M. Kadic, T. Bückmann, and N. Stenger, On the practicability of pentamode mechanical metamaterials, Appl Phys Lett, vol.100, p.49902, 2012.

J. H. Lee, J. P. Singer, and E. L. Thomas, Micro-/nanostructured mechanical metamaterials, Adv Mater, vol.24, issue.36, pp.4782-4810, 2012.

E. Turco, I. Giorgio, and A. Misra, King post truss as a motif for internal structure of (meta)material with controlled elastic properties, R Soc Open Sci, vol.4, p.171153, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01619106

Z. Vangelatos, K. Komvopoulos, and C. Grigoropoulos, Vacancies for controlling the behavior of microstructured threedimensional mechanical metamaterials, Math Mech Solids, vol.24, issue.2, pp.511-524, 2019.

Z. Vangelatos, V. Melissinaki, and M. Farsari, Intertwined microlattices greatly enhance the performance of mechanical metamaterials, Math Mech Solids, vol.24, issue.8, pp.2636-2648, 2019.

Z. Vangelatos, G. X. Gu, and C. P. Grigoropoulos, Architected metamaterials with tailored 3D buckling mechanisms at the microscale, Extreme Mech Lett, vol.33, p.100580, 2019.

S. Eugster, F. Isola, and D. Steigmann, Continuum theory for mechanical metamaterials with a cubic lattice substructure, Math Mech Complex Syst, vol.7, issue.1, pp.75-98, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02269803

N. Nejadsadeghi, L. Placidi, and M. Romeo, Frequency band gaps in dielectric granular metamaterials modulated by electric field, Mech Res Commun, vol.95, pp.96-103, 2019.

E. Barchiesi, M. Spagnuolo, and L. Placidi, Mechanical metamaterials: A state of the art, Math Mech Solids, vol.24, issue.1, pp.212-234, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02453434

X. Yu, J. Zhou, and H. Liang, Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review, Prog Mater Sci, vol.94, pp.114-173, 2018.

F. Dell'isola, P. Seppecher, and J. J. Alibert, Pantographic metamaterials: An example of mathematically driven design and of its technological challenges, Continuum Mech Thermodyn, vol.31, issue.4, pp.851-884, 2019.

F. Dell'isola, P. Seppecher, and M. Spagnuolo, Advances in pantographic structures: Design, manufacturing, models, experiments and image analyses, Continuum Mech Thermodyn, vol.31, issue.4, pp.1231-1282, 2019.

J. J. Alibert, P. Seppecher, and F. Isola, Truss modular beams with deformation energy depending on higher displacement gradients, Math Mech Solids, vol.8, issue.1, pp.51-73, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00497327

F. Dell'isola, U. Andreaus, and A. Cazzani, The complete works of Gabrio Piola: Volume II commented English translation, 2018.

F. Dell'isola, U. Andreaus, and L. Placidi, At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola, Math Mech Solids, vol.20, issue.8, pp.887-928, 2015.

F. Dell'isola, D. Corte, A. Esposito, and R. , Some cases of unrecognized transmission of scientific knowledge: From antiquity to Gabrio Piola's peridynamics and generalized continuum theories, Advanced Structured Materials, vol.42, pp.77-128, 2016.

N. Auffray, F. Isola, . Eremeyev, and . Va, Analytical continuum mechanics à la Hamilton-Piola least action principle for second gradient continua and capillary fluids, Math Mech Solids, vol.20, issue.4, pp.375-417, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00836085

Y. Rahali, I. Giorgio, and J. Ganghoffer, Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices, Int J Eng Sci, vol.97, pp.148-172, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01223794

C. Pideri and P. Seppecher, A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium, Continuum Mech Thermodyn, vol.9, issue.5, pp.241-257, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00527291

H. Abdoul-anziz and P. Seppecher, Strain gradient and generalized continua obtained by homogenizing frame lattices, Math Mech Complex Syst, vol.6, issue.3, pp.213-250, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01672898

H. Abdoul-anziz, P. Seppecher, and C. Bellis, Homogenization of frame lattices leading to second gradient models coupling classical strain and strain-gradient terms, Math Mech Solids, vol.24, issue.12, pp.3976-3999, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02305234

F. Dell'isola, I. Giorgio, and M. Pawlikowski, Large deformations of planar extensible beams and pantographic lattices: Heuristic homogenization, experimental and numerical examples of equilibrium, Proc R Soc London, Ser A, vol.472, p.20150790, 2016.

M. Cuomo, F. Isola, and L. Greco, Simplified analysis of a generalized bias test for fabrics with two families of inextensible fibres, Z Angew Math Phys, vol.67, issue.3, p.61, 2016.

F. Dell'isola, M. Cuomo, and L. Greco, Bias extension test for pantographic sheets: Numerical simulations based on second gradient shear energies, J Eng Math, vol.103, issue.1, pp.127-157, 2017.

L. Placidi, L. Greco, and S. Bucci, A second gradient formulation for a 2D fabric sheet with inextensible fibres, Z Angew Math Phys, vol.67, issue.5, p.114, 2016.

M. Spagnuolo, K. Barcz, and A. Pfaff, Qualitative pivot damage analysis in aluminum printed pantographic sheets: Numerics and experiments, Mech Res Commun, vol.83, pp.47-52, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01529257

U. Andreaus, M. Spagnuolo, and T. Lekszycki, A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler-Bernoulli beams, Continuum Mech Thermodyn, vol.30, issue.5, pp.1103-1123, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02453436

D. Angelo, M. Spagnuolo, M. , D. 'annibale, and F. , The macroscopic behavior of pantographic sheets depends mainly on their microstructure: Experimental evidence and qualitative analysis of damage in metallic specimens, Continuum Mech Thermodyn, vol.31, pp.1181-1203, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02089078

I. Giorgio, Numerical identification procedure between a micro-Cauchy model and a macro-second gradient model for planar pantographic structures, Z Angew Math Phys, vol.67, issue.4, p.95, 2016.

L. Placidi, U. Andreaus, G. , and I. , Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model, J Eng Math, vol.103, issue.1, pp.1-21, 2017.

H. Yang, G. Ganzosch, G. , and I. , Material characterization and computations of a polymeric metamaterial with a pantographic substructure, Z Angew Math Phys, vol.69, issue.4, p.105, 2018.

D. Angelo, M. Barchiesi, E. , G. , and I. , Numerical identification of constitutive parameters in reduced-order bi-dimensional models for pantographic structures: Application to out-of-plane buckling, Arch Appl Mech, vol.89, issue.7, pp.1333-1358, 2019.

N. Nejadsadeghi, D. Angelo, M. Drobnicki, and R. , Parametric experimentation on pantographic unit cells reveals local extremum configuration, Exp Mech, vol.59, issue.6, pp.927-939, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02268895

Y. Solyaev, S. Lurie, and E. Barchiesi, On the dependence of standard and gradient elastic material constants on a field of defects, Math Mech Solids, vol.25, issue.1, pp.35-45, 2020.

E. Turco, How the properties of pantographic elementary lattices determine the properties of pantographic metamaterials, New achievements in continuum mechanics and thermodynamics, vol.108, pp.489-506, 2019.

D. J. Steigmann and F. Isola, Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching, Acta Mech Sin, vol.31, issue.3, pp.373-382, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01198464

I. Giorgio, D. Corte, A. Isola, and F. , Buckling modes in pantographic lattices, CR Mec, vol.344, issue.7, pp.487-501, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01294032

I. Giorgio, N. L. Rizzi, and E. Turco, Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis, Proc R Soc London, Ser A, vol.473, p.20170636, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01675146

D. Scerrato, I. Giorgio, and N. L. Rizzi, Three-dimensional instabilities of pantographic sheets with parabolic lattices: Numerical investigations, Z Angew Math Phys, vol.67, issue.3, p.53, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01305927

J. Niiranen and A. H. Niemi, Variational formulations and general boundary conditions for sixth-order boundary value problems of gradient-elastic Kirchhoff plates, Eur J Mech A Solids, vol.61, pp.164-179, 2017.

S. Khakalo, V. Balobanov, and J. Niiranen, Modelling size-dependent bending, buckling and vibrations of 2D triangular lattices by strain gradient elasticity models: Applications to sandwich beams and auxetics, Int J Eng Sci, vol.127, pp.33-52, 2018.

S. Khakalo and J. Niiranen, Lattice structures as thermoelastic strain gradient metamaterials: Evidence from full-field simulations and applications to functionally step-wise-graded beams, Composites Part B, vol.177, p.107224, 2019.

E. Barchiesi and S. Khakalo, Variational asymptotic homogenization of beam-like square lattice structures, Math Mech Solids, vol.24, issue.10, pp.3295-3318, 2019.

V. Eremeyev, Nonlinear micropolar shells: Theory and applications, Shell Structures: Theory and Applications, pp.11-18, 2005.

V. A. Eremeyev, L. P. Lebedev, A. , and H. , Foundations of micropolar mechanics, 2012.

V. Eremeyev, A. , and H. , Basics of mechanics of micropolar shells, Shell-like structures, pp.63-111, 2017.

H. Altenbach and V. A. Eremeyev, On the theories of plates based on the Cosserat approach, Mechanics of generalized continua, vol.21, pp.27-35, 2010.

H. Altenbach and V. A. Eremeyev, On the linear theory of micropolar plates, J Appl Math Mech, vol.89, issue.4, pp.242-256, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00824928

H. Altenbach and V. A. Eremeyev, Cosserat-type shells, Generalized continua from the theory to engineering applications (CISM International Centre for Mechanical Sciences (Courses and Lectures), vol.541, pp.131-178, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00827365

H. Altenbach, V. A. Eremeyev, and L. P. Lebedev, Micropolar shells as two-dimensional generalized continua models, Mechanics of generalized continua, vol.7, pp.23-55, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00824010

. Misra and P. Poorsolhjouy, Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics, Math Mech Complex Syst, vol.3, issue.3, pp.285-308, 2015.

L. Placidi, E. Barchiesi, and E. Turco, A review on 2D models for the description of pantographic fabrics, Z Angew Math Phys, vol.67, issue.5, p.121, 2016.

E. Turco, M. Golaszewski, and A. Cazzani, Large deformations induced in planar pantographic sheets by loads applied on fibers: Experimental validation of a discrete Lagrangian model, Mech Res Commun, vol.76, pp.51-56, 2016.

E. Turco, K. Barcz, and M. Pawlikowski, Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part I: Numerical simulations, Z Angew Math Phys, vol.67, issue.5, p.122, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01456148

E. Turco, M. Golaszewski, G. , and I. , Pantographic lattices with non-orthogonal fibres: Experiments and their numerical simulations, Composites Part B, vol.118, pp.1-14, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01443679

E. Turco, A. Misra, and R. Sarikaya, Quantitative analysis of deformation mechanisms in pantographic substructures: Experiments and modeling, Continuum Mech Thermodyn, vol.31, issue.1, pp.209-223, 2019.

A. Battista, L. Rosa, and R. Erba, Numerical investigation of a particle system compared with first and second gradient continua: Deformation and fracture phenomena, Math Mech Solids, vol.22, issue.11, pp.2120-2134, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01998612

L. Greco, I. Giorgio, and A. Battista, In plane shear and bending for first gradient inextensible pantographic sheets: Numerical study of deformed shapes and global constraint reactions, Math Mech Solids, vol.22, issue.10, pp.1950-1975, 2017.

P. Franciosi, M. Spagnuolo, and O. U. Salman, Mean Green operators of deformable fiber networks embedded in a compliant matrix and property estimates, Continuum Mech Thermodyn, vol.31, issue.1, pp.101-132, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02123534

B. Chiaia, E. Barchiesi, D. Biagi, and V. , A novel worst-case-based structural resilience index: Definition, computation and applications to portal frame structures, Mech Res Commun, vol.99, pp.52-57, 2019.

E. Barchiesi, . Eugster, . Sr, and L. Placidi, Pantographic beam: A complete second gradient 1D-continuum in plane, Z Angew Math Phys, vol.70, issue.5, p.135, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02268142

M. Spagnuolo and U. Andreaus, A targeted review on large deformations of planar elastic beams: Extensibility, distributed loads, buckling and post-buckling, Math Mech Solids, vol.24, issue.1, pp.258-280, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02453435

A. Green, Micro-materials and multipolar continuum mechanics, Int J Eng Sc, vol.3, issue.5, pp.533-537, 1965.

R. D. Mindlin, Second gradient of strain and surface-tension in linear elasticity, Int J Solids Struct, vol.1, issue.4, pp.417-438, 1965.

L. I. Sedov, Mathematical methods for constructing new models of continuous media, Russ Math Surv, vol.20, issue.5, p.123, 1965.

R. A. Toupin, Theories of elasticity with couple-stress, Arch Ration Mech Anal, vol.17, issue.2, pp.85-112, 1964.
URL : https://hal.archives-ouvertes.fr/hal-00853382

P. Germain, The method of virtual power in continuum mechanics. Part 2: Microstructure, SIAM J Appl Math, vol.25, issue.3, pp.556-575, 1973.

E. Turco and N. L. Rizzi, Pantographic structures presenting statistically distributed defects: Numerical investigations of the effects on deformation fields, Mech Res Commun, vol.77, pp.65-69, 2016.

A. Misra, T. Lekszycki, G. , and I. , Pantographic metamaterials show atypical Poynting effect reversal, Mech Res Commun, vol.89, pp.6-10, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01724940

M. Javanbakht and E. Barati, Martensitic phase transformations in shape memory alloy: Phase field modeling with surface tension effect, Comput Mater Sci, vol.115, pp.137-144, 2016.

S. Mirzakhani and M. Javanbakht, Phase field-elasticity analysis of austenite-martensite phase transformation at the nanoscale: Finite element modeling, Comput Mater Sci, vol.154, pp.41-52, 2018.

F. Dell'isola, T. Lekszycki, and M. Pawlikowski, Designing a light fabric metamaterial being highly macroscopically tough under directional extension: First experimental evidence, Z Angew Math Phys, vol.66, issue.6, pp.3473-3498, 2015.

A. Della-corte, I. Giorgio, and D. Scerrato, Pantographic 2D sheets: Discussion of some numerical investigations and potential applications, Int J Non Linear Mech, vol.80, pp.200-208, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01287032

P. Fischer, M. Klassen, and J. Mergheim, Isogeometric analysis of 2D gradient elasticity, Comput Mech, vol.47, issue.3, pp.325-334, 2011.

M. Cuomo, L. Contrafatto, and L. Greco, A variational model based on isogeometric interpolation for the analysis of cracked bodies, Int J Eng Sci, vol.80, pp.173-188, 2014.

A. Cazzani, M. Malagù, and E. Turco, Isogeometric analysis: A powerful numerical tool for the elastic analysis of historical masonry arches, Continuum Mech Thermodyn, vol.28, issue.1-2, pp.139-156, 2016.

A. Cazzani, M. Malagù, and E. Turco, Constitutive models for strongly curved beams in the frame of isogeometric analysis, Math Mech Solids, vol.21, issue.2, pp.182-209, 2016.

A. Cazzani, M. Malagù, and E. Turco, Isogeometric analysis of plane-curved beams, Math Mech Solids, vol.21, issue.5, pp.562-577, 2016.

A. Cazzani, F. Stochino, and E. Turco, An analytical assessment of finite element and isogeometric analyses of the whole spectrum of Timoshenko beams, J Appl Math Mech, vol.96, issue.10, pp.1220-1244, 2016.

J. Niiranen, S. Khakalo, and V. Balobanov, Variational formulation and isogeometric analysis for fourth-order boundary value problems of gradient-elastic bar and plane strain/stress problems, Comput Methods Appl Mech Eng, vol.308, pp.182-211, 2016.

J. Niiranen, J. Kiendl, and A. H. Niemi, Isogeometric analysis for sixth-order boundary value problems of gradient-elastic Kirchhoff plates, Comput Methods Appl Mech Eng, vol.316, pp.328-348, 2017.

J. Niiranen, V. Balobanov, and J. Kiendl, Variational formulations, model comparisons and numerical methods for Euler-Bernoulli micro-and nano-beam models, Math Mech Solids, vol.24, issue.1, pp.312-335, 2019.

V. Balobanov and J. Niiranen, Locking-free variational formulations and isogeometric analysis for the Timoshenko beam models of strain gradient and classical elasticity, Comput Methods Appl Mech Eng, vol.339, pp.137-159, 2018.

S. Khakalo and J. Niiranen, Isogeometric analysis of higher-order gradient elasticity by user elements of a commercial finite element software, Comput-Aided Des, vol.82, pp.154-169, 2017.

S. Khakalo and J. Niiranen, Anisotropic strain gradient thermoelasticity for cellular structures: Plate models, homogenization and isogeometric analysis, J Mech Phys Solids, vol.134, p.103728, 2020.

. Yaghoubi, . St, V. Balobanov, . Mousavi, and . Sm, Variational formulations and isogeometric analysis for the dynamics of anisotropic gradient-elastic Euler-Bernoulli and shear-deformable beams, Eur J Mech A Solids, vol.69, pp.113-123, 2018.

M. E. Yildizdag, M. Demirtas, and A. Ergin, Multipatch discontinuous Galerkin isogeometric analysis of composite laminates. Continuum Mech Thermodyn Epub ahead of print 19, 2018.

M. E. Yildizdag, . Ardic, . It, and M. Demirtas, Hydroelastic vibration analysis of plates partially submerged in fluid with an isogeometric FE-BE approach, Ocean Eng, vol.172, pp.316-329, 2019.

G. Capobianco, S. R. Eugster, and T. Winandy, Modeling planar pantographic sheets using a nonlinear Euler-Bernoulli beam element based on B-spline functions, Proc Appl Math Mech, vol.18, p.201800220, 2018.

L. Greco, M. Cuomo, and L. Contrafatto, A reconstructed localB formulation for isogeometric Kirchhoff-Love shells, Comput Methods Appl Mech Eng, vol.332, pp.462-487, 2018.

V. Balobanov, J. Kiendl, and S. Khakalo, Kirchhoff-Love shells within strain gradient elasticity: Weak and strong formulations and an H3-conforming isogeometric implementation, Comput Methods Appl Mech Eng, vol.344, pp.837-857, 2019.

V. A. Eremeyev, F. Isola, and C. Boutin, Linear pantographic sheets: Existence and uniqueness of weak solutions, J Elast, vol.132, issue.2, pp.175-196, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01466979

A. Love, A treatise on the mathematical theory of elasticity, View publication stats View publication stats, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01307751