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Abstract—Distributed digital infrastructures for computation
and analytics are now evolving towards an interconnected ecosys-
tem allowing complex applications to be executed from IoT Edge
devices to the HPC Cloud (aka the Computing Continuum, the
Digital Continuum, or the Transcontinuum). Understanding end-
to-end performance in such a complex continuum is challenging.
This breaks down to reconciling many, typically contradicting
application requirements and constraints with low-level infras-
tructure design choices. One important challenge is to accurately
reproduce relevant behaviors of a given application workflow and
representative settings of the physical infrastructure underlying
this complex continuum. In this paper we introduce a rigorous
methodology for such a process and validate it through E2Clab.
It is the first platform to support the complete analysis cycle of an
application on the Computing Continuum: (i) the configuration
of the experimental environment, libraries and frameworks; (ii)
the mapping between the application parts and machines on the
Edge, Fog and Cloud; (iii) the deployment of the application
on the infrastructure; (iv) the automated execution; and (v) the
gathering of experiment metrics. We illustrate its usage with a
real-life application deployed on the Grid’5000 testbed, showing
that our framework allows one to understand and improve
performance, by correlating it to the parameter settings, the
resource usage and the specifics of the underlying infrastructure.

Index Terms—Reproducibility, Methodology, Computing Con-
tinuum, Edge Intelligence.

I. INTRODUCTION

The explosion of data generated from the Internet of Things
(IoT) and the need for real-time analytics has resulted in a
shift of the data processing paradigms towards decentralized
and multi-tier computing infrastructures and services [1]. New
challenging application scenarios are emerging from a variety
of domains such as personalized healthcare, asset lifetime
monitoring in industry (e.g., for bridges, wind turbines, energy
transportation systems), precision agriculture and smart cities,
where processing can no longer rely only on traditional
approaches that send all data to centralized datacenters for
processing. Instead, they need to leverage myriads of resources
close to the data generation sites (i.e., in the Edge or the
Fog) in order to promptly extract insights [2], while keeping a
reasonable resource usage and preserving privacy constraints.

This contributes to the emergence of what is called the
Computing Continuum [3] (or the Digital Continuum or the

Transcontinuum). It seamlessly combines resources and ser-
vices at the center (e.g., in Cloud datacenters), at the Edge,
and in-transit, along the data path. Typically data is first
generated and preprocessed (e.g., filtering, basic inference)
on Edge devices, while Fog nodes further process partially
aggregated data. Then, if required, data is transferred to HPC-
enabled Clouds for Big Data analytics, Artificial Intelligence
(AI) model training, and global simulations.

However, despite an always increasing number of dedi-
cated systems for data processing on each component of the
continuum (e.g., Apache Edgent [4] at the Edge, Apache
Spark [5] in the Cloud datacenter, etc.), this vision of ubiq-
uitous computing remains largely unrealized. This is due to
the complexity of deploying large-scale, real-life applications
on such heterogeneous infrastructures, which breaks down
to configuring a myriad of system-specific parameters and
reconciling many requirements or constraints, e.g., in terms of
interoperability, mobility, communication latency, energy and
network efficiency, data privacy. A first step towards reducing
this complexity and enabling the Computing Continuum vision
is to enable a holistic understanding of performance in such
environments. That is, finding a rigurous approach to answer-
ing questions like: how to identify infrastructure bottlenecks?
which system parameters and infrastructure configurations
impact on performance and how?

Approaches based on workflow modelling [6] and sim-
ulation [7], [8] raise some important challenges in terms
of specification, modelling, and validation in the context of
the Computing Continuum. For example, it is increasingly
difficult to model the heterogeneity and volatility of Edge
devices or to assess the impact of the inherent complexity
of hybrid Edge-Cloud deployments on performance. At this
stage, experimental evaluation remains the main approach to
gain accurate insights of performance metrics and to build
precise approximations of the expected behavior of large-scale
applications on the Computing Continuum, as a first step prior
to modelling.

A key challenge in this context is to be able to reproduce in
a representative way the application behavior in a controlled
environment, for extensive experiments in a large-enough
spectrum of potential configurations of the underlying hybrid



Fig. 1: Enabling representative 3R’s experiments of real-world
use cases in the Computing Continuum.

Edge-Fog-Cloud infrastructure. In particular, this means rigor-
ously mapping the scenario characteristics to the experimental
environment, identifying and controlling the relevant config-
uration parameters of applications and system components,
defining the relevant performance metrics. The above process
is non-trivial due to the multiple combination possibilities
of heterogeneous hardware and software resources, system
components for data processing, data analytics or AI model
training. Furthermore, in order to allow other researchers to
leverage the experimental results and advance knowledge in
different domains, the testbed needs to enable three R’s of
research quality: Repeatability, Replicability, and Repro-
ducibility (3R’s). This translates to establishing a well-defined
experimentation methodology and providing transparent ac-
cess to the experiment artifacts and experiment results.

The Computing Continuum vision calls for a rigorous and
systematic methodology to map the real-world application
components and dependencies to infrastructure resources, as
illustrated in Figure 1, a complex process that can be error
prone. Key research goals are: 1) to identify relevant charac-
teristics of the application workloads and of the underlying
infrastructure as a means to enable accurate experimentation
and benchmarking in relevant infrastructure settings in order
to understand their performance; and 2) to ensure research
quality aspects such as the 3R’s.

In this paper we aim to address these goals through the
following main contributions:

• A rigorous methodology for designing experiments
with real-world workloads on the Computing Con-
tinuum spanning from the Edge through the Fog to the
Cloud; this methodology supports Open Science [9] and
provides guidelines to move from real-world use cases
to the design of relevant testbed setups for experiments
enabling researchers to understand performance and to
ensure the 3R’s properties (Section III);

• A novel framework named E2Clab that implements this
methodology and allows researchers to deploy their use
cases on real-world large-scale testbeds, e.g., Grid’5000
[10] (Section IV). To the best of our knowledge, E2Clab
is the first platform to support the complete analysis cycle
of an application on the Computing Continuum: (i) the
configuration of the experiment environment, libraries
and frameworks; (ii) the mapping between application
parts and machines on the Edge, Fog and Cloud; (iii) the
deployment of the application; (iv) automated execution;
and (v) gathering of experiment metrics;

• An illustration with a real-world Smart Surveillance
System use case leveraging E2Clab to understand how
the Cloud-centric and the hybrid Edge-Cloud processing
approaches impact performance metrics such as latency
and throughput (Section V).

II. BACKGROUND AND MOTIVATION

This section introduces the Computing Continuum paradigm
and explains our vision to experimentation on such an infras-
tructure through the example of a real-life application.

A. Edge-to-Cloud Computing Continuum

The Computing Continuum refers to a digital infrastructure
jointly used by complex application workflows typically com-
bining real-time data generation, processing and computation.
It may include computing resources at central locations such
as Cloud datacenters or supercomputers; IoT devices at the
Edge; and intermediate infrastructure such as Fog systems.

Cloud infrastructures provide virtually ”unlimited” com-
puting and storage resources used essentially for backup and
data analytics for global insight extraction in a centralized
way (in its datacentes). Data is first ingested at high rates
through dedicated systems (such as Kafka [11], Pulsar [12],
ZeroMQ [13], etc.) and then analyzed by Big Data processing
frameworks (such as Flink [14], Spark [5], Storm [15], among
others). They perform stream and batch analytics on vast
historical data (in the order of Petabytes), AI model training,
and complex simulations [1]. The goal is to help understand
”Why” the phenomena sensed at the Edge are happening.

Edge infrastructures refer to computing and storage re-
sources located where the data originated. They consist of
potentially many (e.g., millions of) smart devices sensing
”What” is happening in the environment and generating
potentially huge data streams at potentially high rates [16].
Dedicated systems like Apache Edgent [4] and Apache Nifi
[17] push intelligence from the Cloud to those devices and
extract value from data in real-time (e.g., improving response
times from seconds to milliseconds [18] compared to Cloud-
based approaches), while preserving privacy and security (crit-
ical data is analyzed locally and not sent remotely).

Fog infrastructures refer to a potentially large number of
geographically-distributed resources located on the data path
between the Edge and the Cloud. Examples include thousands
of nodes such as gateways, antennas, routers and servers [19].
They can be used for in-transit processing on data aggregated
from multiple neighboring Edge devices as a way to further



Fig. 2: The Smart Surveillance System workflow on the Edge-
to-Cloud Computing Continuum.

reduce data volumes that need to be transferred and processed
on Clouds. Lightweight frameworks typically based on mes-
sage brokers (like Eclipse Mosquitto [20]) that implement the
MQTT protocol [21] enable hierarchical processing and smart
aggregation, minimizing latency and bandwidth usage.

B. Meaningful Experiments on the Computing Continuum

Let us illustrate with a real-life use-case the settings, param-
eters and metrics that need to be considered when setting up an
experimental Computing Continuum testbed. The application
is a Smart Surveillance System [22] which relies on resources
from the Edge-to-Cloud Continuum to periodically identify the
most crowded areas in a public space, as depicted in Figure 2.
The video data processing consists of two phases: 1) detecting
and counting, for each frame of a camera, the maximum
number of persons; then 2) aggregating the maximum number
of persons from all geographically distributed cameras to
identify the most crowded area.

The question one aims to answer is: where on this con-
tinuum should the video processing take place? The choices
are between a Cloud-centric approach where both phases are
executed on the Cloud (bottom of Figure 2), and a Hybrid
approach where processing is split between the Fog and the
Cloud (top of Figure 2). To address this question, one needs to
explore a solution space in several dimensions: environment
settings, configuration parameters and performance metrics.

The Smart Surveillance System consists of data producers
such as cameras placed on the Edge; gateways in the Fog that
receive per area video recordings from Edge devices, provide
services like basic data processing and analytics, and forward
the data to the Cloud; lastly, ingestion systems in the Cloud
collect the video streams from all producers and push them
to processing frameworks. These interconnected components
define the experimental environment and workflow.

These components consist in a variety of hardware and
software with different constraints and configuration param-
eters that determine their actuation and scenario behaviour.
For instance, the frequency of video frames on the producers,
the streaming window on gateways or the reserved memory
on processing frameworks impact on the workload and the
end-to-end performance. Furthermore, the interconnection ca-

TABLE I: ACM Digital Library Terminology [25]

R
ep

ea
ta

bi
lit

y Same team, same experimental setup: the measurement can
be obtained with stated precision by the same team using
the same measurement procedure, the same measuring system,
under the same operating conditions, in the same location
on multiple trials. For computational experiments, this means
that a researcher can reliably repeat their own computation.

R
ep

lic
ab

ili
ty

Different team, same experimental setup: the measurement can
be obtained with stated precision by a different team using
the same measurement procedure, the same measuring system,
under the same operating conditions, in the same or a different
location on multiple trials. For computational experiments, this
means that an independent group can obtain the same result
using the author’s own artifacts.

R
ep

ro
du

ci
bi

lit
y Different team, different experimental setup: the measurement

can be obtained with stated precision by a different team, a
different measuring system, in a different location on multiple
trials. For computational experiments, this means that an inde-
pendent group can obtain the same result using artifacts which
they develop completely independently.

pabilities vary between the Edge, Fog and Cloud due to the
characteristics of those networks.

Performance metrics of interest in this context are: Fog
to Cloud latency: the time required to send the data from
gateways to ingestion systems; Fog to Cloud throughput: the
amount of data per second that arrives in the ingestion systems;
and end-to-end throughput: the rate of processed data sent by
the processing framework. Besides, bandwidth, energy, CPU
and memory usage are useful to assess the footprint of different
design choices.

The definition domains of these environment settings and
configuration parameters are extremely vast and their combina-
tion of possibilities virtually unlimited. Hence, the process of
relevantly mapping the real-world use case to an experimental
setup is challenging: bad choices may result in limited or even
wrong interpretation of the performance results.

C. Achieving 3R’s of Research Quality

As communities from an increasing number of scientific
domains are leveraging the Computing Continuum, a desired
feature of any experimental research is that its scientific
claims are verifiable by others in order to build upon them.
This can be achieved through repeatability, replicability, and
reproducibility (3R’s) [23], [24]. There are many non-uniform
definitions of the 3R’s in literature. In this paper, we follow
the terminology proposed by the ACM Digital Library [25]
(Artifact Review and Badging), as presented in Table I.

In our use-case, achieving repeatability means that one
is able to reliably repeat the experiments and obtain precise
measurements (e.g., Fog to Cloud latency, memory consump-
tion) by using the same methodology and artifacts (i.e., same
testbed, same physical machines, same ingestion system, same
processing framework, same network configuration). Execut-
ing multiple experiments allows to: explore different scenario
settings (i.e., varying the number of Fog brokers or data



Fig. 3: Our experimental methodology.

producers, different ingestion systems and processing frame-
works) and explore the impact of various parameters (i.e., the
network configuration, the amount of memory reserved for
processing frameworks) on the performance metrics.

Replicability refers to third party researchers having access
to the original methodology and artifacts (i.e., configuration
of physical machines, ingestion, processing, network) and
obtaining precise results, close to the primary ones.

Lastly, reproducibility means that external researchers hav-
ing access to the original methodology (i.e., configuration of
physical machines, network and systems, scenario descrip-
tions) and using their own artifacts (e.g., producers, ingestion
systems, processing frameworks, datasets) can obtain precise
measurements (of the latency and throughput, for instance).

Most of the challenges of achieving research 3R’s may be
divided in three main categories: the need for a well-defined
experimentation methodology; access to experiment artifacts;
and access to experiment results.

III. METHODOLOGY OVERVIEW

Our methodology presented in this section is based on
the take-aways of a previous study on Edge and Cloud
computing trade-offs [22]. The specific experimental approach
used for that study is generalized and defined here in a
standalone methodology, which can be used by any application
and deployed anywhere on the Computing Continuum. The
methodology leverages three main processes which consist of
a series of actions to achieve the high-level goals of this paper.
Found at the left side of Figure 3 are these processes pipelined
in a stream fashion.

A. Providing Access to Experiment Artifacts

This process, illustrated at the bottom of Figure 3, consists
in providing access to all the research artifacts used to enable
the experiments. They include: the original dataset used as

input to the experiments; the software, algorithms, libraries,
etc., developed by experimenters or obtained from third par-
ties; and the whole experiment configuration details such as
the hardware specifications, execution parameters, the network
configuration and the experiment workflow. In order to enable
the 3R’s of experiments, all these research artifacts must be
in a public and safe repository.

B. Defining the Experimental Environment

This process has as main goal to define the whole ex-
perimental environment: the layers, the services, the network
interconnect, and the experimental workflow, illustrated as
sub-processes at the core of Figure 3.

The methodology is centered around the concepts of Ser-
vices and Layers:

• Services represent any system that provides a specific
functionality or action in the scenario workflow. In the
Smart Surveillance example, services may refer to pro-
ducers, gateways or processing frameworks (e.g., a Flink
cluster). A service can be made up of several components
(e.g., Flink Task Managers, Job Managers etc.).

• Layers define the hierarchy between services and group
them with different granularities. They can also be used
to reflect the geographical distribution of the compute
resources. In the context of the Computing Continuum,
layers refer to Edge, Fog, and Cloud, for instance.

This layer and service abstraction targets experiments scala-
bility and variation, since it allows to easily resize the number
of layers and to analyze different scenario deployments such as
single-layered (e.g., Cloud-only) or multi-layered (e.g., Edge
+ Cloud). Next, we describe the roles of each sub-process.

1) Define Layers and Services: specifies the layers and the
services deployed on each layer that compose the experi-
mental scenario. Each service must be configured with its
specific parameters and low-level configurations accord-
ing to the experimenters requirements. Each service can
be monitored (processor, storage, memory, network, I/O,
etc.) during the execution of the experiments.

2) Define the Network: specifies the network communication
rules between layers and between services. For each
network communication the experimenter should be able
to define specific network conditions and constrains.

3) Define the Workflow: specifies all the execution logic
and rules of the software, algorithms and applications
running on services (i.e., data producers, ingestion sys-
tems, processing engines, etc.). Such execution logic and
rules refer to interconnections (e.g., mapping applications
and services), life cycle, execution parameters, execution
order, etc. Furthermore, this sub-process provides all
dependencies required to properly initiate the execution
logic of the services (e.g., libraries, datasets, etc). The
workflow also includes supporting components (not in-
cluded in the experiment analysis) to collect performance
metrics, such as throughput, latency, among others.

Note that breaking down the definition of the experimental
environment in three well-defined sub-processes enables flexi-



bility and variability, since the definitions of each sub-process
may be modified without impacting on the remaining ones.

C. Providing Access to Experiment Results

This process, illustrated at the top of Figure 3, collects
all the output generated during the experiments execution
(i.e., log files, monitoring data, performance metrics, etc.).
These outputs may be aggregated and analyzed according to
the experimenters interests to derive insights and understand
performance. Lastly, to enable the 3R’s, all the output data,
the research results and the conclusions must be available in
a public and safe repository.

IV. E2CLAB: THE METHODOLOGY IMPLEMENTATION

To illustrate our methodology for experimentation on the
Computing Continuum, we propose E2Clab, a framework
which implements it. It may be used by researches to de-
ploy real-life applications on large-scale testbeds and perform
meaningful experiments in a systematic manner. Find out more
about E2Clab on its documentation web page [26].

A. High-Level Perspectives and Architecture

E2Clab was developed with usability in mind: we pro-
pose a structure for configuration files (presented in Table II
and discussed in the next subsections). Those files allow
experimenters to write their requirements in a descriptive
manner. They are easy to comprehend, to use and to adapt
to any scenario, reducing the effort of configuring the whole
experimental environment.

Essentially, using only three configuration files the experi-
menter describes the workflow (e.g., a Flink job), the layers
and services that compose the scenario (e.g., a Flink cluster
service in cloud layer), and the network specification (e.g.,
delays, losses, and rates within the Flink cluster). The frame-
work abstracts from the users the complexity of the mappings
between layers and services with the actual machines in the
environment.

The E2Clab architecture is depicted at the core of Figure 4
and is composed of a set of Managers, described in the
remainder of this section. Their role is to convert the abstract
specifications of layers and services defined in the configu-
ration file into concrete environment resources (e.g., physical
machines of a computing cluster) with the respective services
deployed. They also enforce the configuration dependencies
of the underlying services, defined by experimenters in the
workflow configuration file.

E2Clab sits on top of EnOSlib [27], a library which brings
reusable building blocks for configuring the infrastructure,
provisioning software on remote hosts as well as organizing
the experimental workflow. Interaction with the testbeds is
deferred to EnOSlib’s provider and various actions on remote
hosts also rely on mechanisms offered by the library (e.g
monitoring stack). For illustration purposes, we deployed the
Smart Surveillance use-case with E2Clab on Grid’5000 [10], a
large-scale distributed testbed for experiment-driven research
in France. E2Clab current version supports Grid’5000, how-
ever, thanks to EnOSlib, E2Clab can be extended to support

Fig. 4: The E2Clab framework.

different environments such as Chameleon [28], Vagrant [29],
among others.

B. Experiment Manager

The Experiment Manager coordinates the execution of the
whole experiment and the information exchange between all
Managers. It receives as input all the configuration files
provided by the users (layers and services, network, and work-
flow) and assigns them to the respective Managers to setup the
experimental environment and execute the experiments. At the
end of each experiment, the Experiment Manager provides the
results to the users.

Table II presents the structure for the configuration files and
a brief description of each of their attributes. These configura-
tion files follow the YAML format [30]. In order to manage the
experiment execution logic (i.e., interconnections, life cycle,
execution parameters, execution order, etc.) on remote nodes,
the workflow configuration file follows Ansible’s playbook
language [31]. Each configuration file has an important role to
enable the 3R’s as they abstract the underlying infrastructure in
a rigorous way, allowing other researchers to easily reproduce,
replicate or repeat the experiments.

E2Clab relies on EnOSlib tasks to divide the experiment
deployment into smaller steps, according to the sequence
presented in Table II. Through a command line like ”e2clab
[layers-services, network, or workflow]” one may separately
deploy the scenario. The workflow deployment step can also
be divided as ”e2clab workflow scenario dir [prepare, launch,
or finalize]”. Furthermore, one may also easily automate the



TABLE II: E2Clab Configuration Files

Attributes Description
L

ay
er

s
&

Se
rv

ic
es

environment
name
site
cluster

Refers to the environment to run the experi-
ments on, such as Grid’5000, for example.

layers
- name

Define the hierarchy between services and
group them in different granularities.

services
- name

quantity
repeat
roles
env

Define service-specific configurations, such as
the environment variables, the monitoring, the
number of nodes required to deploy the
service, and the service repeatability.

N
et

w
or

k

networks
- default loss

default delay
default rate

- src
dst
delay
rate
loss

Define a default network configuration (manda-
tory) and additionally custom network configu-
rations (optional) between the layers defined in
the infrastructure file. For each network, users
may vary parameters such as delay, rate, and
loss.

W
or

kfl
ow

- hosts
Refers to remote nodes to deploy the experiment
artifacts (libraries, applications, among others)
and to enforce the experiment workflow.

depends on
conf selector
grouping
prefix

Groups applications and services to intercon-
nect them and to obtain application’s and servi-
ce’s metadata (such as IP address, port number,
address to remote services, among others).

prepare
launch
finalize

Refers to three phases of the workflow manage-
ment. Each one consists of tasks to be applied on
remote nodes such as 1) prepare: copy files to
remote nodes (libraries, dataset, softwares, etc.);
2) launch: execute commands on them (such as
starting multiple applications with specific para-
meters and resource constraints); 3) finalize: back-
up data generated during execution of experiments.

whole deployment and repeat the experiment N times by just
issuing the following command ”e2clab deploy scenario dir
artifacts dir –repeat 2 –lifecycle 240”.

C. Layers and Services Manager

This Manager interprets the layers and services configu-
ration file and starts the deployment phase by reserving the
physical resources on the environment, installing, configuring,
and launching all the services defined by the user. It uses
EnOSlib Dstat service to monitor nodes resource usage.

Considering the Smart Surveillance use case, Listing 1 pro-
vides an excerpt of a configuration file where the user defined
the environment as Grid’5000. Besides, the user emulated atop
Grid’5000 a Cloud layer with two services.

The first service consists in an Apache Flink [14] cluster
composed of one Job Manager and two Task Managers,
resulting in three physical machines reserved on Grid’5000
(quantity : 3). Additionally, the user set the cluster in the
monitoring role (i.e., to monitor the computing resources of
all Flink’s Job and Task Managers during the execution of
experiments) and defined some service-specific configurations
such as the Flink Job Manager heap size, the parallelism, and
the number of tasks slots for the Flink Task Managers. If one
needs to deploy two (or more) distinct Flink clusters with the
same configuration on the Cloud side, it can be done by simply
adding the attribute (repeat : 2) within the Flink service. This
allows users to easily and transparently scale the scenarios

environment
name: grid5000, site: rennes, cluster: paravance

layers
- name: Cloud
services
- name: Flink, quantity: 3, roles: [monitoring]
env:

FLINK_PROPERTIES:
"jobmanager.heap.size: 8000m \n
parallelism.default: 16 \n
taskmanager.numberOfTaskSlots: 32"

- name: Kafka, quantity: 3, roles: [monitoring]
env:

KAFKA_ZOOKEEPER_CONNECTION_TIMEOUT_MS: "30000"
KAFKA_BATCH_SIZE: "200000"

Listing 1: Layers and Services configuration example.

networks:
- def_delay:"2ms", def_rate:"10gbit", def_loss:0.1
- src: cloud, dst: fog
delay: "50ms", rate: "1gbit", loss: 2

- src: fog, dst: edge
delay: "50ms", rate: "150mbit", loss: 5

Listing 2: Network configuration example.

by adding layers and to easily vary them by replicating the
services.

The second service consists in an Apache Kafka [11] cluster
composed of one Kafka leader with a ZooKeeper [32] and
two Kafka followers (quantity : 3). The Kafka cluster is
monitored and configured with a connection timeout for the
ZooKeeper server and a batch size.

In the current implementation, the Flink and Kafka services
are Docker containers, with images obtained by default from
the Docker Hub [33]. Hence, users can set their custom images
by using the image attribute and specifying the image identi-
fier in the Docker Hub (e.g., image : ”home/flink − 1.8.0”
for Flink). This may be done for other services as well (e.g.,
image : ”home/myproducer” for producers).

Leveraging containerization and virtualization enables re-
producibility in E2Clab: everything required to run the service
efficiently and bug-free (i.e., configuration files, libraries,
dependencies, datasets etc.) can be packed, made publicly
available and reused.

D. Network Manager

This Manager defines the communication rules between the
physical machines, as specified by users. It receives the layers
and services and the network configuration files from the
Experiment Manager and collects information resulted from
the deployment. It uses EnOSlib Netem service to configure
the whole network and once this is done, it generates a file
report for users to check and validate the network parameters.

The Smart Surveillance use-case defines three distinct net-
works, as shown in Listing 2. The first one is the default
network configuration that is applied to all physical machines.
The second one refers to the network connection between the
Cloud and Fog layers; it is defined with a delay of 50ms, a rate
of 1Gbit, and a packet loss of 2%. The last one refers to the
connection between the Edge and Fog layers, configured with
a delay, rate, and loss of 50ms, 150Mbit, and 5%, respectively.



- hosts: edge.producer.*
depends_on:

conf_selector: "fog.gateway.*"
grouping: "round_robin"
prefix: "gateway"

prepare:
- copy:

src: "applications/dataset/"
dest: "/dataset/"

launch:
- shell:
"cctv-producer -target /dataset/data-{{item}}
tcp://{{gateway.url}} /metrics-{{item}}"
loop: "{{ range(1, 41)|list }}"

finalize:
- fetch:

src: "/metrics-{{item}}/throughput"
dest: "{{working_dir}}/results/producers/"

loop: "{{ range(1, 41)|list }}"

Listing 3: Producer configuration example.

As one may note, we use the concept of layers to easily
enforce the communication capabilities between machines.
Those network configurations can be varied in a fine-grained
or coarse-grained way, according to the layers definition. Such
abstraction of the network configuration complexity from end
users enables the E2Clab replicability and reproducibility.

E. Workflow Manager

This Manager interprets the workflow configuration file and
deploys and runs the components of each service (e.g., data
producers, gateways, processing engine job, etc.), enforcing
their dependencies (if any). It uses the EnOSlib Tasks API
that leverages Ansible for many routine tasks handling.

Considering the Smart Surveillance use-case and the ex-
ample in Listing 3, we present how E2Clab avoids burden-
ing the users of doing the exact mapping between layers
(Edge and Fog) and services (producers and gateways), at
the workflow level. Through the depends on attribute, users
can easily achieve this mapping (e.g. provide to producers
the gateway URL, gateway.url), as well as to transparently
scale it by using logical names like edge.producer.∗ and
fog.gateway.∗. The same attribute allows users to trans-
parently interconnect producers and gateways (e.g. in round-
robin) by using grouping : ”round robin”. In this example,
we configure and interconnect the producers (i.e., 160 cameras,
as 40 Java processes per machine) to send data to their
respective gateways, with minor effort and complexity.

Once the mapping is defined, users can then manage the
deployment of their applications in three well defined steps:
prepare, launch, and finalize. According to Listing 3, in
the prepare step, we are copying the image dataset used
by producers from the local to the remote machines; then,
in launch we are starting the 160 producers; and lastly, in
finalize we are collecting the throughput file generated by each
producer during the execution of the experiments.

We highlight that, the Workflow Manager collects all data
generated during the execution of the experiments, such as
physical machine monitoring, files generated by user applica-
tions such as log files, files containing performance metrics
data, etc. In order to be able to collect these data, users must

define the data to be collected at the end of the experiments
in the workflow configuration file. Researchers must provide
all the data collected by the Manager in a public and safe
repository, for replicability and reproducibility purposes.

V. EVALUATION

In this section we show how E2Clab can be used to analyze
the performance of the Smart Surveillance application in order
to find a representative setup in a Computing Continuum
environment. The goals of these experiments are:

• to understand the impact on performance of Cloud-
centric and Hybrid (Fog+Cloud) processing;

• to analyze the resource consumption of gateways, data
ingestion (Kafka) clusters and processing (Flink) clusters.

The experiments are carried out on the Grid’5000 testbed
(clusters econome [34], gros [35], and grisou [36]). The
Nancy grisou cluster, using 35 physical machines equipped
with Intel Xeon E5-2630 v3 processors (Haswell, 2.40GHz, 2
CPUs/node, 8 cores/CPU), 128GB of memory, 600 GB HDD,
and four 10Gbps Ethernet interfaces.

A. Experimental Setup

1) Scenario configuration: In the Smart Surveillance ap-
plication, cameras deployed on the Edge send video frames
to gateways in the Fog, which, depending on the application
configuration, may pre-process the data before sending them
to the Cloud (cf. Section II-B).

There are two application configurations under investiga-
tion: Cloud-centric and Hybrid. In the Cloud-centric config-
uration, Fog gateways are passive, i.e., they only forward
data from cameras to the Cloud, where the by-region and all-
camera processing take place. The by-region processing is the
detection (using OpenCV [37]) and the counting of people,
and the selection of the video frame with the most people
in a time window of 5 seconds. The all-camera processing is
the calculation of the video-frame with the most people from
all cameras in a time window of 20 seconds. In the Hybrid
configuration, Fog gateways are active, i.e., they perform the
by-region processing and send pre-processed data to the Cloud,
onto which the all-camera processing is performed.

Data processing is enabled by Apache Edgent on Fog active
gateways. On the Cloud, data are ingested by Kafka and
ZooKeeper clusters and processed by a Flink cluster.

2) Workloads: For both processing approaches, we defined
three categories of workloads (summarized in Table III), rep-
resentative for applications with a varying number of sensors
or data producers: Small, Medium and Large. Each workload
differs from the others in the number of cameras (40, 160,
and 640), gateways (1, 4, and 16), and number of physical
machines required to deploy them (5, 11, and 35), respectively.
The experimental scenarios use videos from the University of
California San Diego dataset [38]. For all workloads, each
camera is configured to send in average 100 images per
second, resulting in a streaming rate of around 2.5MB/s.



TABLE III: Workloads Characterization

Scenario Cameras Gateways Grid’5000 Nodes
Small 40 1 5
Medium 160 4 11
Large 640 16 35

TABLE IV: Services Configuration and Parameters

Service Parameter Value

Flink Cluster
- Job Manager (JM)
- Task Manager (TM)

JM heap size
TM number of task slots
job window size
job parallelism

8GB
32
20s
32

Kafka Cluster
- ZooKeeper Server
- Kafka Leader

topic partitions
topic replication factor
batch size
linger

32
1
200KB
50ms

Edgent Gateways
- Passive Gateway (PG)
- Active Gateway (AG)

MQTT QoS (at most once)
AG window size
AG period of data emission

0
5s
100ms

Cameras

period of data emission
MQTT QoS (at most once)
JVM minimum heap size
JVM maximum heap size

10ms
0
256MB
1GB

TABLE V: Network Configurations

Edge-to-Fog (E-F) Fog-to-Cloud (F-C)
Network Rate Delay

(ms)
Loss
(%) Rate Delay

(ms)
Loss
(%)

A 22Mb 100 5 1Gb 5 2
B 1Gb 5 2 1Gb 5 2
C 1Gb 5 2 22Mb 100 5
D 10Gb 2 0.1 10Gb 2 0.1

3) Configuration parameters: Table IV presents in detail
the parameters used to configure all the services, such as
cameras, Edgent gateways, Kafka and Flink clusters. In a
nutshell, cameras send 100 images per second to gateways;
active gateways (with a window size of 5 seconds) send
processed data with an average frequency of 20 units per
second; the Kafka input topic (with 32 partitions) receives
those data, the Flink Task Manager consumes it (using a
window of 20 seconds) and processes it on 32 task slots; lastly,
Flink sends the aggregate count to the Kafka’s output topic.

The network configurations between the Edge and the Fog
(E-F) and between the Fog and the Cloud (F-C) layers, re-
spectively, are presented in Table V. We defined four network
profiles, each one with a different rate, delay, and loss. They
correspond to common real-life scenarios. For instance, most
IoT applications fall in profile A, with an average sensor
connectivity through 3G at the Edge and a good network
connectivity towards the Cloud. In some remote areas, the
sensor connectivity can be good, however the network towards
the cloud relies on 3G antennas (profile C).

4) Performance metrics: The metrics of interest in the
Surveillance application are the end-to-end latency and the
processing throughput of active and passive gateways. The
end-to-end latency refers to the time required for messages
to travel from cameras, through gateways, to be ingested by
Kafka and processed by Flink and finally sent back to the
Kafka output topic. The second metric refers to the amount of
messages per second each gateway is able to process. Besides

(a)

(b)

Fig. 5: End-to-end latency for: (a) different workloads, and (b)
different E-F / F-C interconnects.

those performance metrics, we also analyzed the processor and
memory consumption of gateways, Kafka and Flink clusters.

B. Impact of the Network on the End-to-End Latency

In order to analyze the impact of the network on the end-
to-end latency we defined two sets of experiments. In the first
one, we fixed the network with the configuration A (22Mb E-
F and 1Gb F-C) and varied the workloads (Small, Medium,
Large). In the second one, we fixed the workload (Large) and
varied between the network configurations (A, B, and C).

We highlight that, despite that we are analyzing the infras-
tructure in terms of network performance, E2Clab can emulate
CPU, I/O or memory-intensive applications and therefore ana-
lyze the infrastructure considering other performance metrics.
Furthermore, since the current version of E2Clab supports
Docker containers, one may easily emulate embedded systems
with less powerful resources by setting runtime configurations
to constrained containers’ resources such as CPU, GPU, and
memory [39]. Container orchestration tools (such as Kuber-
netes [40]) could also be used in E2Clab to orchestrate the
resource usage of multiple containers on physical machines.

Figure 5(a) shows a general increase of the end-to-end
latency when the workloads are scaled up. A straightforward
observation is that, when comparing the latency between the
Cloud-centric and Hybrid processing, the former incurs higher
latency since all data is sent to the Cloud, which takes time
especially for large datasets (as shown in Section V-D). More
importantly, we notice that the Fog processing is not able keep
the pace with the increased workloads.
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Fig. 6: Gateway processing throughput and resource consumption for varying workload pressure (i.e., cameras per gateway).

To assess whether this is due to the bandwidth, in Fig-
ure 5(b) we study its impact on the end-to-end latency by
varying the A, B, and C network profiles. In the first case, the
Hybrid configuration has lower latency, while, in the last two
cases, the behaviour is similar, with a slightly lower latency in
the Cloud-centric configuration. Its noteworthy that the lower
latency results were obtained with a 1Gb link on both sides.
Clearly, the Fog bottlenck is not due to the bandwidth, so we
further investigate it in the next section.

C. Investigating Bottlenecks at the Fog Gateway Level

We zoom our analysis on the Fog infrastructure in order to
identify possible bottlenecks on passive and active gateways.
The experiment aims to understand how gateways, in both
Cloud-centric and Hybrid configurations, react to changes
in the workload, by scaling from 20, 30 to 40 cameras
per gateway. For this experiment, we consider the network
configuration B (1Gb link between the Edge and Fog).

Figure 6(a) shows the messages per second processed by
the gateways: more messages are sent by the passive gateways
than by the active ones, even when we increase the workload.
This happens because the active Edgent gateways aggregate
messages in a 5s window and perform image processing.
Secondly, we observe that scaling from 20 to 40 cameras per
gateway does not result in an increase of messages processed
per second by passive gateways and only in a slight increase
for active gateways. This is likely due to the poor parallelism
support in Edgent, also highlighted by other studies [22].

This observation is confirmed by the continuous memory
increase shown in Figure 6(b). The passive gateways with 20
cameras consumed the lowest memory, about 9GB, followed
by the active ones, which consumed 45% more (around 13GB).
When we used 40 cameras, both passive and active gate-
ways consumed around 16GB. Regarding CPU usage, active
gateways consumed twice as much compared to the passive
ones, independently of the workload, varying most of the time
between 8 to 10%. The image processing performed on active
gateways explains this higher consumption and variation.

D. Impact of Hybrid Processing on Resource Consumption

Finally, we compared the Cloud-centric and Hybrid pro-
cessing approaches with respect to the amount of data sent to

the Cloud and the consumed resources. Figure 7(a) shows the
amount of data sent to the Cloud by each gateway (passive
and active respectively) when we scale up the workloads with
network D. Since this data is sent to the Cloud to be processed,
we also analyzed the memory consumption in the Kafka and
Flink clusters, in Figures 7(b) and (c).

Not surprisingly, the Hybrid processing approach sends less
data to the Cloud compared to the Cloud-centric configuration
(Figure 7(a)). This occurs since active gateways aggregate and
process video data on the Fog, resulting in less data being sent
to the Cloud. What is noteworthy is the difference between
them when we scale the scenarios from Small, to Medium and
Large, representing 5.08GB, 20.76GB and 46.81GB, respec-
tively. Especially for large workloads, processing these data
volumes in the Fog can translate into faster results and reduced
resource costs.

Supporting this observation, Figures 7(b) and (c) show
that Kafka and Flink consume less memory in the Hybrid
approach. In particular, Kafka uses 2.44GB for Hybrid pro-
cessing against 2.74GB in the Cloud-centric case, while Flink
uses 6GB for Hybrid processing against 15.5GB for the Cloud-
based. This higher difference for Flink is explained by the fact
that all the processing is done on the Cloud.

E2Clab enabled two important take-aways about Cloud
and Hybrid processing in this scenario:

1) bandwidth has an important influence on the time
to results, however its impact can be offset by
controlling the workload size and by improving the
Edge/Fog gateways support for parallelism;

2) while in many cases the Edge/Fog processing cannot
bring significant performance benefits, it can reduce
the incurred costs (i.e., the transmissions costs and
the Cloud resources costs).

VI. DISCUSSION

Besides revealing the hidden trade-offs of application de-
ployments through 3R’s experiments, E2Clab exhibits a series
of features that make it a promising base for future benchmarks
on the E2C Continuum. We briefly discuss them here.
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Fig. 7: Resource consumption in Hybrid and Cloud scenarios: (a) data transferred, (b) Kafka memory and (c) Flink memory.

A. Experiment Variation and Transparent Scaling

The layers and services abstraction in E2Clab allows ex-
perimenters to easily vary and scale their scenarios. The con-
figuration files (presented in Table II) use a simple semantic
that enhances the variation of the experiment parameters (e.g.,
application-specific parameters, network constraints, etc.) in
order to analyze it in different perspectives. Furthermore, users
can transparently scale their experiments by adding multiple
layers and defining a variety of services to be placed on them.
Their mapping is achieved with minor changes in the layers
and services configuration file and no impact in the network
and workflow files.

B. Usability and Open Science

E2Clab targets usability by abstracting all the low-level
details of the definition and configuration of the experimental
environment. It avoids the burden of mapping layers and
services to users, since it provides a high-level abstraction
that allows performing this mapping through logical names
and pattern matching. Besides, the configuration files were
designed to be easy to use and understand.

Finally, our methodology and its implementation are aligned
with the Open Science goal to make scientific research acces-
sible. The E2Clab framework provides guidelines to system-
atically define the whole experimental environment through
well structured configuration files and it provides at the end
of each experiment an archive of the generated data. All the
experiment artifacts and results of this paper may be found in
our repository [41].

VII. RELATED WORK

With the growth in popularity of the IoT, Edge-based
processing has been a very active field of research in the last
few years. Most of the works on instrumenting applications
on the Edge and the Fog come from the benchmarking area.

The Transaction Processing Performance Council (TPC)
[42] proposed the TPCx-IoT [43], a benchmark for IoT
gateway systems, which defines a set of scripts and tools
for processing large workloads based on real IoT industry
applications. TPCx-IoT does not offer, however, any means

for configuring the infrastructure or replacing the tested frame-
works. It also focuses on the Edge and Fog layers, not
taking the Cloud into consideration. On the other hand, works
such as CloudCmp [44] and NCSbench [45] focus on the
part of the application deployed on the Cloud and fail on
providing configuration control of application parameters on
Fog or Edge. Benchmark platforms that consider the entire
Computing Continuum such as Swan [46], DeFog [47] or
EdgeBench [48] enable Edge to Cloud applications, how-
ever their main objective is to collect metrics on hardware
and workloads of pre-defined applications, and lack support
for defining and configuring the infrastructure (e.g., network
connections, virtual machines, deployment). That support is
essential for performing 3R’s experiments.

VIII. CONCLUSIONS AND FUTURE WORK

E2Clab is, to the best of our knowledge, the first platform to
support the complete analysis cycle of an application on the
Computing Continuum. It provides two simple abstractions
for modeling such applications and infrastructures: layers and
services. While these abstractions are limited, we have found
that they are powerful enough to express several applications
deployed on different environments, ranging from the Edge
to the Cloud. Furthermore, we believe that the core idea
behind E2Clab, of a methodology to enable the design of
relevant testebeds for 3R’s experiments, may prove useful for
understanding the performance of large-scale applications.

In future work, we plan to focus on three areas: (1) develop
other, finer grained abstractions to model the components of
the services and allow researchers to trade between different
costs with increased accuracy; (2) enable built-in support for
other large-scale experimental testbeds, besides Grid’5000,
such as Vagrant and Chameleon (note that, currently, users
can adapt E2Clab to their testbed of convenience by means
of EnOSlib); and (3) develop a benchmark for processing
frameworks within the Computing Continuum atop E2Clab.
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