S. C. Ng, Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies, Lancet, vol.390, pp.2769-2778, 2018.

B. B. Crohn, L. Ginzburg, and G. D. Oppenheimer, Regional ileitis: a pathologic and clinical entity, Mt. Sinai J. Med, vol.67, pp.263-268, 2000.

J. Torres, S. Mehandru, J. Colombel, and L. Peyrin-biroulet, Crohn's disease, The Lancet, vol.389, pp.1741-1755, 2017.

E. R. Nimmo, Genome-wide methylation profiling in Crohn's disease identifies altered epigenetic regulation of key host defense mechanisms including the Th17 pathway, Inflamm. Bowel Dis, vol.18, pp.889-899, 2012.

Z. Lin, Identification of disease-associated DNA methylation in intestinal tissues from patients with inflammatory bowel disease, Clin. Genet, vol.80, pp.59-67, 2011.

Z. Lin, Identification of disease-associated DNA methylation in B cells from Crohn's disease and ulcerative colitis patients, Dig. Dis. Sci, vol.57, pp.3145-3153, 2012.

T. Sadler, Genome-wide analysis of DNA methylation and gene expression defines molecular characteristics of Crohn's disease-associated fibrosis, Clin. Epigenetics, vol.8, p.30, 2016.

E. Mcdermott, DNA methylation profiling in inflammatory bowel disease provides new insights into disease pathogenesis, J. Crohns Colitis, vol.10, pp.77-86, 2016.

L. Yim and A. Y. , Peripheral blood methylation profiling of female Crohn's disease patients, Clin. Epigenetics, vol.8, p.65, 2016.

L. Yim and A. Y. , A distinct epigenetic profile distinguishes stenotic from non-inflamed fibroblasts in the ileal mucosa of Crohn's disease patients, PLoS ONE, vol.13, p.209656, 2018.

N. T. Ventham, Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease, Nat. Commun, vol.7, p.13507, 2016.

H. K. Somineni, Blood-derived DNA methylation signatures of Crohn's disease and severity of intestinal inflammation, Gastroenterology, vol.156, pp.2254-2265, 2019.

N. T. Ventham, N. A. Kennedy, E. R. Nimmo, and J. Satsangi, Beyond gene discovery in inflammatory bowel disease: the emerging role of epigenetics, Gastroenterology, vol.145, pp.293-308, 2013.

O. S. Anderson, K. E. Sant, and D. C. Dolinoy, Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation, J. Nutr. Biochem, vol.23, pp.853-859, 2012.

Y. Pan, Associations between folate and vitamin B12 levels and inflammatory bowel disease: a meta-analysis, Nutrients, vol.9, p.382, 2017.

M. Madanchi, The relevance of vitamin and iron deficiency in patients with inflammatory bowel diseases in patients of the swiss IBD cohort, Inflamm. Bowel Dis, vol.24, pp.1768-1779, 2018.

S. Huang, J. Ma, M. Zhu, and Z. Ran, Status of serum vitamin B12 and folate in patients with inflammatory bowel disease in China, Intest. Res, vol.15, pp.103-108, 2017.

G. Bengi, H. Keyvan, S. B. Durmaz, and H. Akp?nar, Frequency, types, and treatment of anemia in Turkish patients with inflammatory bowel disease, World J. Gastroenterol, vol.24, pp.4186-4196, 2018.

F. Bermejo, Should we monitor vitamin B12 and folate levels in Crohn's disease patients?, Scand. J. Gastroenterol, vol.48, pp.1272-1277, 2013.

M. Yakut, Y. Ustün, G. Kabaçam, and I. Soykan, Serum vitamin B12 and folate status in patients with inflammatory bowel diseases, Eur. J. Intern. Med, vol.21, pp.320-323, 2010.

A. Darfeuille-michaud, Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn's disease, Gastroenterology, vol.115, pp.1405-1413, 1998.

A. Darfeuille-michaud, High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease, Gastroenterology, vol.127, pp.412-421, 2004.

T. Eaves-pyles, Escherichia coli isolated from a Crohn's disease patient adheres, invades, and induces inflammatory responses in polarized intestinal epithelial cells, Int. J. Med. Microbiol, vol.298, pp.397-409, 2008.

H. M. Martin, Enhanced Escherichia coli adherence and invasion in Crohn's disease and colon cancer, Gastroenterology, vol.127, pp.80-93, 2004.

M. Martinez-medina, Molecular diversity of Escherichia coli in the human gut: new ecological evidence supporting the role of adherent-invasive E. coli (AIEC) in Crohn's disease, Inflamm. Bowel Dis, vol.15, pp.872-882, 2009.

C. Palmela, Adherent-invasive Escherichia coli in inflammatory bowel disease, Gut, vol.67, pp.574-587, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01681169

F. A. Carvalho, Crohn's disease adherent-invasive Escherichia coli colonize and induce strong gut inflammation in transgenic mice expressing human CEACAM, J. Exp. Med, vol.206, pp.2179-2189, 2009.

N. Barnich, CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease, J. Clin. Investig, vol.117, pp.1566-1574, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02666899

M. Chervy, N. Barnich, and J. Denizot, Adherent-invasive E. coli: update on the lifestyle of a troublemaker in Crohn's disease, Int. J. Mol. Sci, vol.21, p.3734, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02917127

C. H. Chan and C. P. Stanners, Novel mouse model for carcinoembryonic antigen-based therapy, Mol. Ther, vol.9, pp.775-785, 2004.

J. Denizot, Diet-induced hypoxia responsive element demethylation increases CEACAM6 expression, favouring Crohn's disease-associated Escherichia coli colonisation, Gut, vol.64, pp.428-437, 2015.

C. A. Cooney, A. A. Dave, and G. L. Wolff, Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring, J. Nutr, vol.132, pp.2393-2400, 2002.

S. Pauwels, Dietary and supplemental maternal methyl-group donor intake and cord blood DNA methylation, Epigenetics, vol.12, pp.1-10, 2017.

I. R. Miousse, Short-term dietary methionine supplementation affects one-carbon metabolism and DNA methylation in the mouse gut and leads to altered microbiome profiles, barrier function, gene expression and histomorphology, Genes Nutr, vol.12, p.22, 2017.

S. A. Mir, Prenatal methyl-donor supplementation augments colitis in young adult mice, PLoS ONE, vol.8, p.73162, 2013.

M. Chen, Methyl deficient diet aggravates experimental colitis in rats, J. Cell. Mol. Med, vol.15, pp.2486-2497, 2011.

A. Bressenot, Methyl donor deficiency affects small-intestinal differentiation and barrier function in rats, Br. J. Nutr, vol.109, pp.667-677, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01704507

C. Bossenmeyer-pourié, Methyl donor deficiency affects fetal programming of gastric ghrelin cell organization and function in the rat, Am. J. Pathol, vol.176, pp.270-277, 2010.

A. Buisson, Faecal chitinase 3-like 1 is a reliable marker as accurate as faecal calprotectin in detecting endoscopic activity in adult patients with inflammatory bowel diseases, Aliment. Pharmacol. Ther, vol.43, pp.1069-1079, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02639968

D. Piovani, Environmental risk factors for inflammatory bowel diseases: an umbrella review of meta-analyses, Gastroenterology, vol.157, pp.647-659, 2019.

K. Kolho, A. Pessia, T. Jaakkola, W. M. De-vos, and V. Velagapudi, Faecal and serum metabolomics in paediatric inflammatory bowel disease, J. Crohns Colitis, vol.11, pp.321-334, 2017.

K. J. Howell, DNA methylation and transcription patterns in intestinal epithelial cells from pediatric patients with inflammatory bowel diseases differentiate disease subtypes and associate with outcome, Gastroenterology, vol.154, pp.585-598, 2018.

, Scientific RepoRtS |, vol.10, p.12922, 2020.

A. Franke, Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci, Nat. Genet, vol.42, pp.1118-1125, 2010.

D. Nagy-szakal, Maternal micronutrients can modify colonic mucosal microbiota maturation in murine offspring, Gut Microbes, vol.3, pp.426-433, 2012.

F. Giudicelli, A. Brabant, I. Grit, P. Parnet, and V. Amarger, Excess of methyl donor in the perinatal period reduces postnatal leptin secretion in rat and interacts with the effect of protein content in diet, PLoS ONE, vol.8, p.68268, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02647689

N. Dreux, Point mutations in FimH adhesin of Crohn's disease-associated adherent-invasive Escherichia coli enhance intestinal inflammatory response, PLoS Pathog, vol.9, p.1003141, 2013.

D. Low, Chitin-binding domains of Escherichia Coli ChiA mediate interactions with intestinal epithelial cells in mice with colitis, Gastroenterology, vol.145, p.9, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02651692

S. A. Ragland and A. K. Criss, From bacterial killing to immune modulation: recent insights into the functions of lysozyme, PLoS Pathog, vol.13, p.1006512, 2017.

A. Hoter and H. Y. Naim, The functions and therapeutic potential of heat shock proteins in inflammatory bowel disease-an update, IJMS, vol.20, p.5331, 2019.

T. Ohkawara, Resistance to experimental colitis depends on cytoprotective heat shock proteins in macrophage migration inhibitory factor null mice, Immunol. Lett, vol.107, pp.148-154, 2006.

J. J. Bunker and A. Bendelac, IgA responses to microbiota, Immunity, vol.49, pp.211-224, 2018.

K. Moor, High-avidity IgA protects the intestine by enchaining growing bacteria, Nature, vol.544, pp.498-502, 2017.

N. W. Palm, Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease, Cell, vol.158, pp.1000-1010, 2014.

M. Viladomiu, IgA-coated E. coli enriched in Crohn's disease spondyloarthritis promote TH17-dependent inflammation, Sci. Transl. Med, vol.9, p.9655, 2017.

R. Lin, Clinical significance of soluble immunoglobulins A and G and their coated bacteria in feces of patients with inflammatory bowel disease, J. Transl. Med, vol.16, p.359, 2018.

L. A. Van-der-waaij, Immunoglobulin coating of faecal bacteria in inflammatory bowel disease, Eur. J. Gastroenterol. Hepatol, vol.16, pp.669-674, 2004.

H. J. Harmsen, S. D. Pouwels, A. Funke, N. A. Bos, and G. Dijkstra, Crohn's disease patients have more IgG-binding fecal bacteria than controls, Clin. Vaccine Immunol, vol.19, pp.515-521, 2012.

K. Vagianos, S. Bector, J. Mcconnell, and C. N. Bernstein, Nutrition assessment of patients with inflammatory bowel disease, JPEN J. Parenter. Enter. Nutr, vol.31, pp.311-319, 2007.

R. H. Alkhouri, H. Hashmi, R. D. Baker, D. Gelfond, and S. S. Baker, Vitamin and mineral status in patients with inflammatory bowel disease, J. Pediatr. Gastroenterol. Nutr, vol.56, pp.89-92, 2013.

G. Gîlc?-blanariu, S. Diaconescu, M. Ciocoiu, and G. ?tef?nescu, New insights into the role of trace elements in IBD, Biomed. Res. Int, pp.1-9, 2018.

C. P. Wong, N. A. Rinaldi, and E. Ho, Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation, Mol. Nutr. Food Res, vol.59, pp.991-999, 2015.

J. Denizot, Adherent-invasive Escherichia coli induce claudin-2 expression and barrier defect in CEABAC10 mice and Crohn's disease patients, Inflamm. Bowel Dis, vol.18, pp.294-304, 2012.

B. Chassaing, Fecal lipocalin 2, a sensitive and broadly dynamic non-invasive biomarker for intestinal inflammation, PLoS ONE, vol.7, p.44328, 2012.