M. Nedyalkova, B. Donkova, J. Romanova, G. Tzvetkov, S. Madurga et al., Iron oxide nanoparticles-In vivo/in vitro biomedical applications and in silico studies, Adv. Colloid Interface Sci, vol.249, pp.192-212, 2017.

N. Saxena and M. Singh, Efficient synthesis of superparamagnetic magnetite nanoparticles under air for biomedical applications, J. Magn. Magn. Mater, vol.429, pp.166-176, 2017.

M. Miola, A. Bellare, F. Laviano, R. Gerbaldo, and E. Verné, Bioactive superparamagnetic nanoparticles for multifunctional composite bone cements, Ceram. Int, vol.45, pp.14533-14545, 2019.

K. Mahmoudi, A. Bouras, D. Bozec, R. Ivkov, and C. Hadjipanayis, Magnetic hyperthermia therapy for the treatment of glioblastoma: A review of the therapy's history, efficacy and application in humans, Int. J. Hyperth, vol.34, pp.14641-14645, 2014.

L. Sun, D. Y. Joh, A. Al-zaki, M. Stangl, S. Murty et al., Theranostic Application of Mixed Gold and Superparamagnetic Iron Oxide Nanoparticle Micelles in Glioblastoma Multiforme, J. Biomed. Nanotechnol, vol.12, pp.347-356, 2016.

D. Raucher, S. Dragojevic, and J. Ryu, Macromolecular Drug Carriers for Targeted Glioblastoma Therapy: Preclinical Studies, Challenges, and Future Perspectives, Front. Oncol, vol.8, p.624, 2018.

S. Aliramaji, A. Zamanian, and Z. Sohrabijam, Characterization and Synthesis of Magnetite Nanoparticles by Innovative Sonochemical Method, Procedia Mater. Sci, vol.11, pp.265-269, 2015.

R. Kumar, R. Sakthivel, R. Behura, B. K. Mishra, and D. Das, Synthesis of magnetite nanoparticles from mineral waste, J. Alloy. Compd, vol.645, pp.398-404, 2015.

D. D. Suppiah and S. B. Hamid, One step facile synthesis of ferromagnetic magnetite nanoparticles, J. Magn. Magn. Mater, vol.414, pp.204-208, 2016.

A. Nikitin, M. Fedorova, V. Naumenko, I. Shchetinin, M. Abakumov et al., Synthesis, characterization and MRI application of magnetite water-soluble cubic nanoparticles, J. Magn. Magn. Mater, vol.441, pp.6-13, 2017.

F. Márquez, T. Campo, M. Cotto, R. Polanco, R. Roque et al., Synthesis and Characterization of Monodisperse Magnetite Hollow Microspheres, Soft Nanosci. Lett, 2008.

J. Baumgartner and D. Faivre, Iron solubility, colloids and their impact on iron (oxyhydr)oxide formation from solution, Earth Sci. Rev, vol.150, pp.520-530, 2015.

A. G. Muradova, M. P. Zaytseva, A. I. Sharapaev, and E. V. Yurtov, Influence of temperature and synthesis time on shape and size distribution of Fe3O4 nanoparticles obtained by ageing method, Colloid Surf. A Physicochem. Eng. Asp, vol.509, pp.229-234, 2016.

S. Upadhyay, K. Parekh, and B. Pandey, Influence of crystallite size on the magnetic properties of Fe3O4 nanoparticles, J. Alloy. Compd, vol.678, pp.478-485, 2016.

S. Asuha, B. Suyala, X. Siqintana, and S. Zhao, Direct synthesis of Fe3O4 nanopowder by thermal decomposition of Fe-urea complex and its properties, J. Alloy. Compd, vol.509, pp.2870-2873, 2011.

E. Stimphil, A. Nagesetti, R. Guduru, T. Stewart, A. Rodzinski et al., Physics considerations in targeted anticancer drug delivery by magnetoelectric nanoparticles, Appl. Phys. Rev, 2017.

S. Zhao and S. Asuha, One-pot synthesis of magnetite nanopowder and their magnetic properties, Powder Technol, vol.197, pp.295-297, 2010.

C. Stauch, S. Späth, T. Ballweg, R. Luxenhofer, and K. Mandel, Nanostructured micro-raspberries from superparamagnetic iron oxide nanoparticles: Studying agglomeration degree and redispersibility of nanoparticulate powders via magnetisation measurements, J. Colloid Interf. Sci, vol.505, pp.605-614, 2017.

E. Nourafkan, M. Asachi, H. Gao, G. Raza, and D. Wen, Synthesis of stable iron oxide nanoparticle dispersions in high ionic media, J. Ind. Eng. Chem, vol.50, pp.57-71, 2017.

I. P. Novoselova, A. P. Safronov, O. M. Samatov, I. V. Beketov, A. I. Medvedev et al., Water based suspensions of iron oxide obtained by laser target evaporation for biomedical applications, J. Magn. Magn. Mater, vol.415, pp.35-38, 2016.

U. Klekotka, D. Satu?a, S. Spassov, and B. Kalska-szostko, Surfactant dependence on physicochemical properties of magnetite nanoparticles, Colloids Surf. A Physicochem. Eng. Asp, vol.537, pp.452-459, 2018.

P. Azcona, R. Zysler, and V. Lassalle, Simple and novel strategies to achieve shape and size control of magnetite nanoparticles intended for biomedical applications, Colloids Surf. A Physicochem. Eng. Asp, vol.504, pp.320-330, 2016.

C. L. Altan, B. Gurten, R. Sadza, E. Yenigul, N. A. Sommerdijk et al., Poly(acrylic acid)-directed synthesis of colloidally stable single domain magnetite nanoparticles via partial oxidation, J. Magn. Magn. Mater, vol.416, pp.366-372, 2016.

D. S. Keerthana, K. Namratha, K. Byrappa, and H. S. Yathirajan, Facile one-step fabrication of magnetite particles under mild hydrothermal conditions, J. Magn. Magn. Mater, vol.378, pp.551-557, 2015.

F. Ozel, H. Kockar, and O. Karaagac, Growth of Iron Oxide Nanoparticles by Hydrothermal Process: Effect of Reaction Parameters on the Nanoparticle Size, J. Supercond, vol.28, pp.823-829, 2015.

M. Popescu, R. M. Piticescu, E. Vasile, D. Taloi, M. Petriceanu et al., The Influence of Synthesis Parameters on FeO(OH)/Fe2O3 Formation by Hydrothermal Techniques, Zeitschrift für Naturforschung B, vol.65, pp.1024-1032, 2010.

L. M. Cursaru, R. M. Piticescu, D. V. Dragut, I. A. Tudor, V. Kuncser et al., The Influence of Synthesis Parameters on Structural and Magnetic Properties of Iron Oxide Nanomaterials, Nanomaterials, vol.10, p.85, 2020.

D. Kim, E. A. Rozhkova, I. V. Ulasov, S. D. Bader, T. Rajh et al., Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction, Nat. Mater, vol.9, pp.165-171, 2009.

C. Naud, C. Thébault, M. Carrière, Y. Hou, R. Morel et al., Cancer treatment by magneto-mechanical effect of particles, a review, Nanoscale Adv, vol.2020
URL : https://hal.archives-ouvertes.fr/hal-02884942

D. Maity and D. C. Agrawal, Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media, J. Magn. Magn. Mater, vol.308, pp.46-55, 2007.

J. Ding, X. Lü, H. Shu, J. Xie, and H. Zhang, Microwave-assisted synthesis of perovskite ReFeO3, Gd) photocatalyst. Mater. Sci. Eng. B Solid State Mater. Adv. Technol, vol.171, pp.31-34, 2010.

Y. Janbutrach, S. Hunpratub, and E. Swatsitang, Ferromagnetism and optical properties of La1?xAlxFeO3 nanopowders, Nanoscale Res. Lett, vol.9, p.498, 2014.

A. Oliveira, M. L. Hneda, L. E. Fernandez-outon, E. M. De-sousa, and J. D. Ardisson, Synthesis and characterization of nanocomposites based on rare-earth orthoferrites and iron oxides for magnetic hyperthermia applications, Ceram. Int, vol.45, pp.17920-17929, 2019.

M. Stoia, R. Istratie, and C. P?curariu, Investigation of magnetite nanoparticles stability in air by thermal analysis and FTIR spectroscopy, J. Therm. Anal. Calorim, vol.125, pp.1185-1198, 2016.

L. M. Popescu, R. M. Piticescu, M. Petriceanu, M. F. Ottaviani, M. Cangiotti et al., Hydrothermal synthesis of nanostructured hybrids based on iron oxide and branched PEI polymers. Influence of high pressure on structure and morphology, Mater. Chem. Phys, vol.161, pp.84-95, 2015.

M. A. Deriu, L. M. Popescu, M. F. Ottaviani, A. Danani, and R. M. Piticescu, Iron oxide/PAMAM nanostructured hybrids: Combined computational and experimental studies, J. Mater. Sci, vol.51, 1996.

M. Yoshimura and K. Byrappa, Hydrothermal processing of materials: Past, present and future, J. Mater. Sci, vol.43, pp.2085-2103, 2008.

F. Heider and W. Williams, Note on temperature dependence of exchange constant in magnetite, Geophys. Res. Lett, vol.15, pp.184-187, 1988.

Q. Li, C. W. Kartikowati, S. Horie, T. Ogi, T. Iwaki et al., Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles, Sci. Rep, vol.7, pp.1-7, 2017.

M. Unni, A. Uhl, S. Savliwala, B. H. Savitzky, R. Dhavalikar et al., Thermal decomposition synthesis of iron oxide nanoparticles with diminished magnetic dead layer by controlled addition of oxygen, ACS Nano, vol.11, pp.2284-2303, 2017.

R. M. Patil, N. D. Thorat, P. B. Shete, P. A. Bedge, S. Gavde et al., Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles, © 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license, vol.13, pp.63-72, 2018.