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DETERMINISTIC EQUIVALENCE FOR NOISY PERTURBATIONS

MARTIN VOGEL AND OFER ZEITOUNI

Abstract. We prove a quantitative deterministic equivalence theorem for the logarithmic po-
tentials of deterministic complex N × N matrices subject to small random perturbations. We
show that with probability close to 1 this log-potential is, up to a small error, determined by
the singular values of the unperturbed matrix which are larger than some small N -dependent
cut-off parameter.

1. Introduction and statement of results

In evaluating the limit of empirical measures of eigenvalues of (non-Hermitian) matrices, an
important role is played by the evaluation of certain determinants. Specifically, for a sequence of
matrices XN of dimension N ×N having eigenvalues λi(XN ), let LN (XN ) = N−1

∑N
i=1 δλi(XN )

denote the empirical measure of eigenvalues of XN and let LXN
(z) =

∫
log |z − x|LN (XN )(dx)

denote its log-potential. Since a.e. convergence of log-potentials implies the weak convergence of
the associated measures, the evaluation of limits of log-potentials has played an important role in
the study of convergence of the spectrum of random matrices. We refer to [5, 3] for introductions
to this vast topic.

Since
LXN

(z) =
1

2
log det(z −XN )(z −XN )

∗ = log | det(z −XN )|,
evaluating logarithmic potentials amounts to computing determinants. In their study of the
spectrum of small, noisy perturbations of non-normal matrices, the authors of [1] have identified
a certain deterministic equivalent result, which we now present.

Theorem 1. [1, Theorem 2.1] Let A = AN be a sequence of deterministic complex N×N -matrix
of uniformly bounded norm and singular values s1 ≥ . . . sN ≥ 0. Fix γ > 1/2 and η > 0. Set
εN = N−η, and set N∗ to be the largest integer i so that

sN−i+1 ≤ ε−1N N−γ(N − i+ 1)1/2. (1.1)

If no such i exists then set N∗ = 1. Let GN be a matrix whose entries are i.i.d. standard complex
Gaussian variables. Then, if N∗ logN/N → α <∞,

1

N
log |det(AN +N−γGN )| −

1

N

N−N∗+1∑
i=1

log si →N→∞ 0, (1.2)

in probability, as N →∞. If α = 0, we may take εN = N−η for any η > 0.

The proof in [1] uses in an essential way the unitary invariance of GN , and probabilistic
arguments. However, it does not directly extend to other noise models, not even to the case
where GN is a matrix consisting of independent real standard Gaussian variables. The purpose
of this note is to present a very general version of Theorem 1, based on the Grushin problem
studied in [8]. It will be stated under the following assumption on the noise matrix. Here and
throughout, for a matrix A, s1(A) ≥ s2(A) ≥ · · · ≥ sN (A) ≥ 0 denote the singular values of A,
and ‖A‖ denotes the operator norm of G, i.e. ‖A‖ = s1(A),

Assumption 2. G = GN is an N ×N random matrix such that the following hold.
(1) Norm bound There exists a κ1 > 0 such that

E[‖G‖] = O(Nκ1). (1.3)
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(2) Anti-concentration bound For each θ > 0 there exists a β > 0 such that for any fixed
deterministic complex N ×N matrix D with ‖D‖ = O(Nκ2), κ2 ≥ 0, we have that

P(sN (D +G) ≤ N−β) = εN (θ) = o(1). (1.4)

Theorem 3. Let A = AN be a deterministic complex N × N -matrix with ‖A‖ = O(Nκ2) for
some fixed κ2 ≥ 0, and assume G = GN satisfies Assumption 2. Let s1 ≥ . . . sN ≥ 0 denote the
singular values of A. Suppose that for some fixed L > 0 there exists

CN−L ≤ α ≤ 1 (1.5)

such that

#{j; sj ∈ [0, α]} ≤ νN
N

logN
=:M, νN = o(1). (1.6)

For τ > 0 and any fixed γ � 1 we let

N−γ ≤ δ � N−κ1ατ−1.

Then, we have that∣∣∣∣∣∣ 1N log |det(A+ δG)| − 1

N

∑
j: sj>α

log sj

∣∣∣∣∣∣ = O(1) (νN + α−1Nκ1δτ
)

with probability ≥ 1− εN (κ2 + γ)− τ−1.

Remark 4. Assumption 2 holds for a large class of noise matrices, including those with iid
entries of zero mean and finite variance. We refer to [2, Remark 1.3] for details and references.

Acknowledgments. The authors are grateful to the Oberwolfach conference Random Matrices
in December 2019 during which most of this text has been written. M. Vogel was supported
by the a CNRS Momentum 2017 grant. O. Zeitouni was supported by the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement No. 692452).

2. Grushin problem

We now present the proof of Theorem 3, based on [8, 4], see also [7, 6]. We begin by setting
up a well-posed Grushin problem. Let A = AN be a deterministic complex N ×N -matrix and
let

0 ≤ t21 ≤ · · · ≤ t2N (2.1)

denote the eigenvalues of A∗A with associated orthonormal basis of eigenvectors e1, . . . , eN ∈ CN .
The spectra of A∗A and AA∗ are equal and we can find an orthonormal basis f1, . . . , fN ∈ CN
of eigenvectors of AA∗ associated with the eigenvalues (2.1) such that

A∗fi = tiei, Aei = tifi, i = 1, . . . , N. (2.2)

Recall α,M , see (1.5),(1.6), and let δi, 1 ≤ i ≤M , denote an orthonormal basis of CM . Put

R+ =
M∑
i=1

δi ◦ e∗i , R− =
M∑
i=1

fi ◦ δ∗i , (2.3)

We claim that the Grushin problem

P =

(
A R−
R+ 0

)
: CN × CM −→ CN × CM (2.4)

is bijective. To see this we take (v, v+) ∈ CN × CM and we want to solve

P
(
u
u−

)
=

(
v
v+

)
. (2.5)
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We write u =
∑N

1 u(j)ej and v =
∑N

1 v(j)fj . Similarly, we express u−, v+ in the basis δ1, . . . , δM .
The relation (2.2) then shows that (2.5) is equivalent to{∑N

1 tiuifi +
∑M

1 u−(j)fj =
∑N

1 vjfj

uj = v+(j), j = 1, . . . ,M,

which can be written as
tiuifi = vifi, i =M + 1, . . . , N,(

ti 1

1 0

)(
ui

u−(i)

)
=

(
vi

v+(i)

)
, i = 1, . . . ,M.

(2.6)

Since (
ti 1
1 0

)−1
=

(
0 1
1 −ti

)
,

we see that

P−1 = E =

(
E E+

E− E−+

)
(2.7)

with

E =

N∑
M+1

1

ti
ei ◦ fi, E+ =

M∑
1

ei ◦ δ∗i ,

E− =
M∑
1

δi ◦ f∗i , E−+ = −
M∑
1

tjδj ◦ δ∗j ,

(2.8)

and the norm estimates

‖E(z)‖ ≤ 1

α
, ‖E±‖ = 1, ‖E−+‖ ≤ α. (2.9)

Furthermore, (2.6) shows that

|detP|2 =
N∏

M+1

t2i . (2.10)

2.1. Grushin problem for the perturbed operator. Now we turn to the perturbed operator

Aδ = A+ δG, 0 ≤ δ � 1. (2.11)

where G is a complex N ×N -matrix. Let R± be as in (2.3), and put

Pδ =
(
Aδ R−
R+ 0

)
: CN × CM −→ CN × CM (2.12)

Then P = P0. Applying E , see (2.7), from the right to (2.12) yields

PδE = IN+M +

(
δGE δGE+

0 0

)
(2.13)

Suppose that

δ‖G‖α−1 ≤ 1

2
. (2.14)

Then, see (2.11), the matrix PδE is invertible by a Neumann series argument and we get that

Eδ = (Pδ)−1 = E +
∞∑
n=1

(−δ)n
(
E(GE)n (EG)nE+

E−(GE)n E−(GE)n−1GE+

)
def
=

(
Eδ Eδ+
Eδ− Eδ−+

)
,

(2.15)
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where by (2.14), (2.9),

‖Eδ‖ = ‖E(1 + δGE)−1‖ ≤ 2‖E‖ ≤ 2α−1,

‖Eδ+‖ = ‖(1 + δGE)−1E+‖ ≤ 2‖E+‖ ≤ 2,

‖Eδ−‖ = ‖E−(1 + δGE)−1‖ ≤ 2‖E−‖ ≤ 2,

‖Eδ−+ − E−+‖ = ‖E−(1 + δQωE)−1δGE+‖ ≤ 2‖δG‖ ≤ α.

(2.16)

The Schur complement formula applied to Pδ and Eδ shows that

log |detAδ| = log | detPδ|+ log | detEδ−+|. (2.17)

Notice that ∣∣∣log |detPδ| − log | detP0|
∣∣∣ = ∣∣∣∣< ∫ δ

0
tr(Eτ d

dτ
Pτ )dτ

∣∣∣∣
=

∣∣∣∣< ∫ δ

0
tr
(
Eτ Eτ+
Eτ− Eτ−+

)
·
(
G 0
0 0

)
dτ

∣∣∣∣
=

∣∣∣∣< ∫ δ

0
tr(EτG)dτ

∣∣∣∣
≤ 2α−1δN‖G‖.

(2.18)

Here in the last line we used (2.16). Thus,∣∣∣∣ 1N log |detPδ| − 1

N
log | detP|

∣∣∣∣ ≤ 2α−1δ‖G‖. (2.19)

Notice that by (2.16), (2.9), we have that ‖Eδ−+‖ ≤ 2α. Thus, by (2.17) and (2.19),

log |detAδ| ≤ log | detP|+M | log 2α|+ 2α−1δN‖G‖. (2.20)

2.2. Random noise matrix. We recall Assumption 2 on the noise matrix. By Markov’s in-
equality,

P(‖G‖ > CNκ1τ) ≤ τ−1, τ > 0. (2.21)
Since

0 ≤ δ � N−κ1ατ−1, (2.22)
we obtain that with probability ≥ 1−τ−1, we have that (2.14) holds. Hence, the estimates (2.16)
and (2.17) hold with the same probability. This together with (2.20), (1.6) and (1.5), implies
that ‖G‖ ≤ CNκ1τ and

log | detAδ| ≤ log |detP|+O(1)νNN +O(1)α−1N1+κ1δτ (2.23)

with probability ≥ 1− τ−1.
It remains to find a lower bound on log |detEδ−+|. We begin by recalling a classical result on

Grushin problems, see for instance [8, Lemma 18].

Lemma 5. Let H be an N -dimensional complex Hilbert spaces, and let N ≥ M > 0. Suppose
that

P =

(
P R−
R+ 0

)
: H× CM −→ H× CM

is a bijective matrix of linear operators, with inverse

E =

(
E E+

E− E−+

)
.

Let 0 ≤ t1(P ) ≤ · · · ≤ tN (P ) denote the eigenvalues of (P ∗P )1/2, and let 0 ≤ t1(E−+) ≤ · · · ≤
tM (E−+) denote the eigenvalues of (E∗−+E−+)1/2. Then,

tn(E−+)

‖E‖tn(E−+) + ‖E−‖‖E+‖
≤ tn(P ) ≤ ‖R+‖‖R−‖tn(E−+), 1 ≤ n ≤M.
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By (2.3) we know that ‖R±‖ = 1, and by (2.16) we then get

tn(A
δ) ≤ tn(Eδ−+), 1 ≤ n ≤M. (2.24)

Next note that, for any δ ≥ N−γ and β > 0 and any deterministic matrix A,

P
(
sN (A+ δG) ≤ N−γ−β

)
= P

(
sN (A/δ +G) ≤ N−γ−β/δ

)
≤ P

(
sN (A/δ +G) ≤ N−β

)
.

Thus, from (1.4), there exists a β > 0 such for any fixed deterministic matrix A with ‖A‖ =
O(Nκ2) and any δ ≥ N−γ , we have that

P
(
sN (A+ δG) ≤ N−γ−β

)
≤ εN (κ2 + γ). (2.25)

We recall that
N−γ ≤ δ � N−κ1ατ−1. (2.26)

By combining (2.24), (2.25) and (2.21), we obtain that

P
(
sM (Eδ−+) > N−γ−β and ‖G‖ ≤ CNκ1τ

)
≥ 1− εN (κ2 + γ)− τ−1. (2.27)

Provided that this event holds and using (1.6), we get hat

log | detEδ−+| =
M∑
1

log sj(E
δ
−+)

≥M log sM (Eδ−+)

≥ −(γ + β)M logN

≥ −(γ + β)νNN,

(2.28)

which in combination with (2.17), (2.19) yields that

log | detAδ| ≥ log |detP| − O(1)νNN −O(1)α−1N1+κ1δτ (2.29)

with probability ≥ 1− εN (κ2+ γ)− τ−1. This, in view of (2.23), (2.22) and (2.10) concludes the
proof of the theorem.
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