of network trafc and load

The application domain concerns intrusion detection in UNIerecasting, LSTMs demonstrated to outperform non-ML and
machines based on the analysis of process system calls. Other deep neural networks (DNN) approaches [29; 30; 31; 32]
Authors in [23] propose an unsupervised learning approach!n [33] authors propose a mechanism to scale 5G core
based on correlation variation algorithm to predict perfofésources by anticipating traf ¢ load changes through LSTM
mance anomalies in VNF service chaining. It infers the servié®d DNN forecasting. They show that LSTM-based detection
health status by collecting metrics from multiple elements #§ More accurate than DNN one, thanks to the ability of LSTM

Fig. 1. Autoencoder (AE) basic architecture

the VNF chain ana|yzing their correlation across time. to store data pattern without degl’adation over time. S|m||ar|y,
authors in [34] propose to use CNN to extract traf ¢ patterns
C. Deep LSTM-based Autoencoders used by an LSTM NN to forecast traf ¢ load. Simulations

An autoencoder (AE) is a multi-layer Neural Network (NN)show that it can allow reducing by 50% the duration of the
composed of two blocks, an encoder and the decoder. Tth&ning phase of the LSTM NN. LSTM NNs have been used
typical architecture of an AE is shown in Fig. 1. to adapt network baseline estimation to changes in cloud

The encoder reduces the dimensions of the input t®@ environments as well, as described in [35]. Authors propose
dimensions (latent-space), while the decoder takes tlsos¢o create a network baseline through LSTM AEs, adapting

dimensions to reconstruct back the input. it when metric trend changes. They show that the proposed
The AE is trained to learn how to reproduce the input vectaidaptation improves prediction accuracy by 22%.
X of n features2 R" by optimization of: Our contribution: Motivated by the efciency of LSTM

approaches in anomaly detection for time-series in general,
and the recent advances in the eld of 5G systems from
wheref : 1 2 R" 7' Y 2 R® with s < n is the function preliminary applications in networks [35; 33], in this paper we
representing the encoder, amd Y 2 R® 7! Z 2 R" document our efforts towards the de nition of an LSTM-based
is the function representing the decoder. Thus, during thetoencoder approach to detect and characterize anomalies
learning phase, weights and biases are tuned to minimiresoftwarized network environments. Starting from metrics
the reconstruction error on Composing several encoder anatollected at both physical and virtual (container) levels, we
decoder layers to build a Deep Autoencoder (DAE) allow toropose a methodology to detect anomalies and make a
effectively represent complex distributions ovef24]. radiography, a complete and compact view, of the running state

AEs can be used to detect anomalies as the decoder blotla virtualized network service. Through our methodology it
compresses the data input dimensionality. Assuming that ingsithot only possible to make a radiography of a whole service,
data has certain correlation level [23], it can be embeddedt also of their inner components (e.g. containers or VMs)
into a lower dimensional subspace, where anomalous samgiesce supporting root cause analysis to explain the network
are perceived signi cantly different which makes the recorstate deviation.
struction error increase signi cantly. AEs are considered as
auto-supervised NN, as the target value is the input itself, !l SYRROCA (SYSTEM RADIOGRAPHY AND ROOT
so no labels are required in the training phase: for our CAUSE ANALYSIS) FRAMEWORK
targeted virtualized network infrastructure environment, this We describe the SYRROCA framework to make real-time
factor streamlines learning as labelling anomalies is at leaatliographies of a virtualized network function service. Fig-
dif cult, if not sometimes impossible, due to the great extenire 2 draws a simpli ed diagram of the proposed framework,
of faults and threats that can affect NFV environments.  we develop in the following.

When analyzing multivariate time series, each variable tem- )
poral dynamic and temporal variables cross-dependencies ArePata collection and preprocessing
paramount and must be caught to effectively grasp knowledgeNo matter which monitoring software is used to extract
from the input data. When it comes to dealing with timenetrics from a virtualized system, metrics can be grouped
series problems accounting for the temporal dimension, Recimr-Counters and Gauges (terms commonly used in recent
rent Neural Network (RNN) are generally used [25]. Unlik@pensource platforms) types. Gauges category groups metrics
Feed Forward (FF) NNs where each element is processgdose numerical value arbitrarily go up and down, like for

f;g minimizgl g f(l)j Q)



SR e . without injected anomalies, so that they can learn an abstract
i Training phase Trining models | — representation of what is considered to be a nominal state.

%l Memory l It is worth noting that both the quality and the extent of the
group 1 de| . .
: 5 data used for the training phase greatly affect the extracted
) R
group : mpdel +.|

representation. In fact, for the training, it is important to
provide to the AEs anomaly-free data and cover a suf cient
Cpu : 7 H Anomaly | | é{out‘
group ; ol i.l An:I“;:is

Feature

prep ing

& selection

Resource-
type metrics
grouping

period of time to provide enough insights on the dynamics
to be learnt. In section IV we detail how we produced and
dimensioned this training dataset for the vIMS use-case. As
anticipated in the previous section, we split the training dataset
e : in several sub-datasets each of them fed to a dedicated deep
_ _ _:_ o —J: AE, whose architecture is detailed in section IV. While not
............................................................................................... trictly required for the following analysis, per-group dataset
lit makes AEs architecture design, training process and root

example memory consumption or CPU temperature. Countef&use gnalysis easier. Indeed, learning on _all features at once,
like metrics instead represent monotonically increasing valuddeoretically make the AE able to learn the inter-dependencies
such as number of sent/received packets, or total CPU ti,lﬂ%twee_n all the _features,_ but it does also increase the input
used by a process. Thereby, concerning anomaly detectiorf{ieénsions making learning slow and hard.

such a heterogeneous dataset composed of both metric tygessystem radiography and root cause analysis

we must rst' pre-process thosg collepted raw data to treat'Reconstruction capabilities of a trained AE can be evaluated
In counters-like metrics we retain the increment between th

time steps, as those can be characterized by their incremelgltsmeans of the Mean Squared Error (MSE), de ned as:
rather than the cumulative values. In gauge-like metrics we
keep their real value. We propose then a divide-and-conquer
approach that groups the features by resource type. In our
experiments, we use CPU, network, memory and le systerthere X9(t) = [x3(t);:5%3(t)] 2 R" and X9(t) =
related metrics but additional sources of metrics can be safbiy(t); ::;xg(t)] 2 R" are respectively the output and the
added to the framework with no restriction. In this way, wéput of the AE working on groum. According to state of
can focus the analysis on a speci ¢ type of resource to get #i¢ art, anomalies are recognized as those samples whose
insight on the type of anomaly to ease root cause analysisMSE exceed a threshold valuge?. We set the 99th-quantile
Since some metrics values may have a relatively big mags threshold for each metrics group.
nitude and others may have a small one, it is important toUsing such a threshold to identify a deviation from the
re-scale the input data into a uniform range. This is especialgminal state is a widely used practice that unfortunately does
important for LSTMs, which are sensitive to the scale of theot allow neither to assess intensity of the deviation nor to
input data when the (defaul§igmoid or tanh activation Ccharacterize it. Here, we address this issue by proposing a
functions are used, but it is in general true for whatev@easure of the features contribution to the MSE, we denote
neural network trained with a gradient descend algorith@s P(i;t); it is computed as the feature-wise reconstruction
[36]. In the state of the art two techniques are proposed $$luared ErroiSE(i;t) = [Xi(t)  Xi(t)]* over the sum of
re-scale data: standardization and normalization; the forniBe squared errors across all the features:

Orchestrator

System monitoring

Fig. 2: Representation of the proposed SYROCCA framewor,

1 X
MSES® = = [0 X)) 2
i=1

assumes that observations t a Gaussian distribution (with a ) SE(i;t)
- . . . . = P—Y
well behaved mean and standard deviation) and consists in p(i;t) T SE(it) 3)
1= 1

shifting the distribution of each metric to have a mean of zero . . .

and a standard deviation of one (unit variance), while the latf8P"9 SO, the closem(i;t) is to 1, the stronger is the
consists in transforming the original metrics range so that &Pntribution of featureX; to the reconstruction error.
values fall within the[0; 1] range. Let us deneA = fp(1;t);;p(nit)g andB = (A;<) =

For our use-case experiments, a quick analysis of eddh: P2 :ibhg as the set of increasingly orderp(i;t). Thus,

metric distribution revealed that none of them has a Gaussid@€ing bi; 5 bs 2 B with s n so that:

like distribution, thus normalization is selected as re-scaling x
technique. To validate this assumption we also tried to apply
standardization and train our AEs, which con rms normaliza-

tion makes the analysis more accurate and stable. the features corresponding to these sstalues ofp(i;t) 2 B
- are those that were reconstructed with the highest error and
B. Training jointly contribute to at least 90% of the reconstruction error.
During the training phase, SYRROCA builds a model ofherefore the set of features:
the system during the delivery of a virtualized service. AEs ) ]
are trained with a dataset built in nominal conditions and Fo=ffj :SE(it)= b 8 =1;::sg (®)

bh 09 4

i=1



A. Testbed

An IMS is a framework for delivering IP multimedia
services mainly composed of the following network functions:

HSS (Home Subscriber Server): database containing sub-
scriber's pro les performing authentication and autho-
rization;
P-CSCF (Proxy Call Session Control Function): the SIP
proxy server that is the rst point of contact for the users;
S-CSCF (Serving-CSCF): SIP server and session con-
contains the ordered list of most representative features for the troller, it is the central node of the signaling plane;
deviation identi ed at timet. I-CSCF (Interrogating-CSCF): the SIP function located
Furthermore, we observed that the more metrics values and & the edge of an administrative domain; it assigns an
dynamics deviate from the learned nominal state, the more S CSCF to a user performing SIP registration.
MSE 9(t) increases. HencayISE 9(t) can be also used to We used the opensource OpenIMSCore IMS [37] functions,
assess relative intensities of different deviations detected irfleployed as separated containers managed by Kubernetes [38].
speci ¢ group g. Nevertheless, magnitudes BFSE 9(t) for Kubernetes is an open-source container-orchestration system
different groups cannot be compared, as emtBE 9(t) is that aims to provide a platform for automating deployment,
computed on a different group of features. scaling, and operations of application containers across clus-
A deviation from the nominal state does not de nitely implyters of hosts. From a network perspective, containers are some-
a degradation of provided service quality. To understand hdWw equivalent to VMs, but have a relaxed isolation due to
anomalies impact the service, we propose to combine the @@erating system sharing among the applications. However, a
construction erroM SE 9 with a service metric to obtain a 2D container has its own lesystem, CPU, memory, process space
density plot, referred in the remainder of the paperaatiog- and networking space that are reserved upon host resources
raphy, given its visual similarity with common radiographiesthrough kernel primitives. Kubernetes implements the pattern
In statistics, the Kernel Density Estimation (KDE) is used t6f multiple cooperating processes which form a cohesive unit
estimate the probability density function of bi-variate rando®f service through the "Pod" abstraction; Pods are groups of
variables. Here we use the same technique to estimate dené@ijtainers sharing storage and network. Figure 3 depicts vIMS
of the bi-variate functiong 4(MSE 9; < service_metric > ). pods and containers location across both physical servers
Those functions describe how eadtSE 9 of a metrics group composing our deployment. Those servers are equipped with
is related to values of the selected service metric. Therefofd Intel(R) Xeon(R) CPU E5-2620 v4 @2.10GHz with 384
computing the density of these functions, it is possible B of RAM, connected to the same network through a 1 Gbps
locate the most frequent groupsfef samples, that is the mostport physical switch. All the vIMS functions are deployed in
frequent coupleYMSE 9;< service_metric > ) occurred @ single Pod located in rst server, while Kubernetes core
during the considered time-window. A color scale mappingemponents are deployed as a single pod in the second server.
density from high to low with colors from black to white, The second server hosts the 81[0] traf ¢ simulator used
is then used to visualize the computed KDE, obtaining tHe inject SIP and RTP trafc into the platform as two pods
so-called radiography. We propose this representation age@resenting the caller and the callee. The whole platform
compact view of the system state with reference to the quali§ymonitored through Prometheus node-exporters [41] for the
of the service delivered, through which rapidly identify metricehysical level, while Pods and container are monitored through
group characterizing the detected deviation. For simplicity, weubernetes embedded CAdvisor [43] agent. Both exporters are
consider as service metric the number of failed calls, whateyg@mpliant with Prometheus data model and architecture so that
is the reason causing the call failure. Therefore, it is possibRetrics can be exported through GET requests at a specic
to build four radiographies respectively fogpu , Gmem » Gnet ~ POIlING frequency. Furthermore, collected metrics are explicitly
and g groups. Imaging a radiography showing a dark zorf¥ped as counters or gauges, so that pre-processing becomes
for groupgmem corresponding to several failed call, while theeasier. In our deployment metrics are directly collected from
remaining radiographies showing dark zones correspondingd@th CAdvisor and NodeExporter with a Java script that stores
a negligible value of failed call, it is fairly intuitive to identify metrics in a column-like format every 5 s. Training SYROCCA

the root cause to be somehow linked to an anomaly regardi®ig & such ne grained frequency, could be very resource and
the memory. time consuming, thus we re-sampled to a 30 s frequency.

Service Layer

=0PENSOURCEIMS

Containerization Layer

kubernetes

-
docker

Physical Layer

Fig. 3: Testbed

B. LSTM-based Autoencoder architecture
IV. EXPERIMENTAL RESULTS ) . .
AE design and hyper-parameter tuning are milestones to

In this section we describe a proof of concept impldsuild an effective and performing ML model. It is important
mentation of the aforementioned methodology applied tothat the chosen architecture is carefully adapted to the analyzed
virtualized core IMS (IP Multimedia Subsystem). dataset characteristics. In this section we report how we
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Fig. 5: Training MSE for each metrics group.

I Dropout Cell &0 LSTM Cell C. Training on a nominal scenario
Qe Hyper-parameter Value During the learning phase we want to learn an abstract

Batch size 64 representation of a reference scenario to detect deviations from
- t_E":Chf . 6‘|’° that reference scenario during the test phase.
activation function elu . . B
- - To do that, we simulate a nominal scenario where several
I|

LSTM recurrent activation sigmoid

function SIP clients get rst registered to the vIMS core and then start

Dropout rate 0,2

a call. SIPp traf c generation tool is used to generate SIP
%% Iapuc Fentr traf c towards the IMS and make calls between simulated
Fig. 4: SYROCCA deep Autoencoder architecture. users. Both RTP data trafc and SIP signaling trafc are
transported over UDP. To simulate realistic traf c, we used
calibrated the AEs architecture and hyper-parameters throughl call traf ¢ pro les extracted from a given LAC (Location
several experiments performed on different combinations. Area Code) from Orange 3G network. We injected two weeks
Encoder and decoder layers depicted in Figure 4 are co(March 16-29, 2020) of this traf ¢ distribution onto the vIMS
posed of two LSTM cells and one dropout regularization levebntainerized platform under test. We set the average call
that helps prevent over- tting, which particularly affects Deepluration to 3 min according to [46]. Moreover, the vIMS
NN [44]. According to the state of the art, over-tting cancontainerized platform is tailored to correctly process this
be reduced tting all possible different NNs architectures otraf ¢ load. Figure 8 reports mean call distribution for the
the same dataset and then average the predictions from eashand the second week as well as an LAC distribution used
model [45]. However, this is not feasible in practice. Witlor testing purpose. Call distributions and obtained datasets
dropout, during training, some of layer outputs are randoméyre available at [42]. Figure 6 depidSE ¢(t) for the four
ignored (i.e. "dropped out”). Therefore some layers look-likaEs fed with the virtual CPU, network, memory and le
one with a different number of nodes and connectivity to they/stem metrics groups respectively. Note that it is not required
prior layer, mimicking different architectures. to have a MSE equal to zero for time-stamps representing
It is worth noting that the batch size and the epochs ameminal conditions. Nonetheless, we are interested in MSE
particularly sensitive to training set length and time serialifferences between points to get an insight on the deviations.
frequency. A widely accepted best practice is to set batch sigkrough the methodology proposed in section 111-C, we found
value proportional to the number of training samples. out that in the memory metrics group MSE (6 (ch)7:4%
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Fig. 6: vIMS system radiographies under packet loss injection.

(a) vCPU-related group (b) vnetwork-related group (c) vmemory-related group

Fig. 7: vIMS system radiographies under call overload injection.

of samples crossing the threshold are characterized by th&he rst scenario consists in injecting packet loss in order
set of features= =[MEMORY FAILURES TOTALf POD=HSS, to generate calls failures. S#Pallows simulating packet
TYPE=PGFAULT, SCOPE=HIERARCHY({, MEMORY FAILURES loss by simply blocking outgoing messages or discarding
TOTAL fPOD=HSS, TYPE=PGFAULT, SCOPE=CONTAINERQ]. received messages. In particular, we alter the call distribution
However, for CPU, network and le system groups theref March 16, 2020, blocking 50% of INVITE (SIP message)
is no predominant type of featurds characterizing those acknowledgments, causing at least 50% of calls to fail. Figures
deviations. Therefore, we can conclude that the dynamitem 6a to 6c depict the obtained radiography for the test
of the memory usage of the HSS during normal activity isase plotting only anomalous data points. The horizontal axis
characterized by a repeated xed pattern. This pattern has toibethe MSE for the analyzed group of metrics while the
taken in consideration when analyzing test datasets as sowextical one is the number of failed calls. Darker zones denote
thing somehow belonging to nominal operating conditions. ftigh density regionéM SE 9; failed _calls) while colors from
is worth noting that the MSE trend for the virtual CPU grougreen to white indicate less dense regions. It is worth recalling
clearly follows the call distribution (Figure 8), which con rmsthat the values associated with the color scale correspond
our AEs being able to carefully characterize learning datastd. an estimate of the probability density function via KDE,
and therefore do not represent a physical density value but
only a measure proportional to density. Since Figures 6c, 6b
We evaluate the SYROCCA ability to detect and characteand 6d present high-density zones only for small values of
ize anomalies under three different degraded scenarios. failed calls, one can conclude that CPU, memory and le

D. Test phase on degraded conditions



Fig. 9: Time evolution of the MSE for virtual CPU-related
F|g 8: VoIP call distributions emulated in the eXperimentSmetriCS group, under an increasing CPU stress.

system are not behind the service degradation. On the contrgiyysical level as deviations above the threshold at virtual
Figure 6b clearly depicts two high density zones, one of thei@sel, (ii) the MSE 9=VCPY (t) increases according to the
corresponding to more than 250 failed calls, which cleariyjected increasing physical CPU load with the same trend.
indicates that anomalies detected from the network metrigfis con rms that the AE can detect deviations at physical
group directly impact vIMS service. Indee80% of detected and virtual layers and characterize relative intensities of those
network anomalies are only characterized by metrics relateddgyiations. This experiment is extensible to virtual network
sent/received packets from/by SCSCF and PCSF. In fact, Whe{y virtual memory, or other data sources groups. Furthermore,
a call fails, the SCSCF generated-ailed_call message that \yhen the 1 hour physical CPU stress ends, that MSE behaviour
is redirected to the PCSCF, and then to the user. Moreoygfls back to the nominal region under the threshold (diamond
Figure 6a depicts a moderate density zone (light orangepaints)_
fo_r more that 250 failed callg, .highlig.hting that the anomaly Applying the methodology described in Section 11I-C to
slightly impacts the CPU. Similarly, in Figures 6c and 6@et an insight on the features describing the anomaly, it
two slighter low density zones (light violet) corresponding t@,ns out that features characterizing anomalies correspond to
more than 250 failed calls points out an even slighter impagpy groupF =[CPU USER SECONDS TOTAf POD=PCSCH,
on memory and le system related metrics. _ CPU USAGE SECONDS TOTAE POD=PCSCHR]. This con rms

The second scenariave tested consists in stressing th&yRoCCAs ability to recognize sets of resources that most

VIMS core services with a call pro le exceeding the resourcgfyiate for any type of anomaly, which can so make the
available to the vIMS network functions. To do that, we i”fadiography accurate.

jected the call distribution of March 16, 2020, but from another
LAC than the one used for training, and that serves more users V. CONCLUSIONS

(Figure 8). Actually, even though in our deployment each pod In this article we propose a LSTM autoencoder-based

can theoretically use as much memory as the physical e &thodology to characterize network deviations in softwarized
has (best effort deployment), the scripts used to launch | environmeﬁtys by radiography representation and analysis. We
services impose a hard-coded memory limit. Nevertheless, we1. y grapny rep ysIS.

validated the proposal with a proof-of-concept based on a

observed that although this script-level limit is not reached,\} MS deployed using Kubernetes. While the focus of the

is possible to overload the vIMS core with a higher amount g . ;
resented proof-of-concept results was the virtualized layer,

traf c as in the selected test LAC. As expected, radiographi«?scan be extended to physical layer metrics to characterize
from Figures 7a to 7c show that the introduced anomaly evenﬁ%ssible cross-layer fault propagation. We plan to extend
gggicéss ﬁigp# a:r?sf:,tvorzkor?gsdcr:r(ra?sggn(;?r?gt;“t% g:omug; E?Qi%\éROCCA application analysis to other VoIP platforms, such
y . as entreprise Telephone over IP infrastructures, and other NFV
calls. Furthermore, le system related metrics are nearly no . .
impacted as onlv few samoles are recoanized as anomuie c2Ses such as the 4G and 5G function clusters, also using
pactec ny P . 9 m%re sophisticated NFV/SDN platforms such as OpenCord,
making impossible to produce a radiography.

In the third scenariowe tested how stressing the phys-OMEC’ OPNFV, OSM.

ical CPU from inside the PCSCF container is perceived ACKNOWLEDGEMENT

as deviation by the AE trained for the virtual CPU-related

metrics group. This will give us an idea on how physical This work was partially supported by the ANR CANCAN
faults can propagate to the container layer. We injectedPgoiect (ANR-18-CE25-0011).

physical CPU stress which increases over time in increments
of 10% during one hour on all 32 CPUs, starting from 10%
up to 80% of single CPU capacity. Each CPU stress lastil] J. Rubio-Loyola et al. Scalable service deployment
450 seconds. Fig. 9 shows that: (i) the AE for the virtual on software-de ned networks.IEEE Communications
CPU metrics group detects at all times those CPU stress at Magazine49.12 (2011): 84-93.
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